

Copyright One Course Source, 2008 ALL RIGHTS RESERVED

This publication contains proprietary and confidential information, which is the property of One Course Source, 2340 Tampa Ave, Suite J, El Cajon, CA 92020. No part of this publication is be
reproduced, copied, disclosed, transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part, without the prior
express written consent of One Course Source.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

REFERENCES TO CORPORATIONS, THEIR SERVICES AND PRODUCTS, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. IN NO
EVENT SHALL ONE COURSE SOURCE BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ARISING OUT OF OR IN CONNECTION WITH THE USE OF THIS INFORMATION.

Descriptions of, or references to, products or publications within this publication do not imply endorsement of that product or publication. One Course Source makes no warranty of any kind
with respect to the subject matter included herein, the products listed herein, or the completeness or accuracy of this publication. One Course Source specifically disclaims all warranties,
express, implied or otherwise, including without limitation, all warranties of merchantability and fitness for a particular purpose.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. ONE COURSE SOURCE MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

This notice may not be removed or altered.

ver 5.2 - 4/11/08 - 2008Q2

Table of Contents © 2008 One Course Source Page 3

 Table

of Contents

Introduction

Unit One Advanced Regular Expressions Page
1.1...Review: Basic Regular Expressions 12
1.2...Modifiers 26
1.3...Getting the Nth occurrence of a match 30
1.4...Greedy vs. Non-Greedy matches 31
1.5...Regular Expression variables 32
1.6..Special characters in regular expressions 35
1.7...Assertions 36
1.8...Reading from filehandles using split 39
1.9...Multiple line matching 40
1.10...Commenting Regular Expressions 43
1.11... Alternative Delimiters 44
1.12...Additional resources 46
1.13...Lab Exercises 47

Table of Contents © 2008 One Course Source Page 4

Unit Two Advanced Formatted Output Page
2.1... Review: The format statement 49
2.2... Advanced format statement features 55
2.3..printf and sprintf 57
2.4..Using select 61
2.5..The <> operator 68
2.6... Additional Resources 70
2.7...Lab Exercises 71

Unit Three Exploring Useful Built-in Variables Page
3.1..Perl's built-in variables 73
3.2... Variables reference chart 74
3.3.. Use English 77
3.4.. ID variables 79
3.5..Status variables 83
3.6.. Separator variables 87
3.7... The signal handle variable 92
3.8..Version of Perl 96
3.9..Program start time 97
3.10... Additional Resources 98
3.11...Lab Exercises 99

Table of Contents © 2008 One Course Source Page 5

Unit Four Advanced File Handling Page
4.1...Review: Basic File Handling 101
4.2..Displaying the file position 106
4.3...Moving the file position 107
4.4..Opening files for reading and writing 109
4.5.. Making "files" within your script 113
4.6..Locking files 115
4.7...Flushing output buffers 117
4.8... Additional Resources 119
4.9...Lab Exercises 120

Unit Five Pragmas Page
5.1..Perl pragmas 122
5.2..Pragma chart 123
5.3... Review: use strict 124
5.4..Predeclaring subroutines 128
5.5... Predeclaring global variables 130
5.6... Additional Resources 134
5.7...Lab Exercises 135

Table of Contents © 2008 One Course Source Page 6

Unit Six Exploring Useful Built-in Modules Page
6.1..Built-in modules 137
6.2...Module table 140
6.3.. Cwd 143
6.4... Env 146
6.5..File 147
6.6... Math 152
6.7... Sys 154
6.8.. Text 155
6.9... Fatal 159
6.10... Additional Resources 160
6.11...Lab Exercises 161

Unit Seven Debugging Tools Page
7.1..Review: The -w switch 163
7.2..Review: The Perl debugger 165
7.3... Debugger commands 166
7.4...Diagnostics 176
7.5..Carp 177
7.6...Data::Dumper 181
7.7... Additional Resources 182
7.8...Lab Exercises 183

Table of Contents © 2008 One Course Source Page 7

Unit Eight Perl/TK Basics Page
8.1... Working with Windows 185
8.2..Types of Widgets 186
8.3...Geometry Managers 187
8.4..Creating Widgets 188
8.5..The OO nature of the Tk module 189
8.6...Additional resources 190
8.7...Lab Exercises 191

Unit Nine Perl TK Widgets Page
9.1 .. Frames 193
9.2 ..Labels 199
9.3... Buttons 207
9.4 .. Checkbuttons 217
9.5 ... Radiobuttons 219
9.6 ... Listboxes 224
9.7 .. Scrollbars 231
9.8 ..Scales 235
9.9 ... Entries 240
9.10 ... Creating menus 245
9.11... Additional Resources 257
9.12...Lab Exercises 258

Table of Contents © 2008 One Course Source Page 8

Module Ten Geometry Managers Page
10.1 .. pack options 260
10.2..The -after and -before option 261
10.3..The -anchor and -side options 263
10.4...The -fill option 266
10.5 ... Padding with pack 268
10.6.. Managing widgets with pack 271
10.7... Binding 277
10.8 ..The focus command 281
10.9... Additional Resources 283
10.10...Lab Exercises 284

Appendix A Database Interfaces Page
A.1 ..Perl Databases 286
A.2 .. Using DBM 287
A.3 .. Overview of DBI 292

Appendix B Perl style/coding standards Page
B.1 ... Overview of Perl Style 295
B.2 ...The man page's style guide 296
B.3 ..Tom Christiansen's style guide 297
B.4 ...The Perl Beautifier 298

Introduction © 2008 One Course Source Page 9

 Introduction

About this course

This manual was designed with the goal of assisting instructors in their
efforts of teaching students to be able to create Perl programs.

Typographical syntax

Examples in this text of commands will appear in bold text and the output
of the commands will appear in italic text. The commands and the output
of the commands will be placed in a box to separate them from other text.
Example:

[student@linux1 student]$ pwd
/home/student

Note: "[student@linux1 student]$" is a prompt, a method the shell uses to
say “I’m ready for a new command”.

Bold text within a sentence will indicate an important term or a command.
Files and directories are highlighted by being placed in courier font.

Introduction © 2008 One Course Source Page 10

Using this manual while in class

In many ways, class manuals are different from textbooks. Textbooks are
often filled with lengthy paragraphs that explain a topic in detail.
Unfortunately, this style doesn’t work well in a classroom environment.

Class manuals often are much more concise than textbooks. Its difficult
to follow the instructor’s example and read lengthy paragraphs in a book
at the same time. For this purpose, class manuals are often more terse.

Lab Exercises

The lab exercises provided in this class are intended to provide practical,
hands on experience with a programming Perl. Students are strongly
encouraged to perform the labs provided at the end of each module to
reinforce the knowledge provided in class.

Floppy contents

The floppy disk that accompanies this course contains the following:

• All of the examples provided in the manual
• All of the answers to the labs provided in the manual

1 – Advanced Regular Expressions © 2008 One Course Source Page 11

 Unit One

Advanced Regular Expressions

Module topics:

 Page
1.1...Review: Basic Regular Expressions 12
1.2...Modifiers 26
1.3...Getting the Nth occurrence of a match 30
1.4...Greedy vs. Non-Greedy matches 31
1.5...Regular Expression variables 32
1.6..Special characters in regular expressions 35
1.7...Assertions 36
1.8...Reading from filehandles using split 39
1.9...Multiple line matching 40
1.10...Commenting Regular Expressions 43
1.11... Alternative Delimiters 44
1.12...Additional resources 46
1.13...Lab Exercises 47

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 12

1.1 Review: Basic Regular Expressions

Basic Regular Expressions are discussed in the Beginning Perl class and are
only mentioned here for a brief review. Depending on the students' experience
level, the instructor may or may not cover this section.

1.1.1 Basic operations

The following are the basic operations:

op Meaning
m Pattern Matching
s Substituting
tr Translating

Examples of basic operations:

DB<1> $line = "Today is a good day to learn Perl"
DB<2> if ($line =~ m/good/) {print "yes"}
yes
DB<3> $line =~ s/good/great/
DB<4> print $line
Today is a great day to learn Perl
DB<5> $line =~ tr/a-z/A-Z/
DB<6> print $line
TODAY IS A GREAT DAY TO LEARN PERL

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 13

Notes about the basic operators:

 Since matching is the most common operation, the "m" can be dropped in
most cases:

DB<2> if ($line =~ /good/) {print "yes"}

 If you perform matching, substitution, or translation on the default variable
($_), you can drop the "$var =~" portion of the command:

DB<1> $_ = "Today is a good day to learn Perl"
DB<2> if (/good/) {print "yes"}
yes
DB<3> s/good/great/
DB<4> print $_
Today is a great day to learn Perl
DB<5> tr/a-z/A-Z/
DB<6> print $_
TODAY IS A GREAT DAY TO LEARN PERL

 The "y" operator is the same as the "tr" operator:

DB<4> print $line
Today is a great day to learn Perl
DB<5> $line =~ y/a-z/A-Z/
DB<6> print $line
TODAY IS A GREAT DAY TO LEARN PERL

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 14

1.1.2 Basic modifiers

The following basic modifiers were discussed in the Beginning Perl class:

Mod Meaning
g Global match or substitution
i Case Insensitive match

"g" modifier example:

DB<1> $_="The dog ate the dog food"
DB<2> s/dog/cat/
DB<3> print
The cat ate the dog food
DB<4> $_="The dog ate the dog food"
DB<5> s/dog/cat/g
DB<6> print
The cat ate the cat food

"i" modifier example:

DB<1> $_="This is a good day to learn Perl"
DB<2> if (/perl/) {print "yes"}
DB<3> if (/perl/i) {print "yes"}
yes

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 15

1.1.3 Regular Expressions Classes

Class Matches
\w Alphanumeric and underscore character
\d Numeric
\s White space (space, tab, newline, formfeed, return)
\b Word boundary (includes "white space", end/beginning of line,

punctuation, etc.)
\W Non-alphanumeric and underscore character
\D Non-numeric characters
\S Non-white space
\B Non-word boundary

Examples:

"\w" and "\d" example:

DB<1> $_="The code is A127Z"
DB<2> s/\d\d\d/---/
DB<3> print
The code is A---Z
DB<4> s/\w---\w/ZZZZZ/
DB<5> print
The code is ZZZZZ

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 16

"\s" and "\b" example:

DB<1> $_="This is fun"
DB<2> s/\sis\s/was/
DB<3> print
Thiswasfun
DB<4> $_="This is fun"
DB<5> s/\bis\b/was/
DB<6> print
This was fun
DB<7> $_="This is"
DB<8> if (/\sis\s/) {print "yes"}
DB<9> if (/\bis\b/) {print "yes"}
yes

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 17

1.1.4 Basic metacharacters

Char Meaning
* Represents the previous character repeated zero or more times
+ Represents the previous character repeated one or more times
{x,y} Represents the previous character repeated x to y times
. Represents exactly one character (any one character)
[] Represents any single character listed within the bracket.
? Represents an optional character. The char. prior to the "?" is optional.
^ Represents the beginning of the line when it is the first character in the RE
$ Represents the end of the line when it is the last character in the RE
() Used to group an expression.
| Represents an "or" operator
\ Used to "escape" the special meaning of the above characters.

"*" Examples:

Example Meaning
abc* "ab" followed by zero or more c's
c*enter zero of more c's followed by "enter"
a* Anything. Warning: This expression ALWAYS will find a match and

will most likely match "nothing". Look for examples of this later in this
Module.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 18

"+" Examples:

Example Meaning
abc+ "ab" followed by at least one (or more) c
c+enter At least one c (or more) followed by "enter"
a+ Match one or more "a"

"{ }" Examples:

Example Meaning
abc{3,5} "ab" followed by three to five "c's"
abc{3,} "ab" followed by three or more "c's"
abc{3} "ab" followed by exactly three "c's"

"." Examples:

Example Meaning
a.c An "a" followed by any single

character followed by a "c"
abc. A "abc" followed by any single

character
ab.* A "ab" followed by zero or more of any

character

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 19

"[]" Examples:

Example Meaning
[abc]xyz Either an a, b or c followed by "xyz"
[bca]xyz Same as previous
[a-c]xyz Same as previous
[c-a]xyz An improper range
[a-z]xyz Any lower case character followed by "xyz"
[A-Z]xyz Any upper case character followed by "xyz"
[A-z]xyz Any lower case or upper case character or any of these

characters: "[] ^ _ ' " followed by "xyz"
[A-Za-z]xyz Any upper case or lower case character followed by "xyz"
[A-Z][a-z] A upper case character followed by a lower case character
gr[ae]y Either "gray" or "grey"
[^A-Z]xyz Any non-upper case character followed by "xyz"
[abc^]xyz First character is either "a", "b", "c" or "^" followed by "xyz"

"?" Examples:

Example Meaning
abc? Either "ab" or "abc"
colou?r Either "color" or "colour"

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 20

"^" and "$" Examples:

Example Meaning
^abc "abc" found at the beginning of the line
abc$ "abc" found at the end of the line
^abc$ A line that just contains "abc"
^$ A blank line
^\^[^^]*$ A line that starts with a "^" and has no other "^" characters on it

"()" Examples:

Example Meaning
(abc)*xyz "abc" zero or more times followed by xyz
(abc)+xyz "abc" one or more times followed by xyz
^(abc)+$ A line that contains one or more groups of "abc"

"|" Examples:

Example Meaning
a|bxyz Either an “a” or "bxyz"
(ab)|(xyz) Either "ab" or "xyz"

"\" Examples:

Example Meaning
abc\$ The string "abc$"
\^*\.\$ The string "^*.$"

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 21

1.1.5 Backreferencing

Grouping can also be used to "back reference" patterns that have been matched.
When Perl makes a match of characters within parentheses, what was matched
can be referred back to:

$var =~ s/^(…)abc\1/;

The \1 means "match what was matched in the first group". A \2 means "match
what was matched in the second group".

In addition to being able to back reference within the regular expression, Perl
assigns what was matched within the grouping to special variables. The first
group match is assigned to $1, the second group matched is assigned to $2, etc.

$var =~ m/(abc..)/;
print $1;

The above will match the string "abc" followed by the next two characters and
assign all five characters to the string $1.

Note: Future successful matches will cause these variables ($1, $2, etc.) to be
overwritten.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 22

Example #1:

The variables $1, $2, etc. can be used immediately after a successful pattern
match. In this example, the user enters their first and last name. Then pattern
matching is used to extract the first and last name and print them out in a different
format (last name, first name):

#!/usr/local/bin/perl
#1_back1.pl

print "Please enter your first and last name";
$_=<STDIN>;

if (m/(.*) (.*)/) #ex: "Bob Smith"
{
 print "$2, $1\n";
}

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 23

Example #2:

In this example, the UNIX file /etc/group will be read into the script one line at a
time and “parsed”. Each line contains four fields of data that are separated by
colons. This script will add the third field of each line and print the total:

#!/usr/local/bin/perl
#1_back2.pl

open (GROUP, "</etc/group");

while (<GROUP>) {
 m/(.*):(.*):(.*):(.*)/;
 $total += $3;
}

print "Total: $total\n";

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 24

Example #3

When you need to refer back to what was matched within the pattern itself, you
need to use \1, \2, etc. instead of $1, $2, etc.:

#!/usr/local/bin/perl
#1_back3.pl

print "Please enter a line: ";
$_=<STDIN>;
chomp $_;

if (/^(...).*\1$/) {print "$1\n";}

$junk="whatever";

if ($junk =~ /what/) {print "yes\n";}

print "$1\n";

Also note that when another pattern match is attempted, Perl will overwrite $1, $2,
etc. even if you don’t use parentheses.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 25

Module #1 Mini Lab

Write a program that takes a valid date and converts into this format:

January 01, 2001

The format of the valid date should be "01/01/2001". The first number should be
between 01 and 12. The second number should be between 01 and 31. The last
number should be a four-digit number.

Don't worry about "errors" such as "02/31/2001".

If an incorrect date is given, display an error message and ask for the input again.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 26

1.2 Modifiers

In addition to the g and i modifiers discussed in the Beginning Perl class, there
are other modifiers that change the behavior of a regular expression match.
Modifiers for matching and substitution are different than the modifiers for
translation.

1.2.1 Matching and substitution modifiers:

Mod Details found Meaning
e Section 1.2.3 Right-hand side of substitution is the code to evaluate
ee N/A Right-hand side of substitution is a string to evaluate and

run as code. After completion, the return value is to be
evaluated.

g Section 1.1.2
& 1.3

Global match or substitution

gc N/A Doesn't reset the search position after a failed match
i Section 1.1.2 Case Insensitive match
m Section 1.9 Allows ^ and $ to match embed \n characters
o N/A Only compile the pattern once
s Section 1.9 Allows the "." metacharacter to match newlines
x Section 1.10 Ignores white space in pattern and allows comments

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 27

1.2.2 Translation modifiers:

Mod Details found Meaning
c N/A Complement the search list
d Section 1.2.4 Delete characters that are not replaced
s Section 1.2.5 Delete replaced characters that are duplicates

1.2.3 The e modifier

When the e modifier is used, the right-hand (replacement) side of the substitution
is evaluated as a Perl statement. The result of the statement is used as the
replacement value:

DB<1> $var="123456789"
DB<2> $code="ABCDEFGHIJ"
DB<3> $code =~ s/J/chop $var/e
DB<4> print $code
ABCDEFGHI9

Note: The e modifier can only be used for substitution, not matching.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 28

1.2.4 The d modifier

Normally when you have too many characters on the left side of a translation
operation, you get "weird" results:

DB<1> $var = "This can become very odd"
DB<2> $var =~ tr/abcdefghij/ABC/
DB<3> print $var
TCCs CAn BCComC vCry oCC

In the above example, the tr operator replaced "a" with "A", "b" with "B" and all of
the other characters ("c-j") with "C".

The d modifier means, "if something is matched and we don't specify what to
replace it with, then remove it":

DB<1> $var="Lets cap this and remove all numbers: 1234567890"
DB<2> $var =~ tr/[a-z][0-9]/[A-Z]/d
DB<3> print $var
LETS CAP THIS AND REMOVE ALL NUMBERS:

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 29

1.2.5 The s modifier

When the s modifier is used with the tr operator. It tells tr to delete duplicated
characters that are replaced:

DB<1> $var="Exxtra chars are removed"
DB<2> $var =~ tr/xyz/XYZ/s
DB<3> print $var
EXtra chars are removed

Note: There is also a s modifier for matching and substitution that works
differently than the s modifier for translation

1.2.6 Other modifiers

Not all of the modifiers listed on the preceding page are discussed in detail in this
course. The g and i modifiers were covered in the Beginning Perl class and are
reviewed in section 1.1. Other modifiers will be introduced in future sections.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 30

1.3 Getting the Nth occurrence of a match

In some cases you will want to find the Nth occurrence of a match. In these
cases, use pattern matching with the g modifier in a while loop:

#!/usr/local/bin/perl
#1_nth.pl

$line="Code: A127Z Code: B999E Code: G678T Code: T765J";

while ($line =~ /(Code: [A-Z][0-9]{3}[A-Z])/g) {
 $count++;
 print "The $count match is $1\n";
}

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 31

1.4 Greedy vs. Non-Greedy matches

By default, Perl patterns are "greedy". This means that when matching a pattern,
Perl will attempt to "grab" as many characters that will possibly match:

DB<1> $line="It was the best of times; it was the worst of times"
DB<2> $line =~ s/the.*times/a very bad year/
DB<3> print $line
It was a very bad year

The ".*" matched the string "the best of times; it was the worst of " because that
was the most it could possibly match. To make your patterns Non-Greedy
(match the minimal amount), use the "?" after the metacharacter:

DB<1> $line="It was the best of times; it was the worst of times"
DB<2> $line =~ s/the.*?times/a very bad year/
DB<2> print $line
It was a very bad year; it was the worst of times

You can use the following Non-Greedy patterns:

*? {n}?
+? {n,}?
?? {n,m}?

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 32

1.5 Regular Expression variables

There are many variables that are set as the result of a pattern match:

Variable Meaning
$` String preceding what was last matched
$' String following what was last matched
$+ Last parens match of last pattern match
$& Last pattern match
$1..$9 Subpattern matches of last pattern match

1.5.1 What was matched

You can "look back" to what was matched during the last pattern match by
looking at the $& variable:

#!/usr/local/bin/perl
#1_match1.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$line=<STDIN>;

$line =~ m/[0-9]/;

print "The number was $&\n";

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 33

1.5.2 Before and after what was matched

You can see what was in the string before and after the match by looking at the
$` and $' variables:

#!/usr/local/bin/perl
#1_match2.pl

print "Enter a line of text and I will find the first 1 digit number: ";
$line=<STDIN>;

$line =~ m/[0-9]/;

print "The number was $&\n";
print "Before that number was $`\n";
print "After that number was $'\n";

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 34

1.5.3 The last paren match

If you use the or ("|") operation with backreferencing, it's difficult to determine
what holds the actual match:

#!/usr/local/bin/perl
#1_last1.pl

$_="Code: B999Z";

m/Code: (A127Z)|(B999Z)/;

print "$1 $2 \n";

In the above example, $2 is set while $1 is not. A better variable to use in this
case is $+ which holds the last paren match:

#!/usr/local/bin/perl
#1_last2.pl

$_="Code: B999Z";

m/Code: (A127Z)|(B999Z)/;

print "last match is $+ \n";

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 35

1.6 Special characters in regular expressions

In addition to the classes mentioned previously, there are other special
characters allowed within regular expressions:

Spec. char Meaning
\077 Octal character
\a Bell character
\c Control character
\E End case change
\e Escape character
\f Form feed character
\l Makes the next character lower case
\L Makes following characters lower case until \E
\n Newline Character
\Q Disable metacharacters until \E
\r Return character
\t Tab character
\u Makes the next character upper case
\U Makes following characters upper case until \E
\x1 Match hex character

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 36

1.7 Assertions

Some assertions (such as the ^ and $ characters) have already been introduced.
Assertions are used to match certain conditions within a string (such as
beginning and end of a line):

Assertion Meaning
^ Match beginning of line
$ Match end of line
\b Match a word boundary
\B Match a non-word boundary
\A Match only at the beginning of the string (note: This is the same as

^ except when using the m modifier)
\Z Match only at the end of the string or before a newline character

at end of the string (note: This is the same as $ except when using
the m modifier)

\z Match only at the end of the string
\G Match only where previous m//g left off (this works only with

matching, not substitution or translation)
(?=EXPR) Look ahead match (positive)
(?!EXPR) Look ahead match (negative)
(?<=EXPR) Look behind match (positive)
(?<!EXPR) Look behind match (negative)

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 37

1.7.1 Looking forward and back

The "look forward" and "look back" assertions are useful when you want to be
certain that a pattern is found but you only want to "work with" a portion of the
pattern. For example, you want to replace the word "great" with "bad", but only if
it isn't the last word in the string. The following will allow this to occur:

DB<1> $_="This is a good time to learn Perl"
DB<2> s/good(?=.)/great/
DB<3> print
This is a great time to learn Perl
DB<4> $_="This is good"
DB<5> s/good(?=.)/great/
DB<6> print
This is good

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 38

Or, suppose we want to replace "A127Z" with "-----" if the string "Code: " does not
appear at the prior to "A127Z":

DB<1> $_="Code: A127Z"
DB<2> s/(?<!Code:)A127Z/---/
DB<3> print
Code: A127Z
DB<4> $_="Answer: A127Z"
DB<5> s/(?<!Code:)A127Z/---/
DB<6> print
Answer: ---

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 39

1.8 Reading from filehandles using split

In the Beginning Perl class the split command was introduced. It was used in
that class to break up a string using regular expressions and store the resulting
items into an array:

DB<1> $line="Bob:Sue:Steve:Nick:Trevor"
DB<2> @names=split(/:/, $line)
DB<3> print $names[0]
Bob

The split command can also be used to read from a filehandle:

#!/usr/local/bin/perl
#1_split.pl

undef $/; #undefine the input separator variable
@words=split (/\s+/, <STDIN>);

print "First word: $words[0]\n";
print "Last word: $words[$#words]\n";
print "Number of words ", $#words+1, "\n";

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 40

1.9 Multiple line matching

In cases in which a string contains multiple lines (text separated with newline
characters), the behavior of Perl's RE may not be what you want. The default
behavior of Perl is to "ignore" new line characters when it comes to matching the
end of a string:

DB<1> $_="Today is the day\n"
DB<2> if (/day$/) {print "yes"}
yes

You can look for a newline character if you want to:

DB<1> $_="Today is the day\n"
DB<2> if (/day\n$/) {print "yes"}
yes

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 41

But what if you want to look for something that appears at the "end of a line"?
The following will only look for something at the "end of the string":

DB<1> $_="This is a good day\nto learn Perl"
DB<2> if (/Perl$/) {print "yes"}
yes
DB<3> if (/day$/) {print "yes"}

You could say "match something followed by a newline character", but that won't
match the last line the string unless there is a newline character:

DB<1> $_="This is a good day\nto learn Perl"
DB<2> if (/Perl\n/) {print "yes"}
DB<3> if (/day\n/) {print "yes"}
yes

To match the end of a line or the end of the string, use the m modifier:

DB<1> $_="This is a good day\nto learn Perl"
DB<2> if (/Perl$/m) {print "yes"}
yes
DB<3> if (/day$/m) {print "yes"}
yes

The meaning of "$" changes with the m modifier. Instead of meaning "end of the
string" it means "end of the string or prior to a newline character".

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 42

1.9.1 Using the s modifier

Another method that you can use is the s modifier. With this modifier, Perl treats
newlines just like normal characters. This means that the "." metacharacter will
match a newline character:

DB<1> $_="This is a good day\nto learn Perl"
DB<2> if (/day.to/) {print "yes"}
DB<3> if (/day.to/s) {print "yes"}
yes

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 43

1.10 Commenting Regular Expressions

While you can place comments before and after your regular expressions,
sometimes it would be nice to place comments within your regular expressions to
help explain what the expression does. With the x modifier you can place
comments and whitespace within your regular expressions.

When the x modifier is used, comments (# to end of line) and whitespace (Tabs,
spaces, newlines, etc.) are completely ignored. This means if you want to "look
for" one of these characters, you need to escape them with a backslash.

An example of commenting within a pattern:

#!/usr/local/bin/perl
#1_comm.pl

$_='Code: 127 -- \State=99\ ?UNSET?';

m/
 (?<=Code:) #Look back for "Code:" but don't replace
 (\ \d{3}) #match and group " " followed by three numbers
 \ --\ #match " -- "
 \\State= #match "\State="
 (\d+) #match and group one or more digits
/x;

print "First number: $1\n";
print "Second number: $2\n";

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 44

1.11 Alternative Delimiters

Consider the following code:

#!/usr/local/bin/perl
#1_alt1.pl

$_="Path: /usr/local/bin/perl";

m/\/([a-z]+)\/([a-z]+)/;

print "$1\n$2\n";

While it works just fine, the RE can be difficult to read. The problem is that in
order to match a "/" you need to escape it.

 Notes:

1 – Advanced Regular Expressions © 2008 One Course Source Page 45

While most programmers use "/" by default as a delimiter, you can choose any
character you wish. If you use a different character, then you don't have to
escape the "/" character:

#!/usr/local/bin/perl
#1_alt2.pl

$_="Path: /usr/local/bin/perl";

m,/([a-z]+)/([a-z]+),;

print "$1\n$2\n";

Note: Be careful of what character you choose for the alternative delimiter. Avoid
using metacharacters as you won't be able to use that character as a
metacharacter within the RE.

1 – Advanced Regular Expressions © 2008 One Course Source Page 46

1.12 Additional Resources

Books

Mastering Regular Expressions
by Jeffrey Friedl
O'Reilly & Associates
ISBN: 0596002890

Perl Cookbook
Chapter #6
by Tom Christiansen, Nathan Torkington
O'Reilly & Associates
ISBN: 0596003137

On line

http://search.cpan.org/dist/perl/pod/perlre.pod

Note: On line documentation may change.

1 – Advanced Regular Expressions © 2008 One Course Source Page 47

1.13 Lab Exercises - Suggested lab time: 45 minutes

Throughout this class you will be creating one script. The script will take the output of the UNIX command 'ps -
fe' and parse the data. In this module you will do the following (call the file parse1.pl):

When your script begins, open a file handle to read the output of the 'ps -fe' command. Read the data, perform
regular expression substitution listed below and assign this data to an array:

 Remove all leading white space in each element
 Compress all multiple spaces into a single space

Create a main menu that has the following options (we will add more options as the class progresses:

1. Remove newline characters from each element
2. Convert dates into 01/31 format
3. Remove PPID field
4. Print the array
5. Exit

Write the code for each of these options.

Notes and hints:

 If you don't remember how to open up a file handle that reads the output of a UNIX command, ask the
instructor.

 When printing the array, consider sending the data to the UNIX command more
 If the user runs option #3 more than one time, nothing should happen after the first time.
 Use subroutines to logically break up your program.

5 – Pragmas © 2008 One Course Source Page 121

 Unit Five

Pragmas

Module topics:
 Page
5.1..Perl pragmas 122
5.2..Pragma chart 123
5.3...The use strict pragma 124
5.4..Predeclaring subroutines 128
5.5... Predeclaring global variables 130
5.6... Additional Resources 134
5.7...Lab Exercises 135

 Notes:

5 – Pragmas © 2008 One Course Source Page 122

5.1 Perl pragmas

The intent behind pragmas is to modify the behavior of your Perl script. Pragmas
are invoked with the use statement:

use strict;

To disable the use of a pragma, use the no statement:

no strict;

Note: Some pragmas cannot be turned off.

The purpose of this section is to review some of the useful pragmas. Some
pragmas will not be discussed either because they are covered in another class
or because they are beyond the scope of this class.

 Notes:

5 – Pragmas © 2008 One Course Source Page 123

5.2 Pragma chart

The following chart lists some of the pragmas available in Perl (note: different
versions of Perl have different pragmas available):

Pragma Details found Meaning
autouse N/A Delays the operation of a require statement until

one of the specified subroutines is called.
blib N/A Modifies the @INC variable at compile time to use

MakeMaker.
constant Adv. Perl Defined constants during compile time.
diagnostics Section 7.4 Issues verbose error messages.
integer N/A Performs integer arithmetic instead of double.
less N/A This pragma is currently unimplemented
lib Section 6.1 Modifies the @INC variable at compile time.
locale N/A States to either use or ignore the current locale for

builtin operations.
ops N/A Restricts opcodes
overload OOP Perl Overloads the basic Perl operations
re N/A Modifies the default behavior of regular

expressions
sigtrap N/A Allows you to handle signals
strict Section 5.3 Prevents unwise statements
subs Section 5.4 Allows you to predeclare subroutines
vmsish N/A Only used on VMS systems. Allows for VMS-style

operations.
vars Section 5.5 Allows you to predeclare global variables.

 Notes:

5 – Pragmas © 2008 One Course Source Page 124

5.3 The use strict pragma

There are three things you can tell Perl to be strict about: reference usage,
subroutine usage and variable usage:

5.3.1 use strict 'ref'

This will cause your program to exit if a symbolic reference is used. Symbolic
references are a method of referring to variable and are typically discussed in
advanced classes.

5.3.2 use strict 'subs'

Creates an error message for "barewords" (strings without quotes around them
that appear to be subrouting calls) that don't call a valid subroutine. Example:

#!/usr/bin/perl
#5_subs.pl

use strict 'subs';
sub hello {
print "hello\n";
}

hello; #Calls a valid subroutine, no problem
justatest; #Bareword that isn't a subroutine.

 Notes:

5 – Pragmas © 2008 One Course Source Page 125

5.3.3 use strict 'vars'

This pragma will generate an error if a variable is used that:

 has not been declared as a my variable or
 isn't a fully qualified variable name or
 has not been declared as an our variable or
 has not been declared with a use vars statement

A fully qualified variable is one that includes its package namespace in the
variable name. Packages are discussed in detail in another class. The following
is just a brief introduction to using fully qualified variable names from the Main
part of your script:

While it is sometimes useful to have global variables, use strict vars doesn’t
allow this. If you want to use or modify variables from the "main" part (AKA "main"
package) of your program, use the following syntax:

$main::var

See example on following pages.

 Notes:

5 – Pragmas © 2008 One Course Source Page 126

The following program is an example of using global variables (Perl’s default
behavior):

#!/usr/local/bin/perl
#5_usevars1.pl

use strict 'vars';

sub test {
 print "$total\n";
}

$total=100;
&test;

 Notes:

5 – Pragmas © 2008 One Course Source Page 127

In this example, we are implementing use strict vars, which would cause compile
errors if we didn’t use fully qualified variable names:

#!/usr/local/bin/perl
#5_usevars2.pl

use strict 'vars';

sub test {
 print "$main::total\n";
}

$main::total=100;
&test;

Notes regarding use strict:

 The statement "use strict" will enforce all restrictions (refs, subs, and vars).

 Perl built-in variables are not affected by “use strict vars”.

 Notes:

5 – Pragmas © 2008 One Course Source Page 128

5.4 Predeclaring subroutines

Typically you need to create a subroutine prior to using it. For examples, the
following code won't produce any output since the subroutine isn't declared until
after it is called:

#!/usr/local/bin/perl
#5_sub1.pl

hello;

sub hello {
 print "hi there\n";
}

This can cause problems, especially if you are using "use strict":

#!/usr/local/bin/perl
#5_sub2.pl

use strict subs;

hello;

sub hello {
 print "hi there\n";
}

 Notes:

5 – Pragmas © 2008 One Course Source Page 129

Using "use subs" you can "predefine" subroutines:

#!/usr/local/bin/perl
#5_sub3.pl

use subs qw(hello);
use strict subs;

hello;

sub hello {
 print "hi there\n";
}

Notes:

 Once invoked, you cannot use "no subs" to undo a "use subs" statement.

 If you use the ampersand character before the function name, you do not
have to pre-declare subroutines that are placed after they are called.

 The use subs qw(hello) statement is the same as invoking sub hello {}

 Notes:

5 – Pragmas © 2008 One Course Source Page 130

5.5 Predeclaring global variables

When you refer to an undeclared variable, Perl either returns a 0 or a null string:

#!/usr/local/bin/perl
#5_var1.pl

print "The total is $total\n";
print "The result is ", $total+5, "\n";

However, if you invoke "use strict vars", you will receive an error message:

#!/usr/local/bin/perl
#5_var2.pl

use strict vars;

print "The total is $total\n";
print "The result is ", $total+5, "\n";

 Notes:

5 – Pragmas © 2008 One Course Source Page 131

To be able to use a variable prior to having it set, you can use the statement "use
vars":

#!/usr/local/bin/perl
#5_var3.pl

use strict vars;
use vars qw($total);

print "The total is $total\n";
print "The result is ", $total+5, "\n";

 Notes:

5 – Pragmas © 2008 One Course Source Page 132

This is very useful when you are not sure if a variable is set or not. When you
use "strict vars" even a defined statement will fail:

#!/usr/local/bin/perl
#5_var4.pl

use strict vars;

if (defined ($total)) #This will result in an error
 {print "hey, it's here!\n";}
else
 {print "It's not there!\n";}

When you use "use vars", the defined statement will not fail:

#!/usr/local/bin/perl
#5_var5.pl

use strict vars;
use vars qw($total);

if (defined ($total))
 {print "hey, it's here!\n";}
else
 {print "It's not there!\n";}

Note: once invoked, you cannot use "no vars" to undo a "use vars" statement.

 Notes:

5 – Pragmas © 2008 One Course Source Page 133

use vars is obsolete

As of Perl 5.6, use vars is considered to be obsolete. It is covered in this course
for the following reasons:

#1. You may wish to write code that is backward compatiable to older
versions of Perl. If so, you may want to continue to use the use vars
statement.

#2. While use vars is considered to be obsolete, it still performs the
same function that is always has. As a result, you will still see it
being used in other programmer's code as well as in older scripts.

Instead of using use vars, you should use the our statement to "globally declare"
a variable. Much like use vars, specifying the our statement will allow you to
use a variable without its fully qualified name while your code has use strict
implemented:

#!/usr/local/bin/perl
#5_var6.pl

use strict vars;
our $total;

if (defined ($total))
 {print "hey, it's here!\n";}
else
 {print "It's not there!\n";}

The our statement is covered in greated detail in the Advanced Perl class.

5 – Pragmas © 2008 One Course Source Page 134

5.6 Additional Resources

Books

Programming Perl
Chapter #4
By Larry Wall, Tom Christiansen, Jon Orwant
O'Reilly & Associates
ISBN: 0-596-00027-8

On line

http://perldoc.perl.org/index-pragmas.html

Note: On line documentation may change.

5 – Pragmas © 2008 One Course Source Page 135

5.7 Lab Exercises - Suggested lab time: 25 minutes

Important note: If you did not finish the previous lab, either finish it before starting this lab or use the
completed parse4.pl provided on your floppy disk.

Modify parse4.pl to include the following changes:

 Implement "use strict"
 Move your subroutines to the bottom of your script

Save these changes into a file called parse5.pl

8 – Perl/TK Basics © 2008 One Course Source Page 184

 Unit Eight
Perl TK Basics

Module topics:
 Page
8.1... Working with Windows 185
8.2..Types of Widgets 186
8.3...Geometry Managers 187
8.4..Creating Widgets 188
8.5..The OO nature of the Tk module 189
8.6...Additional resources 190
8.7...Lab Exercises 191

 Notes:

8 – Perl/TK Basics © 2008 One Course Source Page 185

8.1 Working with Windows

The idea behind Tk is to create an easy to use interface between Perl and
Windows. In order to do this, Tk builds on top of the X Window System (or
Window XP/2000/2003) to create "sub-windows" that contain buttons, menu
bars, scroll bars and other windows components. These components are called
"widgets".

Widgets are controls that are built into Motif (the heart of the X Window System
on UNIX platforms). In fact, you can think of Tk as the process of putting
widgets together in an application until you have the graphic interface you need.

8.1.1 The TK module

TK isn't part of Perl by default. It needs to be installed on your system and
imported into your program with the use statement.

To determine if TK is installed on your system, run the following command:

[student@linux1 student]$ perl -e "use Tk;"

If you don't get any error messages, Tk is installed. If you do get an error
message, Tk is probably not installed.

Important Note: Tk is a huge topic. While this section will show you how to
create and use basic widgets, a complete discussion of Tk is belong the scope of
this class.

 Notes:

8 – Perl/TK Basics © 2008 One Course Source Page 186

8.2 Types of Widgets

The following are the primary widgets available to Tk:

Widget Purpose
Frames Used to group other widgets together.
Toplevels Toplevels are special frames that create a "separate" window

(not a sub-window like normal frames do).
Labels Similar to frames but also allow text and bitmap graphics to be

displayed.
Buttons Buttons can be used to "bind" an action to a graphic.
Checkbuttons Used to select options.
Radiobuttons Used to select one option only.
List Boxes Lists lines of text and allows user to select one or more line.
Scroll bars Allows the user to control the display with a scroll bar.
Scales Allows the user to control the setting of an item with a slider

bar.
Entries Allows the user to type in text.
Menus Give the user menu options.

Each of these widgets will be discussed in greater detail in the next section.

A note regarding options: There are many options for widgets that affect size,
position, affects and additional widget features. Many of these options will be
discussed as the widgets are explored.

 Notes:

8 – Perl/TK Basics © 2008 One Course Source Page 187

8.3 Geometry Managers

While you can modify the look and feel of widgets with different options,
geometry managers control the location and size of widgets. Consider these
managers as functions that can see the "big picture" while the widgets only can
see themselves.

The primary geometry manager in Tk is pack. This manager can place a series
of widgets within a frame. The pack geometry manager is useful for simple Tk
applications.

The grid geometry manager is designed to allow you to place widgets into rows
and columns. The place geometry manager is designed to place widgets using
an x/y coordinate.

The pack geometry manager is probably the most commonly used of the three
and the easiest to initially learn. As a result, this course will focus on the pack
geometry manager.

 Notes:

8 – Perl/TK Basics © 2008 One Course Source Page 188

8.4 Creating Widgets

To get started, we are going to create a very simple Tk script. The following
will just create a window:

#!/usr/local/bin/perl
#8_basic.pl

use Tk;

$main = MainWindow -> new;
$main -> title ("First Tk program!");
MainLoop;

Notes about the program:

 The "use Tk;" statement imports the Tk module
 The line "$main = MainWindow -> new;" tells Tk that you want to
create a window. The window isn't created until you run the
"MainLoop" statement.

 The line "$main -> title ("First Tk program!");" tells Tk that you want to
put the string "First Tk program!" in the title bar of the window

 The line "MainLoop;" creates the Window. This statement is referred
to as an "event loop".

 Notes:

8 – Perl/TK Basics © 2008 One Course Source Page 189

8.5 The OO nature of the Tk module

One aspect of Perl/Tk that "throws" people is that it is an Object Orientated
module. If you don't know how OO works in Perl, don't let this aspect of the
module throw you off. The good thing about Object Oriented Programming in
Perl is that you don't have to understand how to write or read OO Perl code in
order to use an OO module.

If you understand the concept of OO from other languages (such as C++ or
Java), then the following might be useful information:

$main = MainWindow -> new;

This command calls the "new" method from the "MainWindow" class and returns
an object that is assigned to the $main variable.

With that said, understand that OOP is a concept, not a standard, therefore how
OOP "works" in C++ or Java can be quite a bit different than how it works in
Perl…

Once again, since you don't know how to write or read OO code in order to use
an OO module, covering more detail regarding OOP in Perl is deferred to
another class.

8 – Perl/TK Basics © 2008 One Course Source Page 190

8.6 Additional resources

Books

Mastering Perl/TK
by Steve Lidie Nancy Walsh
O'Reilly & Associates
ISBN: 1565927168

Perl/Tk Reference
by Stephen Lidie
O'Reilly & Associates
ISBN: 1565925173

On line

www.perltk.org
w4.lns.cornell.edu/~pvhp/ptk/ptkFAQ.html
www.lehigh.edu/~sol0/ptk/

8 – Perl/TK Basics © 2008 One Course Source Page 191

8.7 Lab Exercises - Suggested lab time: 10 minutes

Taking an existing command-line based script and converting it into a GUI based script can be challenging.
Typically the best course of action is to create a separate GUI based script and incorporate the code from the
command-line based script.

To start this process, create a program that will generate a window that has the title of "Process Data". At this
point the program shouldn't do anything except provide a window.

Save this program as parse8.pl.

