Copyright One Course Source, 2008 ALL RIGHTS RESERVED

This publication contains proprietary and confidential information, which is the property of One Course Source, 2340 Tampa Ave, Suite J, El Cajon, CA 92020. No part of this publication is be
reproduced, copied, disclosed, transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part, without the prior
express written consent of One Course Source.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

REFERENCES TO CORPORATIONS, THEIR SERVICES AND PRODUCTS, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. IN NO
EVENT SHALL ONE COURSE SOURCE BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ARISING OUT OF OR IN CONNECTION WITH THE USE OF THIS INFORMATION.

Descriptions of, or references to, products or publications within this publication do not imply endorsement of that product or publication. One Course Source makes no warranty of any kind
with respect to the subject matter included herein, the products listed herein, or the completeness or accuracy of this publication. One Course Source specifically disclaims all warranties,
express, implied or otherwise, including without limitation, all warranties of merchantability and fitness for a particular purpose.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;

THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. ONE COURSE SOURCE MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

This notice may not be removed or altered.

ver 5.2 - 04/04/08 - 2008Q2

Module Table
of Contents

Introduction

Unit One Perl Essentials Review Page
I A 1 oY1 Yo [o 1 o o 12
1.2 Topics Not Reviewed (but essential to understand OOP in Perl)........ccccoovviiiiiiiiiiiiiiiineeeeeens 13
I T = L= (<1 (=] 01T 14
N V7= T aTol=To I F = I8/ 0 1= 18
T I Y/ 0T o | 0] o S 21
G = Tod =T S 23
A Y/ [Yo 111 25
RS I A X0 [0 [0] g = B =TT 0 10 | {07 = 27
I T U= o T = (£ < 28
Unit Two OO Primer Page
2.1 INtroduction 10 OOP 1N PEIL ..ceeieeieieee et e e e e e e e e e e e e e e eeass 30
FZ A © | o] 1= od £ SR 31
pZ T Y =Y 1 T o £ 32
2 O = 1= 33
2.5 Additional OO TermMINOIOQYuuiiiiiiiiiiiieie et ee e e e e e e et e e e e eat e e e e eeat e eeaeesanaeeeeeesnns 34

P T AN o [(Lo g = LI L= Yo 10T {0 1= 36
A A = | o T =] (] - = 37

Table of Contents © 2008 One Course Source, Inc Page 3

Unit Three OO in Perl Essentials Page

3.1 The BasSiS Of OOP IN P et e e e e e e e e e et e e e e e e aases 39
G T O =13 S O {5 1o o T 40
I TS T 1Y/ 1= 1 g Lo T IO (ST 1 o o T 41
G N @] 1= ox A @4 > [o 42
G TR J @2 1111 o TN 1Y, =31 o To £ R 47
G TS 00] 1511 (U1 (0 £ PR 50
G TR A Yo o =110 | £ 65
G TR T Y/ 111 7= Y (0] PR 68
G TS T AN 2 (] 0 F= 1 (oL 73
G T 1O T O = 1T D - - 75
0 I O = 133 1Y, o Yo 11 [79
3.12 USING AUTOLOAD ..ottt ettt e e e e e e e e et e e e e e e et e e e e e e st e e e e eesaa e eeeenesnannns 84
G T G T D 1T 1 U [o3 (o £ 92
3.14 AJAITIONA] RESOUICESeeieiiii et et e et e e et e et e et e s s e s et s e s e s en e et st ssnaesnsenses 101
TR ST U= 1 o TN o (=Y o [T =TT 103
Unit Four Using bless on arrays and scalars Page
4.1 Why USE Other DAta TYPES? .. ccieeiiiiieeiiiiit e e et e et e e e et e e e e e et e e e e e et e e e e e e et e e e e eesaan s 105
N 11T [T AN £ = NV SR 106
O T oYU [0 [T o = 1 1= 121
A4 BlESSING SCAIAIS.. ...ttt e e e e e et e e e et e e et e e e e e e e aa e 137
Y Ao (o [1o] g F= 1 I = ST 0 LU (= 140
T =Y o (=Y (03 1T 141

Table of Contents © 2008 One Course Source, Inc Page 4

Unit Five Using Bless on REs, Subroutines and Typeglobs Page

5.1 Blessing Things Other Than Variables ... 143
5.2 Blessing ReguIar EXPrESSIONS.ciiiiiiii it e et e et s e e e e s e e e e eeaan s e e e eeaa e aeeaeesnnaeeeensenns 144
5.3 BlEeSSING SUDIOULINES........i i e e e e e e e e e e et e e e e eats s e eeeeasnnaeeeeensnns 151
5.4 BlessinNg TYPEGIODScovuei et e aaraa 153
5.5 AddIIONAl RESOUITESouvuiiiiiiiiee ettt e e e e e ettt a e e e e e e e e e e eettbbaaaaaeeeaeaeaaeees 156
S I =T I (= (o] [T R RSSPPPPPI 157
Unit Six Inheritance Page
6.1 Overview Of INNEritanCe IN Plu e eeereeae 159
6.2 Determining a Method’s LOCAtIONcooiiiiiiiii e e e e e e e e e e eaaae 162
R T I e (ST (@00 1Y AN AN ¢ - VS 163
6.4 HOW the @ISA AITay WOIKS ... e e e e e e e e e e e e e e e e e et e eeenes 165
6.5 Inheritance iN Other LANQUAGESccuuuuiiiiiiiiiie ettt e et e e et e e e e e et s e e e e eetanaeeeeeenees 167
6.6 Perl "DUIlt-IN" METNOUSu e e e e e e e e e et e e e et e e e eaaaeeeeees 168
6.7 Handling DESTROY Methods with INheritanCe ..o 172
6.8 The SUPER ClaSS.....ciiiiiiiiiiiiii ittt s e e e e e e e e e e et e e e e e e e e e e eesataanaaaaeeeeeeeeeees 176
N T AN o111 = T 1Y/ =1 T T S 181
G0 IO T =0 |V 0 o] 1 1 SR 183
6.11 AJAItIONAl RESOUITESovtviiiiiiieiee ittt e e e e e e et ettt e e e e e e e e e e eeeabbaaaaaeeeeaeaaeees 184
G I =T I = (o] [T PRSPPI 185

Table of Contents © 2008 One Course Source, Inc Page 5

Unit Seven Automating Class Creation Page
7.1 Automating Class Creation ESSENtIAlSuuiiiiiiiiiii e 187
7.2 Using Class::StruCt t0 Crate ClaSSEScccuuuuiiiiiiiiiii et e e e e et e e e eaann e e e eeenees 188
7.3 Using Arrays Instead Of HASNEScoi i 191
A N 11 10 (ST 1Y T SR 193
7.5 Other TOOIS t0 Crate ClIaSSEScciiiiiiiiiiiiiie ettt e e e e e e e e e ta b e e e e e e eaeeeeees 196
7.6 AJAItIONAl RESOUITESoutuiiiiiiiei ettt e e e e e e et e et bbb aa e e e e e e e e e eettbbaaaraeeeaeaeaaeees 197
L A -V I == (o] [T PSSP 198
Unit Eight Ties Page
S VA o F= L= T TS PRSPPI 200
8.2 MaKING @ TIEU SCAIAT...... .o iiiiiiii e e e e e e e e et e e e e e e e et e e e e eeraaaeeeeeeenans 201
SR T \V P L To = W I =0 Y o - PR TRRPRR 210
8.4 MaKiNg @ TIed HASN ...covee et e e e e e e et e e e e e eennes 220
8.5 Making a Ttied FIlehandlecooo e e e e e eeaes 222
8.6 TieS AN INNEIIANCEcoeii e e e e e e e e e e et e e e et e e e e et e eeeas 223
8.7 AdItIONAl RESOUITEScouiiiiii e e e e e e et e e e et e e e et e e e eaan e e e et e eeernaeeenes 226
oo T = Lo TN =] (o 1= = TP 228
Table of Contents © 2008 One Course Source, Inc Page 6

Unit Nine Installing CPAN modules Page

9.1 Introduction to the Concept of OVErlOAdINGcoeeuruiiiiiiiiie e eeeaae 230
(S J0ZZ W 151 0 To oY1 ¢ (o = o 1Y o] o U 231
9.3 How Your Overload Subroutines Will Be Called.............oouuiiiiiiiiiie e 232
S S V= Vo [o3 U | (o To =T 01T = U1 o] o R 236
ST - 10T Tod GRS 238
0.6 AJAIIONAl RESOUITEScouiiiiiiiiiee ettt e e e e e et et et bbb r e e e e e e e e e eeaabbaaaaeeeeeaeaeeees 240
S A -V o I (= (o] [T PSSO 241
Unit Ten Encapsulation Page
10.1 Overview Of ENCAPSUIALIONuui i e e e e e e e e e e e e et e e e e e eaaa e eeeeenaes 243
O o 1Y L ST 0 (=] 0111 6P PSR 244
10.3 Using closures to enforce encapsulation..............oouuuiiiiiiiiiii e 246
10.4 Other methods Of @NCAPSUIALIONcoouuiiiiiieiii e e e et e e aaa e e e eeeeees 248
10.5 AddItIONAl FESOUICES i e e e e e e e et e e e et e e e et e e e et e e eaaaeeeeannaeas 249
O BT =T o TN (= od = P 250

Table of Contents © 2008 One Course Source, Inc Page 7

Introduction

About this course

This manual was designed with the goal of assisting instructors in their
efforts of teaching students to be able to create Perl programs.

Typoqgraphical syntax

Examples in this text of commands will appear in bold text and the output
of the commands will appear in italic text. The commands and the output
of the commands will be placed in a box to separate them from other text.
Example:

[student@linux1 student]$ pwd
/home/student

Note: "[student@linux1 student]$" is a prompt, a method the shell uses to
say "I'm ready for a new command".

Bold text within a sentence will indicate an important term or a command.
Files and directories are highlighted by being placed in courier font.

Notes:

Introduction © 2008 One Course Source

Page 8

Using this manual while in class

In many ways, class manuals are different from textbooks. Textbooks are
often filled with lengthy paragraphs that explain a topic in detail.
Unfortunately, this style doesn’t work well in a classroom environment.

Class manuals often are much more concise than textbooks. It's difficult
to follow the instructor’'s example and read lengthy paragraphs in a book
at the same time. For this purpose, class manuals are often more terse.

Lab Exercises

The lab exercises provided in this class are intended to provide practical,
hands on experience with a Linux Operating System. Students are
strongly encouraged to perform the labs provided at the end of each Unit
to reinforce the knowledge provided in class.

Floppy contents

The floppy disk that accompanies this course contains the following:

e All of the examples provided in the manual
¢ All of the answers to the labs provided in the manual

Notes:

Introduction © 2008 One Course Source

Page 9

Notes:
How to use QuickLinks

QuickLinks are designed to provide you with easy to access online
documentation. When you see a QuickLinks icon like the following, you
can jump to the corresponding documentation quickly from the One
Course Source QuickLinks resource page:

QuickLink
1-1

For this class, Object Oriented Programming in Perl, go to the following
web page to use QuickLinks:

www.OneCourseSource.com/oop-perl-gl.htm
Click on the link on this web page that matches the QuickLink that you
wish to view. You can also see all of the QuickLinks on the Additional

Resources page at the end of each Unit.

Note: Online documentation can change without notice. If a QuickLink
does not work for you, please email us at:

contact@OneCourseSource.com

Introduction © 2008 One Course Source Page 10

Unit One
Perl Essentials Review

Unit topics: Page
0 A 010 To [T 1] o P UURPPPPPPRRTRR 12
1.2 Topics Not Reviewed (but essential to understand OOP IN Perl) ... 13
G T o L= (=T (=T Lo > RPN 14
o V7= T g Lol =To I D F= = Y/ 01T 18
T I Y/ 01T o | 0] o 1 21
G = Vo] =T [23
A 1Y/ o To [11PN 25
S T Ao (o [0T g P LI =T 0 UL o = PP 27
I I o I (=T o L = PP UUUPPPPPPRPTRR 28

1- Perl Essentials review © 2008 One Course Source, Inc Page 11

Notes:
1.1 Introduction

In order to understand how Object Oriented Programming works in Perl, it's
important to have a firm understanding of Perl. OOP Perl is not a "beginners"
topic.

Before taking this class, students should attend the Beginning, Intermediate and
Advanced Perl classes or have a firm understanding of the topics that are
covered in these classes. Without the knowledge that these classes provide,
understanding OOP Perl is very difficult.

This Unit will briefly review some of the more difficult topics that were covered in
the Advanced Perl class including:

References
Advanced data types
Typeglobs

Packages

Modules

This Unit is only intended to be a review. If you have not had the chance to
attend the Advanced Perl Class or work with these features of Perl, then this
Unit will most likely not provide enough experience to allow you to tackle the
topic of OOP Perl.

1- Perl Essentials review © 2008 One Course Source, Inc Page 12

1.2 Topics Not Reviewed (but essential to understand OOP in Perl)

While some of the more complicated topics from the Advanced Perl class will be
reviewed in this Unit, there are many other aspects of Perl that you need to fully
understand before learning OOP Perl that will not be reviewed in this course.
These topics include:

Variables (scalar, array, hashes)

Subroutine usage

Creating localized variables with the may and local statements
Regular Expressions

Debugging Perl code

Using Perl Modules

Conditional statement (while, for, foreach, until, if, unlessO
Process control

Pragmas

And, of course, all of the interesting aspects of Perl that make it such a unique
language...

1- Perl Essentials review © 2008 One Course Source, Inc

Notes:

Page 13

1.3 References

Creating references examples

DB<1> $name="Bob"
DB<2> @colors=qw(red green blue)

DB<3> %cities=("San Diego" =>"CA", "Boston" =>"MA", "Denver" =>"CQ")

DB<4> $person=\$name
DB<5> $hue=\@colors
DB<6> $town=\%cities
DB<7> print $person
SCALAR(0x1e07b0)
DB<8> print $hue
ARRAY(0x1al1864)
DB<9> print $town
HASH(0x1a1918)

1- Perl Essentials review

© 2008 One Course Source, Inc

Notes:

QuickLink
1-1

QuickLink
1-2

Page 14

Notes:
Accessing references examples

DB<1> $name="Bob"

DB<2> @colors=qw(red green blue)
DB<3> %cities=("San Diego" =>"CA", "Boston" =>"MA", "Denver" =>"CQ")
DB<4> $person=\$name

DB<5> $hue=\@colors

DB<6> $town=\%cities

DB<7> print $$person

Bob

DB<8> print $$hue[0]

red

DB<9> print $$town{Boston}

MA

DB<1> @colors=qw(red green blue)
DB<2> $hue=\@colors

DB<3> print $hue->[0]

red

DB<4> print ${$hue}[0]

red

DB<5> print @{$hue}

red green blue

DB<6> print $#{$hue}

2

1- Perl Essentials review © 2008 One Course Source, Inc Page 15

DB<1> %cities=("San Diego" =>"CA", "Boston" =>"MA", "Denver" =>"CQO")
DB<2> $town=\%cities

DB<3> print ${$town}{"San Diego"}

CA

DB<4> print $town->{"San Diego"}

CA

DB<1> sub total {print "The total is ", $ [0] *$ [1], "\n";}
DB<2> $result=\&total

DB<3> &$result(4,5)

The total is 20

DB<4> $result -> (4,5)

The total is 20

The ref Function

DB<1> $name="Bob"

DB<2> @colors=qw(red green blue)
DB<3> %cities=("San Diego" =>"CA", "Boston" =>"MA", "Denver" =>"CQ")
DB<4> $person=\$name

DB<5> $hue=\@colors

DB<6> $town=\%cities

DB<7> print ref $person

SCALAR

DB<8> print ref $hue

ARRAY

DB<9> print ref $town

HASH

1- Perl Essentials review © 2008 One Course Source, Inc

Notes:

Page 16

Making anonymous references

$arrayref=[“bob”, “sue”, “ted”];

@$arrayref=("bob”, “sue”, “ted”);

$hashref={"San Diego" => "CA", "Boston" => "MA", "Denver" =>"CQO"};
%$hashref=("San Diego" => "CA", "Boston" => "MA", "Denver" => "CQO");

DB<1> $name="Bob"
DB<2> $$name="Ted"
DB<3> print $Bob
Ted

To avoid making symbolic references by accident, use the use strict ‘refs’
statement. Note: You can allow symbolic references later in your script by using
the statement no strict ‘refs’.

1- Perl Essentials review © 2008 One Course Source, Inc

Notes:

Page 17

1.4 Advanced Data Types

Creating arrays of arrays

@trans = (
["DEP”, “12/12/1999” , “Beginning Balance”, “1000"],
[‘DEP”, “12/13/1999” , “Payday!”, “5007],
["'WD”, “12/14/1999” , “Rent check (#101)”, “400],
['WD”, “12/15/1999” , “Cash”, “100"));

Accessing values in an array of arrays

print "$trans[0][2]\n"; #prints "Beginning Balance"

1- Perl Essentials review © 2008 One Course Source, Inc

Notes:

{
{

1-3

1-4

QuickLink }

QuickLink }

Page 18

Creating hashes of hashes

%scores = (

Joe =>{
testl => 100,
homeworkl => 94,
homework2=> 88

h

Sue =>{
testl=> 100,
homeworkl=> 88,
homework2=> 74

h

Nick => {
testl=> 89,
homeworkl=> 78,
homework2=> 73

h

Fred =>{
testl=> 89,
homeworkl1l=> 99,
homework2=> 86

12

1- Perl Essentials review

© 2008 One Course Source, Inc

Notes:

Page 19

Notes:
Accessing values in a hash of hashes

Single value:

print $scores{Joe}{homework?2};

Entire hash:

foreach $name (keys %scores) {
print "$name: ";
foreach $item (keys %{$scores{Sname}}) {
print "$item = $scores{$name}{S$item} ";

}

print "\n";

}

1- Perl Essentials review © 2008 One Course Source, Inc Page 20

Notes:
1.5 Typeglobs

_ QuickLink
Making a typeglob 1-5

DB<1> @names=qw(bob sue ted)
DB<2> $names="Bob"
DB<3> *people=*names

Accessing the original variables via the alias

DB<1> @names=qw(bob sue ted)
DB<2> $names="Bob"

DB<3> *people=*names

DB<4> print $people

Bob

DB<5> print $people[2]

ted

Removing the alias

If you want to remove the typeglob, you can use the undef statement as follows:

DB<6> undef *people

1- Perl Essentials review © 2008 One Course Source, Inc Page 21

Avoiding aliases to entire identifier

*typeglob=\$identifier #for typeglob to scalar only
*typeglob=\@identifier #for typeglob to array only
*typeglob=\%identifier #for typeglob to hash only
Example:

DB<1> @names=gw(bob sue ted)
DB<2> $names="Bob"
DB<3> *people = \$names

1- Perl Essentials review © 2008 One Course Source, Inc

Notes:

Page 22

1.6 Packages

Package usage example

#!/usr/local/bin/perl
#1 packl.pl

$name="Bob";
print "name = $name\n";

package New;
print "name = $name\n”;
$name="Ted";
print "name = $name\n";

package main;
print "name = $name\n";

package New;
print "name = $name\n";

1- Perl Essentials review

© 2008 One Course Source, Inc

{

Notes:

QuickLink
1-6

;

Page 23

Notes:
Fully qualified package names example

#!/usr/local/bin/perl
#1 pack2.pl

$name="Bob";
print "name = $name\n";

package New;

print "main::name = $main::name\n”;
$name="Ted";

print "name = $name\n";

1- Perl Essentials review © 2008 One Course Source, Inc Page 24

Notes:
1.7 Modules

Example of a simple Perl module

#Testver.pm
package Testver;

BEGIN {
use Exporter();
@ISA=qw(Exporter);
$VERSION=1.03;
@EXPORT=gw(&printout);
@EXPORT_OK=(&noprint);
}

sub printout {print "Wow, this is cool\n";}

sub noprint {print "This shouldn't be exported!!\n";}

return 1;

1- Perl Essentials review © 2008 One Course Source, Inc Page 25

Example of using a Perl module

#!/usr/local/bin/perl
#1 load.pl

use lib ".":
use Testver 1.0;
use Testver qw(&noprint);

&printout;
&noprint;

Use vs. require

While the use statement has been used throughout this course to load module,
there is another statement which will load modules called require. There are a
few subtle differences between the two statements:

» Modules loaded with use are loaded at compile time; modules loaded with
require are loaded during run time.

» Use can be used to load pragmas; require can’t load pragmas.

» Use implicitly imports exported identifiers from the modules being loaded;
with require you have to import the identifiers yourself.

» When you use the use statement, you don’t specify the ".pm" extension;
when you use the require statement, you can use the ".pm: extension (or

drop it if you want).

Generally, use is a more powerful statement and should be used in almost all

cases over require.

1- Perl Essentials review

© 2008 One Course Source, Inc

Notes:

Page 26

Notes:

1.8 Additional Resources

For additional information regarding the topics presented in this Unit, see the following sources:
Quicklinks:

http://perldoc.perl.org/perlreftut.html

http://perldoc.perl.org/perlref.html

http://perldoc.perl.org/perllol.html

http://perldoc.perl.org/perldsc.html
http://perldoc.perl.org/perldata.html#Typeglobs-and-Filehandles-typeglob-filehandle-*
http://perldoc.perl.org/perimod.html
http://perldoc.perl.org/perimodlib.html#Modules%3a-Creation%2c-Use%2c-and-Abuse

Books:

Perl Cookbook

Tom Christiansen & Nathan Torkington
O’Reilly & Associates, ISBN: 1-5659-243-4
Chapters #4, 5, 11, & 12

Advanced Perl Programming

Sriram Srinivasan

O'Reilly & Associates, ISBN: 1-56592-220-4
Chapters #1, 2, 3, &, 6

1- Perl Essentials review © 2008 One Course Source, Inc

Page 27

1.9 Lab Exercise

No Lab exercises for this Unit

1- Perl Essentials review © 2008 One Course Source, Inc Page 28

Notes:

Unit Five
Using Bless on REs,
Subroutines and Typeglobs

Unit topics: Page
5.1 Blessing Things Other Than Variables...........cooo e e s 143
5.2 BleSSiNg RegUIAr EXPIESSIONS. ... cciiiiiiii i it e et e et e e e e e e e e e et e e e e e et e e e e e eata e e e e easanaeeeeesnnnens 144
5.3 BlESSING SUDIOULINES.......uiiieiiii e e e e e et e e e e e e et e e e e e et e e e e eeaaa e e e e e eeaaneeeeeenann s 151
5.4 BIeSSING TYPEGIODScooeeiie e e a e e e e ara 153
5.5 AdAItIONAI RESOUITESuuuiiiiiiieiiii ittt e e e e e e e e et e e e b e e e e e e e e et e e eeeaes e e e eeeeeaeeeeesesrnnnneeeeens 156
T T =1 o B (= o] = PP 157

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc Page 142

Notes:
5.1 Blessing Things Other Than Variables

The idea of creating objects from hashes, arrays or scalars makes sense to most
programmers. However, the idea of creating objects from Regular Expressions,
subroutines or typeglobs may seem a bit odd.

One important thing to remember (especially if you are coming from another OO
language) is that in Perl objects are "anything that returns data". Hashes, arrays
and scalars are data types used to store data that is to be returned when the
object is accessed. Understanding this concept makes this Unit a bit easier since
you will see that Regular Expression, subroutine and typeglob objects are just
other things that return data.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc Page 143

5.2 Blessing Regular Expressions

To understand how Regular Expression can be used to return data in the first
place, we need to learn something new about Regular Expressions. Consider the
following code:

open (GROUP, "</etc/group") || die;
@match=C\d', \d\d', \d\d\d");
while (<GROUP>) {
foreach $pattern (@match) {
if (/$pattern/) {
print "$pattern matches $_";
}

}
}

The great thing about being about to put patterns in variables is that it is easier to
maintain your code when you need to perform pattern matching using many
different patterns.

The drawback to this technique is how Perl handles the Regular Expression
stored in the variable. When the RE is stored in a variable, Perl doesn’t
interpolate the RE until run time. When Perl interpolates a RE, it determines if the
RE is a valid one and, if so, it generates a "compiled” RE. If the RE isn’t valid,
Perl will produce an error and exit the execution of the script.

See the next page for an example.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Notes:

Page 144

Run time vs. Compile time

Consider the following example:

#!/usr/local/bin/perl
#5 rel.pl

open (GROUP, "</etc/group") || die;
while (<GROUP>) {
if (\d/) {
print "$pattern matches $_";
}
if (\d\d/) {
print "$pattern matches $_";
}
if (A\d\d\d**/) {
print "$pattern matches $ "
}
}

The third pattern match is invalid, which results in a compile time error:

Notes:

#./5 rel.pl

Nested quantifiers before HERE mark in regex mA\d\d\d** << HERE / at ./5_rel.pl line 12.

5 — bless on REs, Subroutines, Typeglobs

© 2008 One Course Source, Inc

Page 145

Compare the following example to the preceeding example:

#!/usr/local/bin/perl
#5 re2.pl

open (GROUP, "</etc/group") || die;
@match=C\d', \d\d', \d\d\d**");
while (<GROUP>) {
foreach $pattern (@match) {
if (/$pattern/) {
print "$pattern matches $_";
}

}
}

When executed, a run time error occurs:

Notes:

#./5 _re2.pl
\d matches root::0:root

Nested quantifiers before HERE mark in regex m\d\d\d** << HERE / at ./5_re2.pl line 8, <GROUP> line 1.

Why is this a disadvantage? Consider how many times the REs are interpolated
in this example: once for every line in the file. For a 50 line file, that means 150
RE interpolations (3 REs *50 lines). Imagine if there were 20 REs and 10,000

lines!

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Page 146

To avoid this problem, there is a technique which we can use to store an
interpolated RE in a variable: the gr function. The qr function returns its argument
as an interpolated RE:

#!/usr/local/bin/perl
#5 re3.pl

open (GROUP, "</etc/group") || die;
@match=(qgr A\d/, gr Ad\d/, gr Ad\d\d**/);
while (<GROUP>) {
foreach $pattern (@match) {
if (/$pattern/) {
print "$pattern matches $_";
}

}
}

Since the patterns are being used as REs, the resulting error is a compile-time
error:

Notes:

#./5 re3.pl

Nested quantifiers before HERE mark in regex mAd\d\d** << HERE / at ./5_re3.pl line 5.

The best part is that when the variable is used in a pattern, it doesn’t have to be
“reinterpolated”, making execution time much quicker.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Page 147

Notes:
Why use a RE as an object?

In order to understand why you would want to make a Regular Expression object,
consider why you would want to provide a RE to a calling program in the first
place. If we wanted to "hardcode" a complex pattern, there wouldn’t be any need
to bless a RE since could just assign the outcome of the gr function to a scalar (or
array or hash) and bless a referent to that data type.

The purpose of blessing an RE is when we want to also make specialized
methods to perform alternative pattern matching (or substitution or translation). In
conjunction with the RE object (which will be built using data provided from the
calling program), we can "reinvent" the pattern matching wheel to fit a customized
application.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc Page 148

Making a RE object

Making a RE object isn’t much different than making a "data type" object. We will
want to create Constructor, Accessor and Mutator methods. We won’t be
concerned about creating a DESTROY method since we won't need to really do
much of anything if the object is destroyed.

Normally Perl substitutions (s/RE/string) automatically modify the original variable.
Suppose we want to make a class that performs RE substitution without modifying
the original variable:

#SubRegex.pm
package SubRegex;

sub new {
my ($class, $object)=@_;
eval {bless gr/$object/, $class};

}

sub substitute {
my ($object, $string, $replace) = @_;
$string =~ s/$object/$replace/;
return $string;

}
1

Use 5 reojb.pl on the next page to see how this module works.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Notes:

Page 149

Notes:

#!/usr/local/bin/perl
#5 reobj.pl

use SubRegex;
$pattern=SubRegex->new("\[*:]+);
$line="root::0:root\n";

$outcome = $pattern->substitute($line, "****");

print $line;
print $outcome;

Output:

./5 reobj.pl
root::0:root
*xx%-0:root

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc Page 150

5.3 Blessing Subroutines

Before we get into why we would want to use a subroutine as an object, we first
have to understand how a subroutine can be an object. Remember that an object
in Perl is simply something that returns data. With that in mind, consider the
following code:

package Test;

sub new {
my ($class, %hash) = @ _;
my $sub=sub {each %hash);
bless $sub, $class;

}

Consider when the following code is executed in a Perl script:

use Test;
%ocity states=("San Diego" => CA, "Boston" => "MA");
$item=Test->new(%ocity _states);

It appears that we are not blessing a subroutine, but rather a scalar as we did in
Unit #4. Remember that what is being blessed (and returned from the
subroutine) is the referent that is stored in the $sub variable, not the variable itself.
The referent "points to" an anonymous subroutine, so we are blessing a
subroutine.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

{

Notes:

QuickLink
5-1

;

Page 151

Why bless subroutines?

To understand why we would want to bless subroutines, we need to first
reexamine the concept of encapsulation. Remember that the concept of the
encapsulation was that we wanted to "hide" our objects from the calling program.

Overall, encapsulation is a good idea. By hiding the objects other programmers
are prevented from directly accessing or modifying the objects. In order to access
or change data in our objects, the other programmers should use our methods.

Encapsulation is a good thing because it reduces the opportunity for errors.
Having programmers access the data in our object directly can result in them
performing unexpected modification of these objects. This may result in our OO
code "breaking" at some point in the future.

Unfortunately, Perl doesn’t automatically encapsulate objects. That doesn’t mean
we can’'t have encapsulation, it just means that it doesn’t happen automatically.

One technique we can use to force encapsulation is by using blessed subroutines.

This technique will be covered in detail in Unit #10.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Notes:

Page 152

5.4 Blessing Typeglobs

To understand why we would want to make a blessed typeglob, we first need to
remember why typeglobs are useful in the first place. In the Advanced Perl class
we covered three situations in which using typeglobs are useful:

Making constants

To make a constant, use the following technique:

*num=\10;

Passing filehandles into functions

Using typeglobs you can assign a filehandle to a variable and pass this variable
into a function as an arguement:

#!/usr/local/bin/perl
#5 fhil.pl

sub read_data {
$datafile=$_[0];
$line=<$datafile>;
print $line;

}

open (DATA, "/etc/group”) || die;
&read_data(*DATA);

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Notes:

Page 153

Redefining a function

Normally you can not redefine a function at run time. With typeglobs, you can
directly access the memory location where the function is stored and replace it
with another function.

#!/usr/local/bin/perl
#5 redefl.pl

sub greet {
print "hi there\n";
}
&greet;
*greet=sub {print "welcome\n";};

&greet;

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc

Notes:

Page 154

In addition to these three uses of typeglobs, you can also use them to temporarily

redefine a filehandle:

#!/usr/local/bin/perl
#5 redef2.pl

print STDOUT "hello”;

{local *STDOUT;
open (STDOUT, "|more");
for $i (1.100) {

print STDOUT "$i\n";

}
}

print "goodbye";

The advantage of this technique is:

e You can make use of the existing STDOUT filehandle name (don’t have to

create a new filehandle).

e Since it's a local typeglob, it ceases to exist outside of the scope that it was
created in. This results in the local STDOUT filehandle being automatically
closed as well as STDOUT "going back" to its default behavior.

e You won't be affecting any other programmer’s use of STDOUT.

While typeglobs are useful for creating constants and redefining functions, these
features most likely won't be used to generate objects. However, creating
typeglob objects that hold filehandles can be useful.

5 — bless on REs, Subroutines, Typeglobs

© 2008 One Course Source, Inc

Notes:

Page 155

5.5 Additional Resources

For additional information regarding the topics presented in this Unit, see the following sources:
Quicklinks:
http://perldoc.perl.org/perltoot.html#Closures-as-Objects

Books:

Object Oriented Perl

Damian Conway

Manning Press, ISBN: 1-884777-79-1
Chapter #5

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc Page 156

5.6 Lab Exercise

No exercises for this Unit.

5 — bless on REs, Subroutines, Typeglobs © 2008 One Course Source, Inc Page 157

Unit Ten

Encapsulation
Unit topics: Page
10.1 OVErvIEW Of ENCAPSUIALIONeeiiiiieieieiiie ettt e et e e et s e e e e et e e e e e e et e e e e eetaa e e eeeessan e aeeeessnnsaeeeennnns 243
O T AV 7= 1 (=T (o L=] (11T PR 244
10.3 Using closures to enforce enCapSUIAtION...........oooiiiiiiii e e e et e e et eeeeannns 246
10.4 Other methods Of ENCAPSUIALIONceeuiiiieiei e e e e e e e et e e e e e et e e e e eertaeaeeeennnns 248
10.5 ACGITIONAI FESOUITESottt e e e e et et ettt e s e e e e e e et et e etbbb s s e e e e e e e e eeess bbb e e e e eeeeeeeensnnnnnns 249
O G I o (=T oL = PP PRUUPPPPPRPRTTPN 250

10 — Encapsulation © 2008 One Course Source, Inc. Page 242

10.1 Overview of Encapsulation

Remember that the purpose of encapsulation is to "hide" the underlying data
structure for the person using your OO code. Most OO languages automatically
encapsulate the underlying data structure (or at least make it easy to
encapsulate). Perl does not...

Keep in mind that the overall approach to Perl is "follow the rules and all will work
out right...but if you try to break the rules, you get what you deserve." For
example, | know that the rule "don’t touch a hot stove" isn’t something that is
enforced by anyone but me. If | touch a stove without first checking to see if it is
turned on, | can burn my hand (I get what | deserved).

In most cases you will find that Perl programmers like this approach and will write
their code without really worrying about encapsulation. However, what if you
really want to encapsulate your data?

While OO Perl doesn’t necessarily provide built-in encapsulation, you can use
some techniques to make encapsulation occur.

10 — Encapsulation © 2008 One Course Source, Inc.

Notes:

Page 243

Notes:
10.2 Private ldentifiers

The most common, straight-forward technique of encapsulation is by using
closures. To understand how closures can provide encapsulation, consider the
following code that was first explained in the "Advanced Perl" class:

#Test.pm
package Test;

BEGIN {
use Exporter();
@ISA=qw(Exporter);
@EXPORT=gw(&printout);
}

sub printout {print "Wow, this is cool\n";}
sub noprint {print "This shouldn't be exported!!\n";}

return 1;

In this non-O0O program, we created two subroutines and exported one
(&printout) into the calling program. The problem is that the &noprint
subroutine can still be called from the calling program by using the fully qualified
name: &Test::noprint.

10 — Encapsulation © 2008 One Course Source, Inc. Page 244

To solve this problem, we used a scalar variable to hold a reference to an
anonymous subroutine:

#Newtest.pm
package Newtest;

BEGIN {
use Exporter();
@ISA=qw(Exporter);
@EXPORT=qgw(&printout);
}

my $noprint = sub {print "This shouldn't be exported!!\n™;};
sub printout {print "Wow, this is cool\n"; &$noprint;}

return 1;

In this example the only way we can call the "noprint" subroutine is by using the
reference variable. Since this is a my variable, it falls inside the scope of the Perl
module. Remember that my variables are not package scoped!

10 — Encapsulation © 2008 One Course Source, Inc.

Notes:

Page 245

10.3 Using closures to enforce encapsulation

#Widget.pm
package Widget;
{

sub new {
my $class = shift;
my %data;
%data=(
_total_widgets = $ [0],
_widgets_per_hour => $_[1]
);

my $object =
sub {

my ($object, $attr, $value) = @ _;

if ($method eq "get") {
return $data{$attr};

} else {
$data{$attr}=$value;
return $value;

}

I3
bless $object, $class;

}

} #Continued on the next page

10 — Encapsulation © 2008 One Course Source, Inc.

Notes:

Page 246

Notes:

sub get_total widgets {
$_[0]->("get", " _total widgets");
}

sub modify_total widgets {
$ [0]->("modify", " total widgets", $ _[1]);
}

sub modify_widgets_per_hour {
$ [0]->("get", " widgets_per_hour", $ _[1]);
}

sub get_widgets_per_hour {
$ [0]->("get", " _widgets_per_hour");
}

1

See 10 _inventory.pl for a demonstration of this module.

10 — Encapsulation © 2008 One Course Source, Inc. Page 247

10.4 Other methods of encapsulation

Making blessed my subroutine references within closures is the most common
technique of encapsulation in Perl. However there are a couple of other methods
that are at least worth mentioning:

Flyweight patterns

All of the objects that we have seen so far are considered "heavyweight"
because they "carry around" the data with them. "Flyweight" objects (AKA
"flyweight patterns™) don’t carry their data. They simply "carry" an index value
that is used to access hidden values within the class (data stored as class
attributes, not objects).

Tie::SecureHash

The Tie::SecureHash module also provides encapsulation by a clever use of
typeglobs. This module is not part of the default Perl installation, but it is
available from CPAN.

10 — Encapsulation © 2008 One Course Source, Inc.

Notes:

Page 248

10.5 Additional resources
For addition information regarding the topics presented in this Unit, see the following sources:
Quicklinks:
None
Book:
Object Oriented Perl
Damian Conway

Manning Press, ISBN: 1-884777-79-1
Chapter #11

10 — Encapsulation © 2008 One Course Source, Inc. Page 249

10.6 Lab Exercise

No exercises for this Unit

10 — Encapsulation © 2008 One Course Source, Inc. Page 250

Web pages

Page

www.perl.com
www.perldocs.com
www.perlmonks.org
www.activestate.com

Books

Title
Perl Cookbook
Mastering Regular Expressions

Perl Modules
Writing Perl Modules for CPAN
Advanced Perl Programming

References

Comment

#1 source for all things Perl

#1 source for Perl documentation

Great place to ask Perl questions (and get answers)
Best place to download Perl

Comment

Great book for a variety of Perl problems (and solution)

Best source for Regular Expressions (in Perl and many other
languages)

Good reference for anyone who wants to write Perl modules
A must-read for anyone who wants to write module for CPAN
Good coverage of advanced topics

References

© 2008 One Course Source, Inc.

Page 251

