

Design
Patterns

Student workbook

Design Patterns ii

Design Patterns

by Marilyn McCord

 (DBA Associated Consultants)

All brand names, product names, trademarks, and registered trademarks are the property
of their respective owners.

Marilyn McCord lives in the San Juan Mountains
northeast of Durango, Colorado, on the edge of the
Weminuche Wilderness where the hiking is great.
Besides courseware she has written two books: A
Practical Guide to Neural Nets, Addison Wesley, 1990;
and Parallel Flights: A Father-Daughter Memoir, 2003,
highlighting her father’s WWII memories. During the
decade of the 1980s she worked for Texas Instruments
in Dallas.

Email Contact: <mccord@gobrainstorm.net>

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Design Patterns iii

Contents

Chapter 1 – Course Introduction ..7

Course Objectives...9
Course Overview...11
Suggested References..13

Chapter 2 – Design Pattern Overview ..19

Objectives in Software Design/Module Design..25
Overview of Patterns...27
Qualities of a Pattern...29
Pattern Systems..31
Heuristics vs. Patterns ..33

Chapter 3 – Principles of Object-Oriented Design ..37

Overview of Principles...41

Single-Responsibility Principle (SRP) ..43
Open-Closed Principle (OCP) ..45
Tell vs. Ask...47
Command/Query Separation (CQS) ..49
Composed Method...51
Combined Method..53
Liskov Substitution Principle (LSP) ..55
Dependency Inversion Principle (DIP) ...57
Interface Segregation Principle (ISP) ...59
Law of Demeter..61
Review of Life Cycle Process...63

Exercises...64

Chapter 4 – Principles of Package Architecture ...71

Package Cohesion Principles...75
Package Coupling Principles..77
Martin Package Metrics..85

Exercises...88

Chapter 5 – Basic Object-Oriented Design Patterns...89

Delegation vs. Inheritance..93
Interface ...95
Immutable ..97
Null Object..99

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Design Patterns iv

Marker Interface .. 101
General Responsibility Assignment Software Patterns.. 103

Exercises .. 104

Chapter 6 – Catalog of GoF Patterns ... 107

Overview of GoF Patterns .. 111
Introduction to Creation Patterns .. 113
Factory Method... 115
Abstract Factory ... 117
Builder .. 119
Prototype .. 123
Singleton .. 125
Summary of Creation Patterns ... 127

Exercises ... 128
Introduction to Structural Patterns .. 131
Adapter ... 133
Decorator.. 135
Proxy .. 137

Exercises ... 138
Facade ... 145

Exercises ... 147
Composite .. 149
Flyweight .. 151
Bridge ... 155
Summary of Structural Patterns.. 157
Introduction to Behavioral Patterns... 159
Chain of Responsibility ... 161

Exercises ... 163
Iterator .. 165
Strategy .. 167

Exercises ... 168
Template Method.. 173

Exercises ... 175
Mediator ... 177
Observer... 179

Java Support for Observer..180-A
Exercises ... 181

Memento .. 183
Snapshot ... 185

Command... 187
Exercises ... 189

State ... 191
Exercises ... 193

Visitor ... 195
Interpreter ... 199

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Design Patterns v

Summary of Behavioral Patterns...201

Exercises – Summary of GoF Case Study ..203

Chapter 7 – Other Micro-Architecture and System Patterns....................................205

Object Pool..209
Worker Thread ..211
Dynamic Linkage...213
Cache Management..215
Type Object...217
Extension Object ...219
Smart Pointer (C++) ..221
Session ...223
Transaction ...225

Exercises..226

Chapter 8 – Concurrency Patterns ...229

Single Threaded Execution ...235
Guarded Suspension ..237
Balking ..239
Scheduler ..241
Read/Write Lock..243
Producer/Consumer ..245
Two-Phase Termination ..247
Double-Checked Locking ..249

Chapter 9 – Patterns-Oriented Software Architecture ..251

Systems of Patterns ..255

Architectural Patterns..261
Layers Architecture ...263
Pipes & Filters Architecture...267
Blackboard Architecture ..271
Broker ...275
Model-View-Controller...279
Presentation-Abstraction-Control ..283
Reflection ..287
Microkernel..291

Catalog of J2EE Patterns..295
J2EE Pattern Relationships ..297

Example 1: DAO Pattern ...299
Example 2: Session Façade Pattern ..301

Summary: How to Select an Architecture...303

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Design Patterns vi

Exercises ... 304

Chapter 10 – Selected Process Patterns (from PLoP)... 307

The Selfish Class.. 313
Patterns for Evolving Frameworks.. 315
Patterns for Designing in Teams .. 317
Patterns for System Testing ... 319

Chapter 11 – Selected Anti-Patterns.. 321

Stovepipe System... 327
Stovepipe Enterprise ... 329
Reinvent the Wheel .. 331
Golden Hammer ... 333
Death by Planning .. 335
Death March Projects ... 337
Additional Management Anti-Patterns .. 339

Chapter 12 – Patterns Summary .. 341

Appendix A: UML Review ..A-1
Appendix B: C# Code Examples for GoF... B-1
Appendix C: Maze Game Java Code .. C-1
Appendix D: Possible Solutions for Exercises ... D-1
Appendix E: Diagram Worksheets ..E-1

Index ..

Game Pages ..

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 1 Course Introduction 7

Chapter 1 – Course Introduction

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

8 Design Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Notes

Chapter 1 Course Introduction 9

Course Objectives

● Improve Software Architecture

● Build Design Pattern Vocabulary

 Learn basic underlying object design principles (ch 3, 5)
 Learn names and intent of all 23 GoF design patterns (ch 6)
 Learn basic object-oriented architectural patterns
 and how patterns systems assist in creating overall architecture (ch 9)

 □ (Optional) Learn other relevant object-oriented design patterns

● Be able to discuss trade-offs in applying various design patterns

● Gain concepts and tools for writing better object-oriented code
 (options for solving common problems)

● Gain concepts for better documenting object-oriented code

● Build a framework for reading and using the GoF book, Design Patterns: Elements of
Reusable Object-Oriented Software, by Gamma, et al.

● Review relevant UML notation

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

10 Design Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Notes

Chapter 1 Course Introduction 11

Course Overview

● Audience: Analysts, designers, and programmers who want to learn
 more about object-oriented design patterns

● Prerequisites: Basic understanding of Object-Oriented Analysis and
 Design concepts and simple familiarity with Unified Modeling Language

● Student Materials:

 □ Student workbook

 □ Text: Design Patterns: Elements of Reusable Object-Oriented
 Software, by Gamma, et al.

● Classroom Environment:

 □ Lecture format with board space, flip chart, etc.

 □ Optional: Networked PCs or workstations (instructor machine
 display unit) and Java installed, to run a Java example
 of Observer Pattern “ChatServer.”

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

12 Design Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Notes

Chapter 1 Course Introduction 13

Suggested References

Alur, Crupi, Malks, Core J2EE Patterns: Best Practices and Design Strategies, 2nd Edition,
Prentice Hall / Sun Microsystems Press, 2003, ISBN: 0-13-1422464.

An excellent presentation of best practices in J2EE; easy to read and follow. Originated
via field work done by the authors while working with J2EE customers. Includes a Pet
Store sample application. Lots of info – diagrams, sample code, etc. -- is available
online. If you are working in J2EE, this book is essential.

Beck, Kent, Test Driven Development: By Example, Addison-Wesley, 2002, ISBN: 0-321-
14653-0.

This is XP, eXtreme Programming. Test-driven development (TDD) provides a set of
techniques that encourage simple designs and test suites. The emphasis is on writing
the tests first before you code, then making the code work – and continue working after
each change. If you are interested in this approach, it is worth doing the examples.

Binder, Testing Object-Oriented Systems, Addison-Wesley, 2000, ISBN: 0-201-80938-9.

This reference book has 4 main sections: (1) Preliminaries, an introduction to testing
issues, (2) Models, state machines and model-based testing, (3) Patterns, the how-to of
OO design, a test design handbook, and (4) Tools, a test implementation handbook.

Booch, Grady, Object Solutions: Managing the Object-Oriented Project, Addison-Wesley,
1996, ISBN: 0-8053-0594-7.

Older now, but still some good points – especially on architecture (see p. 344 of this
workbook). Interesting to look at the factors that drive software development process,
and see where your process fits it. The most mature driver is getting the architecture
right.

Booch, Grady, et. al, The Unified Modeling Language User Guide, Addison-Wesley, 1999,
ISBN: 0-201-57168-4.

The “bible” on UML. But check the website for the latest updates.

Brown, William J., et. al, AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis, Wiley & Sons, 1998, ISBN:

A fun book – yet bittersweet because too often you’ve been there. Clarifies negative
patterns that cause development roadblocks due to poor management, lack of
architectural control, or personality clashes. Shows how to detect and defuse 40 of the
most common AntiPatterns, providing a refactored solution for both the symptoms and
the cause(s).

Buschmann, et. al, Pattern-Oriented Software Architecture - A System of Patterns, Wiley &
Sons Ltd., 1996, ISBN: 0-471-95869-7

 POSA: As the title says, Architectural Patterns. Represents the progressions and

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

14 Design Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

evolution of the pattern approach into a system of patterns capable of describing and
documenting large-scale applications. Worth reading.

Cockburn, Alistair, Surviving Object-Oriented Projects: a Manager’s Guide, Addison-
Wesley, 1998, ISBN: 0-201-49834-0 (paper).

 This is probably my favorite book for managers and project leads on object-oriented
projects. Takes eleven real-life projects and examines things that went right/wrong.
Many of Cockburn’s ideas (patterns for OO development and managing) show up in
other articles and compendiums of how-to-do-it OO books.

Cooper, James W., The Design Patterns Java Companion, © 1998 by James W. Cooper,
IBM Thomas J. Watson Research Center. Free online book in PDF format.

Pointed out to me by a recent class interested in Java examples, available online.

Douglass, Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns, Addison-Wesley, 1999, ISBN: 0-201-49837-5.

Real-time/embedded systems have been sort of the step-child when it comes to OO
books – but the demand for such is growing. Topics include schedulability, behavioral
patterns, real-time frameworks, timing and performance of systems. Code is C++.
Includes CD-ROM with demonstration version of Rhapsody by I-Logix, PowerPoint
demonstration version of TimeWiz by TimeSys, and Rhapsody sample models related
to the text.

D’Souza, Desmond F., and Wills, Alan Cameron, Objects, Components, and Frameworks
with UML: The Catalysis Approach, Addison-Wesley, 1999, ISBN: 0-201-31012-0 (paper).

Catalysis is an emerging UML-based method for object and component-based
development and combines the concepts of objects, frameworks, and component
technologies. Part III, Factoring Models and Designs, contains a section on Process
Patterns for Refinement, and Part IV, Architecture, includes several architectural
patterns.

Fowler, Martin, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997, ISBN:
0-201-89542-0.

Fowler has analysis experience in a number of domains. This is a book of practical
patterns and ideas you can use right away – look for chapters that match the kind of
problem you are working on now.

Fowler, Martin, Patterns of Enterprise Application Architecture, Addison-Wesley, 2002,
ISBN: 0-321-12742-0.

Distills over 40 recurring solutions into patterns; contains a reference section describing
domain logic patterns. Covers layering, organizing domain logic, mapping to relational
databases, Web presentation, concurrency, session state, and distribution strategies.

Fowler, Martin, Refactoring, Addison-Wesley, 1999, ISBN: 0-201-48567-2.

Chapter 1 Course Introduction 15

I particularly liked chapter 3, entitled “Bad Smells in Code”, which has the flavor of anti-
patterns in identifying opportunities for refactoring. Uses UML, Java code.

Fowler, Martin, UML Distilled, Second Edition, Addison-Wesley, 2000, ISBN: 0-201-65783-
X.

 An easy read with lots of good stuff. Chapter 2 is one of the best concise descriptions
of the OO development process I have seen. I have often used this book with OOA&D
classes – it is an excellent basic introduction to UML.

Freeman and Freeman, Head First Design Patterns, O’Reilly Media, 2004, ISBN: 0-596-
00712-4.

 Combines the principles of our Section 3 with the GoF patterns of our Section 6, using
easy-to-understand illustrations, humor, and lots of exercises. The heart monitor
example evolves to a web application in fairly easy steps.

Gamma, Erich, et. al, Design Patterns: elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994, ISBN: 0-201-63361-2.

 The Classic. Started the whole Patterns thing off. Describes simple and elegant
solutions to specific problems in object-oriented software design. Probably every other
book on patterns references this one.

Grand, Mark, Patterns in Java, Volume 1: A Catalog of Reusable Design Patterns
Illustrated with UML, John Wiley & Sons, Inc., 1998, ISBN: 0-471-25839-3.

CD-ROM contains Java source code for the 41 design patterns and trial versions of
Together/J, Rational Rose 98, System Architect, and OptimizeIt. Several inaccuracies
introduced in the rush to get this printed, but overall quite useful and there is now an
errata list for Volume 1:
(see http://www.mindspring.com/%7Emgrand/volume_1_patterns_errata.html)

Hartman, Robert, Building on Patterns, Application Development Trends magazine, May
2001, p.19-26.

Jacobson, Ivar, et. al, The Unified Software Development Process, Addison-Wesley, 1999,
ISBN: 0-201-57169-2.

Focuses on the process, but there is lots of stuff on patterns along the way, such as
“analysis stereotypes” of boundary, control and entity, some pages on layered
architecture, etc.

Kassem, and the Enterprise Team, Designing Enterprise Applications with the Java™ 2
Platform, Enterprise Edition, Sun Microsystems Press, 2000, ISBN: 0-201-70277-0.

Describes the principles and technologies employed in building J2EE applications and
the specific approach adopted by a sample application for an e-commerce Web site.

Larman, Craig, Applying UML and Patterns: an Introduction to Object-Oriented Analysis

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

16 Design Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

and Design, Prentice Hall, 1998, ISBN: 0-13-748880-7.

I often tell an OOA&D class: “The good thing about this book is that it shows every little
step. The bad thing about this book is, it shows every little step.” Depends on whether
you want that level of detail or not. Takes a Point Of Sales Terminal (POST) example
and does the A & D work. Has quite a bit on patterns, and emphasizes the GRASP
(General Responsibility Assignment Software Patterns) patterns, most of which are just
good common sense in OO Design, but brings them to the top of your consciousness.
Good chapter on persistence patterns.

Lea, Doug, Concurrent Programming in Java: Design Principles and Patterns, Addison-
Wesley, 1996, ISBN: 0-201-69581-2.

Doug Lea is probably the best when it comes to concurrent programming tips in Java.

Martin, Agile Software Development: Principles, Patterns, and Practices, Prentice-Hall,
2003, ISBN: 0-13-597444-5.

 Foreword by Erich Gamma: “This book is crammed with sensible advice for software
development.” Contains a lot of Java and C++ code. Clear impact of Extreme
Programming (XP), expansions on GoF patterns in case studies, other stuff.

Martin, Riehle, Buschmann, Pattern Languages of Program Design 3, Addison-Wesley,
1998, ISBN: 0-201-31011-2 (paper).

Third in a series. A collection of the current best practices and trends in the patterns
community, including international essay submissions.

Riel, Arthur J., Object-Oriented Design Heuristics, Addison-Wesley, 1996, ISBN: 0-201-
63385-X.

Lots you probably already know, but worth checking out.

Shalloway, Alan, and Trott, James, Design Patterns Explained: A New Perspective on
Object-Oriented Design, 2nd Edition, Addison-Wesley, 2004, ISBN: 0-32-1247140.

 Some of my students have really like this book; it has some good stuff in it. It gives
details on good OO design in general and the author has an easy style which is much
easier to read than GoF.

Stelting, Stephen, and Maassen, Olav, Applied Java Patterns, Sun Microsystems Press,
Prentice Hall, 2002, ISBN: 0-13-093538-7.

 For the Java crowd: First three chapters parallel GoF categories of patterns, chapter
4 has System Patterns, then chapters with Java language patterns. Appendix A lists
over 200 pages of full Java code for all patterns, and the code is also downloadable.

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wesley, 1998, ISBN:
0-201-43293-5 (paper)

Presents themes and variations on several established patterns, but with new insights –

Chapter 1 Course Introduction 17

especially note Observer in Ch. 4. Puts patterns into the broader context of basic
object-oriented design principles. Note: Vlissides is one of the GoF authors.

Wake, William C., Extreme Programming Explored, Addison-Wesley, 2002, ISBN: 9-
780201-733976 (paper)

Small, easy to read, lots of code examples. Will give you a feel for the XP style and
approach.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

18 Design Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

WEB SITES: (web sites can and do change often…)

http://www.ootips.org
 Tons of good stuff here, plus links to other sites

http://hillside.net/patterns/books/
 Lists lots of patterns books – 9 pages with links
 Includes Brad Appleton’s Patterns Intro

http://www.cs.wustl.edu/~schmidt/
 Doug Schmidt’s Home Page

http://www.bell-labs.com/user/cope
 Jim Coplien’s Home Page

http://gee.cs.oswego.edu/dl
 Doug lea’s Home Page, Patterns FAQs
 Patterns for Concurrent Programming in Java

http://members.aol.com/acockburn/riskcata/risktoc.htm
 Alistair Cockburn, Surviving Object-Oriented Projects

http://www.objectmentor.com
 Robert Martin’s company

http://www.patterndepot.com/put/8/JavaPatterns.htm
 Location for James W. Cooper’s online book with Java code for patterns

http://www.phptr.com/appliedjavapatterns

http://ww.clipcode.nte/components/snippets
 Downloadable C# code snippets, included here as Appendix B.

http://www.javaworld.com
 Lots of free articles, etc.

http://ambysoft.com
 Scott Ambler’s site

http://www.c2.com/cgi/wiki?WelcomeVisitors
 The Wiki Wiki Web entry point – with a sandbox to play in

http://java.sun.com/blueprints/corej2eepatterns

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/esp.asp
 .Net patterns

Just do a search on what you want – there is more information that you ever dreamed.

http://www.ootips.org/
http://hillside.net/patterns/books/
http://www.cs.wustl.edu/%7Eschmidt/
http://www.bell-labs.com/user/cope
http://gee.cs.oswego.edu/dl
http://members.aol.com/acockburn/riskcata/risktoc.htm
http://www.objectmentor.com/
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://www.phptr.com/appliedjavapatterns
http://ww.clipcode.nte/components/snippets
http://www.javaworld.com/
http://ambysoft.com/
http://www.c2.com/cgi/wiki?WelcomeVisitors
http://java.sun.com/blueprints/corej2eepatterns
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/esp.asp

Chapter 2 Design Pattern Overview 19

Chapter 2 – Design Pattern Overview

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

20 Design Patterns

Notes

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 21

Chapter Objectives

● Build rationale for using design patterns

● Discuss software “rot”

● Define “pattern”

● Build template for what we want to see in a pattern description

● Contrast patterns and heuristics

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

22 Design Patterns

Notes

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 23

What is a Design Pattern?

Why should I use patterns?

Why bother writing patterns
that just boil down to advice

my grandmother would give me?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

24 Design Patterns

Notes

Good habits (rules?):

1. Always use Source Control system.
2. Automate development process with makefiles, batch, etc.
3. First version of code:

● gets cosmetics right – comments, formatting, naming
● handles abnormal cases
● uses assertions
● builds in tests

4. Always maintain a working system
5. Compile often; take small steps
6. When discovering an error, ask yourself:

● Is this mistake also somewhere else?
● What other bugs might be hidden behind this one?
● How can I prevent bugs like this in the future?

7. Scrap poor code. Refactor. Document choices/discards.
8. “Live for today.” Suppose you were called away from the project suddenly and

permanently?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 25

Objectives in Software Design/Module Design

We want to write “good” code that:

 lasts a long time
 is mobile
 accommodates change
 is easy to understand and easy to extend
 is S-I-M-P-L-E.

So, why don’t we achieve this?
How hard is it to write simple code?

What makes some software designs rot?

What can we do to help prevent software rot?
 (Compare to sterile procedures, which makes surgery possible…)

What is refactoring?
 (Compare to cleaning up the kitchen after dinner…)

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

26 Design Patterns

Notes

• Some GoF patterns exist simply because of C++ limitations:

Abstract Factory, Factory Method, Singleton, Prototype, Command, and Visitor

• GoF book points out C++ pitfalls, e.g.

 combination of interface and implementation inheritance
 use of inheritance instead of delegation or forwarding
 safety/flexibility tradeoff
 confusion between lexical - dynamic scoping in methods
 flat class namespace.

● If you were creating your own template for patterns, what would you include?
 (Check our list against GoF, Grand, etc.)

 1.

 2.

 3.

 4.

 5.

 6.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 27

Overview of Patterns

 … think at a design level rather than a code level – the instinct to know what can be
implemented without actually implementing it…

How concisely can you describe your last software design?

• Patterns seldom used in isolation - it helps to learn some before others

• Some patterns simple, some complex

What is your definition of a software pattern? (e.g., define a “for” loop)

• Template Brainstorm:
 (A canonical form for elements you want to see in a Pattern…)

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

28 Design Patterns

Notes

Patterns Encapsulate and Abstract

• well-defined problem/solution in a particular domain
• crisp, clear boundaries -- parceling into lattices of distinct, interconnected fragments
• abstractions that embody domain knowledge and experience
• may occur at varying hierarchical levels of conceptual granularity within domain
 (For example, MVC is both architecture and a mechanism)

Patterns Exhibit Openness and Variability

• open for extension or parameterization by other patterns
• capable of many different implementations
• usable in isolation or with other patterns

Patterns Have Generativity and Composability

• one pattern provides context for application of next pattern
• subsequent patterns applied to progress further toward final goal
• not linear in nature -- more like fractals

Patterns realize an Equilibrium

• balance among pattern forces and constraints
• invariants typify principles/philosophy for domain;

minimize conflict within solution space
• rationale for each step/rule in pattern.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 29

 Qualities of a Pattern

⇒ Well-written patterns describe a whole greater than the sum of parts

⇒ Elements work together to satisfy varying demands

● Patterns Encapsulate and Abstract
 (What is encapsulated? What is abstracted?)

● Patterns Exhibit Openness and Variability
 (Many implementations; extendibility)

● Patterns Have Generativity and Composability
 (Provide context for next patterns; infinite variety)

● Patterns realize an Equilibrium

● Patterns imply broader architectural issues –
 More people-oriented things like maintenance,
 reuse, encapsulation, variation, etc.

►What do these bullets really mean?
 (What about an automatic “pattern generator” tool?)

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

30 Design Patterns

Notes

Simply using objects to model an application is not sufficient to create robust, maintainable
and reusable designs. Other attributes of a design are required. These attributes are
based on a pattern of interdependencies between the subsystems of the design to:

 ● support communications within the design,
 ● isolate reusable elements from non-reusable elements,
 ● block the propagation of change due to maintenance.

“It would not be reasonable to design a house without knowing the lay of the land, or a
skyscraper without knowing the materials that could be used. The idea that we can treat
concepts such as threading and distribution as mere coding details is a sure fire way to
waste a lot of energy (and time, money, etc.) in big, up-front design only to discover that
the difference between theory and practice is bigger in practice than in theory.”1

 Compare with language:
 vocabulary = patterns
 grammar = rules, heuristics

“… the best software patterns are also geometric… When a system encounters stress, it
loses symmetry.”2

1 Henney, Kevlin, “A Tale of Two Patterns,” Java Report, December 2000, p. 84.
2 Coplien and Zhao, “Symmetry and Symmetry Breaking in Software Patterns,” Oct. 2000.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 31

Pattern Systems

Pattern Levels:

(1) highest level: architectural patterns define overall shape

(2) specific architecture related to purpose of application

(3) architecture of modules and their interconnections
 (domain of design patterns)

(4) lowest level: idioms – patterns in language syntax (e.g., i++)

(5) principles are like firewalls to help prevent improper dependencies
 (main reason software rots)

 The real art is interweaving
patterns – design patterns are not used in
isolation. Not so easy, not straightforward.
And, you have to know the pieces to weave them
together well.

 “A pattern system for software architecture is a collection of patterns for software
architecture, together with guidelines for their implementation, combination and practical
use in software development.”3

3 Buschmann, et al, Pattern-Oriented Software Architecture: A System of Patterns, © Wiley, 1996, p. 361,

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

32 Design Patterns

Notes

Heuristics from Riel4 (note that some are C++ specific):

Classes and Objects
 ● All data should be hidden within its class.
 ● Users of a class should be dependent on its public interface; classes should not be
dependent on its users.
 ● Minimize the number of messages in the protocol of a class.
 ● Implement a minimal public interface that all classes understand.
 ● Do not put implementation details such as common-code private functions into the public
interface of a class.
 ● Do not clutter the public interface of a class with things that users of that class are not able to
use or are not interested in using.
 ● Classes should only exhibit nil or export coupling with other classes.
 ● A class should capture one and only one key abstraction.
 ● Keep related data and behavior in one place.
 ● Spin off non-related information into another class.
 ● Be sure abstractions that you model are classes and not simply roles objects play.

Object-Oriented Applications
 ● Distribute system intelligence horizontally as uniformly as possible.
 ● Do not create god classes/objects in your system.
 ● Beware of classes that have many accessor methods defined in public interface. Having
many implies that related data and behavior are not being kept in one place.
 ● In applications that consist of an object-oriented model interacting with a user interface, the
model should never be dependent on the interface.
 ● Model the real world whenever possible.
 ● Eliminate irrelevant classes from your design.
 ● Do not turn an operation into a class.
 ● Agent classes are often placed in the analysis model of an application.

Relationships between Classes and Objects
 ● Minimize the number of classes with which another class collaborates.
 ● Minimize the number of message sends between a class and its collaborator.
 ● Minimize the amount of collaboration between a class and its collaborator.
 ● Minimize fan-out in a class.
 ● If a class contains objects of another class, then the containing class should be sending
messages to the contained objects.
 ● Most of the methods defined on a class should be using most of the data members most of
the time.
 ● Classes should not contain more objects than a developer can fit in his or her short-term
memory.
 ● Distribute system intelligence vertically down narrow and deep containment hierarchies.

4 Riel, Arthur J., Object-Oriented Design Heuristics, © Addison Wesley, 1996.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 33

Heuristics vs. Patterns

Heuristics stated in a sentence or two;
 Patterns take more space.

 Heuristics can provide the glue to know:
 when to select a particular pattern, or
 how to combine them during design process.

Heuristics categories deal with…

Classes and Objects

● Encapsulation
● Cohesion
● Targeted abstractions

Object-Oriented Applications

● Group abstractions in analysis:
 √ Boundary
 √ Control
 √ Entity

Relationships between Classes and Objects

● Minimize coupling
● Use of polymorphism

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

34 Design Patterns

Notes

 ● When implementing semantic constraints, it is best to implement them in terms of the class
definition.
 ● When implementing semantic constraints in the constructor of a class, place the constraint
test in the constructor as far down a containment hierarchy as the domain allows.
 ● The semantic information on which a constraint is based is best placed in a central, third-
party object when that information is volatile.
 ● The semantic information on which a constraint is based is best decentralized among the
classes involved in the constraint when that information is stable.
 ● A class must know what it contains, but it should never know who contains it.
 ● Objects which share lexical scope should not have uses relationships between them.

The Inheritance Relationship
 ● Inheritance should be used only to model a specialization hierarchy.
 ● Derived classes must have knowledge of their base class by definition, but base classes
should not know anything about their derived classes.
 ● All data in a base class should be private.
 ● In theory, inheritance hierarchies should be deep.
 ● In practice, inheritance hierarchies should be no deeper than an average person can keep in
his or her short-term memory.
 ● All abstract classes must be base classes.
 ● All base classes should be abstract classes.
 ● Factor the commonality of data, behavior, and/or interface as high as possible in the
inheritance hierarchy.
 ● If two or more classes share only common data (no common behavior), then that common
data should be placed in a class which will be contained by each sharing class.
 ● If two or more classes have common data and behavior (i.e. methods), then those classes
should each inherit from a common base class which captures those data and methods.
 ● If two or more classes share only common interface (i.e. messages, not methods), then they
should inherit from a common base class only if they will be used polymorphically.
 ● Explicit case analysis on the value of an attribute is often an error.
 ● Do not model the dynamic semantics of a class through the use of the inheritance
relationship.
 ● Do not turn objects of a class into derived classes of the class.
 ● If you think you need to create new classes at runtime, take a step back and realize that what
you are trying to create are objects.
 ● It should be illegal for a derived class to override a base class method with a NOP method.
 ● Do not confuse optional containment with the need for inheritance. Modeling optional
containment with inheritance will lead to a proliferation of classes.
 ● When building an inheritance hierarchy, try to construct reusable frameworks rather than
reusable components.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 2 Design Pattern Overview 35

Heuristics vs. Patterns, continued

The Inheritance Relationship

● With inheritance, ask yourself two questions:
 1) Am I a special type of the thing from which I’m inheriting?
 2) Is the thing from which I’m inheriting part of me?

Multiple Inheritance
 ● Assume you have made a mistake and prove otherwise.

The “Deadly Diamond”

 (What’s Java’s solution to this?)

The Association Relationship
 ● Prefer containment to simple association if appropriate
 (Important in non-garbage-collecting environments)

Class-Specific Data and Behavior
 ● Use of class variables and methods

Physical Object-Oriented Design
 ● Do not allow physical design criteria to corrupt logical designs
 ● Do not change state of an object without going through its public interface.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

36 Design Patterns

Notes

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 205

Chapter 7 – Other Micro-Architecture
 and System Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

206 Design Patterns

Notes

 “Current architectural methods result in products that fail to meet the real demands and
requirements of its users, society and its individuals, and are unsuccessful in fulfilling the
quintessential purpose of all design and engineering endeavors: to improve the human
condition.” Christopher Alexander

Coplien talks about making a dress by specifying the route of scissors through the cloth in
terms of angles and lengths of cut – vs. using a pattern. The pattern foreshadows the
product.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 207

Chapter Objectives

● Learn Other Micro-Architecture and System Patterns

1. Object Pool

2. Worker Thread

3. Dynamic Linkage

4. Cache Management

5. Type Object

6. Extension Object

7. Smart Pointers (C++)

8. Session

9. Transaction

 and there are many more…

Want to be a design patterns star? User vs. Writer? Either way,
study existing patterns.

● Develop incentive to look for additional patterns (e.g., Successive Update, Router,
Callback… all included in Sun’s book, Applied Java Patterns – see bibliography). See also
Buschmann, et al, Pattern-Oriented Software Architecture.

► Patterns can channel creativity, not replace it or constrain it.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

208 Design Patterns

Notes

 Comments: If instances of a class are reused, avoid creating new instances of the
class. See also Cache Management pattern, Flyweight, WorkerThread.

 Diagram:

Manage-Reusable-Objects

Uses

manager
Client

ReusablePool

<<constructor>>
-ReusablePool()
<<misc>>
+getInstance()
+acquireReusable():Reusable
+releaseReusable(:Reusable)
+setMaxPoolSize(maxSize)
. . .

Reusable

 Participants: Reusable, Client, ReusablePool (a Singleton).

 Usage: Database connections.

 Solution: If instances of a class are reused, avoid creating new instances of the class.
When there is a limit on the number of objects that may be created, you can use a simply
array. When there is no limit on the pool size, consider a Vector.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 209

1. Object Pool (aka: Instance Manager) – A creational pattern

 Pattern Thumbnail: Manages reuse of objects when object is expensive to create or
only limited number of objects can be created.

 Example: Managing connections to a database. Clients use connections to send
queries and retrieve results. Avoid having each program create its own connection; each
creation takes several seconds and the more connections there are to a database the
longer it takes to create new connections. Each database connection needs a network
connection and some platforms limit the number of network connections allowed.
Solution: have a library manage database connections on behalf of applications.

 Forces:
 □ Program may not create more than limited number of instances for a particular class.
 □ If creating instances of a particular class is sufficiently more expensive, creating new
instances for that class should be avoided.
 □ Avoid creating objects by reusing objects when finished with them rather than
discarding them as garbage.

 Question: How can you ensure that a class is instantiated only by the class managing
the object pool? Suppose you don’t have control over the structure of the managed class?

 Consequences:
 □ Helps avoid object creation costs.
 □ Works best when demand for objects is fairly stable.
 □ Keeps creation/reuse logic in separate class from class
instances being managed.
 □ Eliminating interactions between implementation of
creation/reuse policy and implementation of managed class’s
functionality improves cohesion.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

210 Design Patterns

Notes

 Comments: Creating thread instances is expensive in terms of performance. Instead
create a single WorkerThread (or a pool of them) and simply give new tasks to the
WorkerThread. A queue manages the wait list of tasks.

 Diagram:

creates

manager
Client

<<interface>>
Queue

+void put(Runnable r);
+Runnable take();

Task

WorkerThread

ConcreteQueue

+void put(Runnable r);
+Runnable take();

Often an inner class
of ConcreteQueue,
but could be a pool
of threads

 Participants: Client, Task (implements Runnable interface), Queue, ConcreteQueue,
WorkerThread.

 Solution: If one or more instances of a Thread are reused, you avoid creating new
Thread instances for a one-shot task.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 211

2. WorkerThread

 Pattern Thumbnail: A way to improve application throughput and minimize average
latency by reusing a single helper thread (or pool of threads).

 Example: It requires skill to implement multithreading correctly.

Separate non-crucial tasks from the rest of your application
and use Worker Thread pattern. The worker thread picks
up task from queue and executes it; when that’s done, it
picks up next task from queue. (Compare Command)

 Forces:
 □ Timing of execution isn’t critical (lower priority tasks),
 □ Creating new thread for each task isn’t efficient,
 □ Want to improve throughput, introduce efficiency.

 Consequences:
 + Client no longer responsible for creating threads – only for putting tasks on queue
(less expensive operation), and therefore doesn’t have to wait to hand-off the task.
 □ Works best when number of Worker Threads matches number of possible concurrent
tasks – if application has to wait for Worker Thread to become available, lose
multithreading benefit.
 + Keeps creation/reuse logic in separate classes from tasks being managed.
 + Task sitting in queue and not running takes no scheduling resources; more threads
mean more scheduling required and Worker Thread may simplify scheduling.
 - Dependent tasks with sequential queue can produce deadlock.
 - Too many tasks for number of available threads = clogged system.

 Variations:
 □ ThreadPool to manage worker thread class instances. Could implement a timing
strategy with queue requests dropped after certain time period, and client needs to retry.
 □ Create a SmartQueue that understands how tasks work together and implements
varying strategies – but could become maintenance nightmare.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

212 Design Patterns

Notes

 Comments: Flexibility vs. complexity trade-offs, implemented with interfaces and
abstract base classes.

 Diagram:

1.5:displayProgramName(name)

1.3:setEnvironment(env)
1.4:name:=getName()
1.6:start()

1.2:program:=newInstance()

1.1:programClass:=forName(programName:String)

1:run(programName:String)

Uses

Uses
<<interface>>
EnvironmentIF

operation1()
operation2()
. . .

AbstractLoadableClass

setEnvironment(:environmentIF)
start()
. . .

Environment ConcreteLoadableClass

Class

programClass:Class

env:FoodProcessorEnvironment

Program:ConcreteFoodProcessorProgram

:Display

1.6.1:weigh()
1.6.2:mix()
…

 Participants: EnvironmentIF, Environment, AbstractLoadableClass,
ConcreteLoadableClass

 Usage: Web browsers use Dynamic Linkage pattern to run Java applets. The browser
environment accesses a subclass of Applet that it loads through the Applet class; loaded
applet subclasses access the browser environment through the AppletStub interface.
 JDBC uses DriverManager to load appropriate database Driver.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 213

3. Dynamic Linkage

 Pattern Thumbnail: Allow program, upon request, to load and use arbitrary classes
implementing known interface.

 Example: A smart food processor program. This piece of equipment can load various
programs to produce a great variety of foods – from baking bread to stir-fry shrimp. Due to
size and variety not all the programs can be kept in memory, but are loaded from a CD-
ROM. Methods need a way to call each other. (See facing diagram.)

 Forces:
 □ Program must be able to load/use arbitrary
classes it has no prior knowledge of.
 □ Instance of loaded class must be able to call back
to program that loaded it.

 Question: How could Dynamic Linkage be used
by Virtual Proxy to create its underlying object?

 Implementation: Pattern requires that environment knows about
AbstractLoadableClass class and that loaded class knows about EnvironmentIF interface.
 When less structure is needed other mechanisms for interoperation are possible –
JavaBeans uses combination of reflection classes and naming conventions to allow other
classes to infer how to interact with a bean.
 Also, Environment class must know name of class it wants to load. In the example
above, the CD-ROM could contain directory of programs displayed as a menu, allowing
user selection. Other applications might hardwire names.
 To avoid incompatible versions of supporting classes, ensure all supporting classes
loaded implicitly as well as any explicitly dynamically loaded class are not used by any
other explicitly dynamically loaded class. Implement this by using different ClassLoader
for each dynamically loaded class.

 Consequences:
 □ Subclasses of AbstractLoadableClass can be dynamically loaded.
 □ Operating environment and loaded classes do not need specific foreknowledge of
each other.
 □ Dynamic linkage increases total amount of loading time. However, it has effect of
spreading out, over time, loading overhead and can make an interactive program seem
more responsive.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

214 Design Patterns

Notes

 Comments: Effectiveness of caching is measured by hit rate, the percentage of object
fetch requests the cache manager can satisfy. Making optimal choices on which objects to
store can involve statistical analysis, queuing theory and other mathematical analysis.
Searching should be optimized for speed over addition/removal, but adding or removing
objects should not be a lot more expensive than searching. (Consider a hash table.)

 Diagram:

Caches/
Manages

Stores objects

Creates objects
for caching

*

CacheManager

fetchObject(:ObjectKey)

ObjectCreator

createObject(:ObjectKey) Object

Client Cache

addObject(:Object)
fetchObject(:ObjectKey)
. . .

ObjectKey

[!1.1] 1.2: getProductInfo(productID)

1.1: getProductInfo(productID)
1.3: removeProductInfo(productID)
1.4: addProductInfo(productInfo)

1: getProductInfo(
 productID)

ProductCacheManager

ProductInfoFetcher

Cache

 Participants: ObjectKey, CacheManager, ObjectCreator, Cache

 Usage: Caching of server objects in CORBA architecture. Each server pool can be
managed by an instance manager, which understands the requirements of an object and
provides the appropriate run-time environment. The instance manager should be able to
manage an object’s state on transaction boundaries and provide load-balancing as well as
smart activation services with object caching.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 215

4. Cache Management

 Pattern Thumbnail: Storing objects in working memory for fast access.

 Example: Writing a program for fetching formation about
products in a catalog; fetching all information for a product can
take several seconds as it is gathered from multiple sources.
Once info for product is secured, want it available for quick
access if needed again soon.

 Forces:
 □ Need to access an object that takes long time to construct.
 □ When number of such objects is small enough to fit in local memory, keeping them
there provides best results.
 □ May be necessary to set upper bound on number of cached objects with enforcement
policy which determines who stays and who goes.

 Question: How could you use Publish-Subscribe to ensure the read consistency of a
cache? How could you use the Template Method pattern to keep the Cache class
reusable across application domains?

 Consequences:

□ Impact of Cache Management on rest of program is minimal.
□ Positive: Program spends less time creating expensive objects.
□ Negative: Cache may become inconsistent with original data source.
 read consistency means objects fetched from cache always reflect updates to
information in original;
 write consistency means original object source always reflects updates to cache.

□ Some synchronization mechanism required to achieve absolute consistency.
Relative consistency may suffice; its guarantee is that if an update occurs in the cache
or the original data source, the other will reflect the update within some specified
amount of time.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

216 Design Patterns

Notes

 Comments: A class requires an unknown number of subclasses in addition to an
unknown number of instances; you want to be able to create new subclasses without
recompilation.

 Diagram:

Instances

Each instance keeps a reference to its corresponding
instance of Movie.

Classes

InstanceClass

TypeClass

Movie

Title()
rentalPrice()

DVD

isRented()
renter()
copyNo()
. . .

aMovie

StarWars

aMovie

Fantasia

aDVD

copy1
movie

aDVD

copy2
movie

must know its
parent

 Participants: TypeClass, TypeObject, InstanceClass, InstanceObject

 Usage: Java and other reflective systems – a type object is often called a metaobject.
Used to model medical samples where each sample has 4 independent properties.

 Implementation Issues:

1. InstanceObject references TypeObject – must be specified when instance created.
2. Object’s behavior can be implemented in its class or delegated to its TypeObject.
3. Messages an object understands are defined by its class, not its TypeObject.
4. New InstanceObject created by sending request to appropriate TypeObject
 instance (different).
5. Object could have multiple TypeObjects, but this is not common.
6. Object could dynamically change class (easier to change the reference than to
 mutate to new class).
7. Possible to subclass either InstanceClass or TypeClass – e.g., Videodisk instance
 could reference same movie as Videodisk instance;
 3 videotapes and 2 videodisks could all share same movie.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 217

5. Type Object (aka: Power Type)

 Pattern Thumbnail: Replacing an entire class hierarchy with just
two classes – a class for the type and a class for the instance.

 Example: A video store where there are multiple copies of DVDs.
You don’t want to store redundant information for each copy
(instance). The total number of DVDs is not known ahead and
changes often anyway.

 Forces:
 □ Instances of class need to be grouped together by common attributes and/or
behavior.
 □ Class needs subclass for each group in order to implement that group’s common
attributes/behavior.
 □ Class requires large number of subclasses and/or total variety of subclasses required
is unknown.
 □ Want to create new groupings at runtime that were not predicted during design.
 □ Want ability to change object’s subclass after it has been instantiated without having
to mutate it to new class.
 □ Want to nest groupings recursively so that a group is itself an item in another group.

 Question: How would you compare Type Object pattern to Strategy and State
patterns? Decorator?

 Consequences:
 Positive: Runtime class creation, avoiding subclass explosion, hiding separation of
instance and type, dynamic type changes (NewRelease can change to GeneralRelease),
independent subclassing, multiple type objects.
 Negative: Design complexity, implementation complexity, reference management
required by application (usually each instance knows what type it is inherently).

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

218 Design Patterns

Notes

 Comments: Anticipate extensions to an object’s interface.

 Diagram:

*

owner

extensionsSubject

getExtension(id)

ConcreteSubject

+getExtension(id)

<<interface>>
Extension

<<interface>
SpecificExtension

specificInterface()

Client

ConcreteSpecific
Extension

specificInterface()

Extension objects
provide interfaces to
manipulate original
hierarchy objects

each obj keeps list of
its extensions and has
a method to look up
ext by name

 Participants: Subject, Extension, ConcreteSubject, SpecificExtension,
ConcreteSpecificExtension.

 Usage: The QueryInterface in COM (Component Object Model) interfaces behave as
extensions.

 Software Communications Architecture (SCA) is a component-based object model
used for architecting software-defined radios. At the heart of the design of this architecture
is a need to add or extend existing hierarchies without modifying the hierarchies – a real-
world application of the Extension Object/Interface Pattern. “Using the Extension Object
Pattern, these radio components truly move into the realm of being software ICs just like
their hardware counterparts. Their ‘ports’ correspond to the pins of an IC and the guts of
the Resource correspond to the business logic of the integrated circuit.” Instead of
getExtension(id) they use getPort(id). See Linda Rising’s discussion at
<http://www.smallmemory.com/almanac/>

 Implementation Issues:

1. Static vs. dynamic extension objects.
2. Specifying extensions – clients must specify uniquely (in Java, use class literal
 expressions)
3. Demand loading of extensions.
4. Defining SpecificExtensions interfaces.
5. Freeing extensions in non-garbage collecting environments.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 219

6. Extension Object (aka: Facet)

 Pattern Thumbnail: Add interfaces to a class
and let clients choose and access interfaces they need (even dynamically); sort of like
Strategy. (Also relate to Java’s Reflection pkg.)

 Example: A framework for compound documents made up of components such as
text, graphics, spreadsheets, movies. To assemble components in various interesting
ways there is a need for a common interface that provides operations to manage and
arrange components. Now you want to add a spell checker --textless components would
“do-nothing.” Adding an interface to Component creates bloat. Therefore, define the spell
check interface in separate abstract class.
 Example 2: A bill of materials system (BOM) wants each hierarchy object to create
XML representation of self (or CSV—comma separated values). Adding toXML() violates
SRP and would be a real pain.

 Forces:
 □ Want to add new/unforeseen interfaces to existing classes and don’t want to impact
clients that don’t need this new interface.
 □ Clients perceive different roles for same abstraction and number of such roles is
open-ended.
 □ Class should be extensible without being subclassed directly.

 Question: Visitor and Decorator also address the problem of extending class
functionality; how does Extension Object differ from these?
 How do ISP, SRP, and OCP apply?

 Consequences:
 Positive: Facilitates adding interfaces, can prevent bloated interfaces, clients can
perceive an abstraction differently.
 Negative: Clients become more complex, the Subject interface doesn’t express all of
its behavior.

 Related Patterns: Visitor, Decorator, Adapter.

► Complex, but powerful pattern from Erich Gamma. See PLoPD3, pp 79-88.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

220 Design Patterns

Notes

Comments: Smart pointers are objects that look and feel like pointers, but are smarter.
They can address many memory management issues.

Code Example:

 template <class T> class auto_ptr { For the user of auto_ptr, this means instead of:
 T* ptr; void foo() {
 public: MyClass* p(new MyClass);
 explicit auto_ptr(T* p = 0) : ptr(p) {} p->DoSomething();
 ~auto_ptr() {delete ptr;} delete p;
 T& operator* () {return *ptr;} };
 T* operator->() {return ptr;}
 // . . . etc. You can write:
 }; void foo() {
 auto_ptr<MyClass> p(new MyClass);
 p->DoSomething();
 }; // and trust p to cleanup after itself.
 // example of problem
 Dangling pointer illustration: template <class T> auto_ptr<T>& auto_ptr<T>::
 MyClass* p(new MyClass); operator=(auto_ptr<T>& rhs) {
 MyClass* q = p;
 delete p; if (this != &rhs) { // if not assigning to self
 p->DoSomething(); // p dangling delete ptr;
 p = NULL; // p no longer dangling ptr = rhs.ptr;
 q->DoSomething(); // Oops! q still dangling rhs.ptr = NULL;
 // set pointer to NULL on copy
 }
 return *this;
 }; // operator= definition

 Usage: The Smart Pointer Library includes at least five smart pointer class templates:
 see www.boost.org/libs/smart_ptr/

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 221

7. Smart Pointer (C++)

Pattern Thumbnail: Using Proxy, smart pointers implement same
interface as regular pointers. Key is overloading of dereferencing
operator. By wrapping an instance of a class in a template class,
and returning the address of the wrapped instance from
dereferencing operator, you can still access any of the wrapped
class’s members.

 Question: What happens in the first foo() on the facing page if DoSomething() throws
an exception?

 Implementation Issues: Must support all pointer operations, like
dereferencing (operator *) and indirection (operator ->).

 Consequences:
 Positive: Pointers which handle common C++ bugs can save in aspirin.
Smart pointers can mean fewer bugs and can do such tasks as automatic
initialization, removal of dangling pointers (pointers to objects already
deleted), creating new copies, transfer of ownership, reference counting,
reference linking, copy-on-write, and garbage collection.
 Negative: A bit more work, but probably worth it.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

222 Design Patterns

Notes

Diagram:

*

Client

Session
Server

Client
Server

SessionTracker

Server-maintained session

SessionTracker

-Session[] sessions
+void createSession()
+void destroySession(long id)

Session

- long id

Client-matching session

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 223

8. Session

Pattern Thumbnail: Provide a way for servers in distributed systems to distinguish
among clients and allow applications to associate state with the communication.

Example: A ChatServer application with multiple clients – using
sockets – requests from clients to server can be made sequential
and the server is aware of previous calls. A shopping cart
application.

 Question: What is the difference
between stateful and stateless

communication in distributed systems? What are some
situations in which each approach makes sense.
 What about HTTP on the internet – is it
stateful or stateless?
 How valuable would a stateless e-commerce application be?

 Implementation Issues:
 □ Managing session identity.
 □ Where to keep information on state – client side (cookies) or server side
 (HttpSession in Java).

 Consequences:
 Positive: Maintaining client information during a series of communications, even when
changes take place in stages. Can differentiate among clients.
 Negative: Increased workload on server, increased complexity required for client
identity and storing/retrieving associated information.

► How would customers buying coffee at Starbucks be an example
of this pattern? Client-side state scenario: Client specifies what they
want. Server-side state scenario: “Oh hello, Ms. D, the usual?”
Suppose there were only one server and a very indecisive customer –
what would it mean to make this scenario “multithreaded?”

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

224 Design Patterns

Notes

Diagram:

0..*

Client

<<interface>>
SpecificParticipant

+boolean operation1(long transactionID)
+boolean operation2(long transactionID)

ConcreteParticipant

- originalState

+boolean join(long transactiionID)
+void commit(long transactionID)
+void cancel(long transactionID)
+boolean operation1(long transactionID)
+boolean operation2(long transactionID)

If transaction fails, client calls
cancel on all participants

<<interface>>
TransactionParticipant

+boolean join(long transactionID)
+void commit(long transactionID)
+void cancel(long transactionID)

general interface specific operations added to
general interface

Participants: TransactionParticipant (interface defining methods to control every
participant), SpecificParticipant (extension of interface to contain the business methods –
which could throw exceptions as a signal of failure), ConcreteParticipant (has to keep
reference to original state to be able to restore if cancel invoked), Client (acts as
transaction manager; calls join on participants to start transaction and ultimately calls
either cancel or commit on participants).

Normal Sequence:

1. Create a transaction ID (either as object or long)
2. Invoke join on all participants, aborting if any join fails.
3. Try the action, invoke necessary business methods, call cancel if
 any participant fails.
4. When action completed, call commit on all participants.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 225

9. Transaction

Pattern Thumbnail: Group a collection of methods so either all
succeed or all fail (atomic).

 Forces:
 □ Several methods need to be fully synchronized
 □ Recovery options should be available.

 Example: Transferring funds from one account to
another. If transfer fails, funds magically disappear from one
of your accounts – not good. And banks frown on funds
magically appearing in one of your accounts…

 Implementation Issues:

 □ If Participant already involved in transaction and join() called again, Participant object
must decide what to do. Could throw exception to caller of join and Transaction Manager
could either roll-back second transaction or wait until participant available.

 Consequences:
 Positive: Several methods combined to act as atomic operation; application can
maintain consistent state as new state is not persisted until all participants succeed.
 Negative: Performance decreased.

 Variations:
 □ Two-phase commit – Transaction Manager assures all participants can commit
before it calls commit() on them – a voting round.
 □ Optimistic (participants can always join but may not be able to commit)
 vs.
 Conservative (join may fail, but when joined, participant can always commit)

► Sun’s Applied Java Patterns has the Half-Object Plus Protocol (HOPP – p. 189, ed. 1)
which splits an object for executing some methods locally, some methods remotely.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

226 Design Patterns

Exercises

1. Consider a factory with many different machines manufacturing many different

products. Every order has to specify the kinds of products it requires; each kind of
product has a list of parts and a list of the kinds of machines needed to make it.
Instead of class hierarchies for kinds of machines and kinds of products (which
would require programming every time you added a new kind of machine or
product), how could you use Type Objects?

2. Suppose a video store client wanted to browse all of the movies the store offers.
How might you accomplish this without iterating through all of the DVDs (which
include copy1, copy2, etc.)?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 7 Other Micro-Architecture Patterns 227

3. Draw the UML diagram for the Extension Object example of adding a

SpellChecker interface. Consider classes such as Component,
StandardTextComponent (or HTMLTextComponent, or both), ComponentExtension,
TextAccessor, StandardTextAccessor (or HTMLTextAccessor, or both).

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

228 Design Patterns

Notes

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 321

Chapter 11 – Selected Anti-Patterns

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

322 Design Patterns

Notes

The AntiPatterns home page is located at the following website:

 www.antipatterns.com.

Why document a bad solution?

• something about it is attractive
• the solution in the long term is bad
• the anti-pattern may suggest other patterns which may provide good solutions
• guidance for others (don’t fall into the same trap!)
• you CAN refactor

•

Edison had how many failures before he developed
a practical, incandescent electric light?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

http://www.antipatterns.com/

Chapter 11 Selected Anti-Patterns 323

Chapter Objectives

● Point out that you can learn by negative examples

● Address many existing practices

● Understand that refactoring applies to more than just code

● Provide stress release in the form of shared misery for common problems

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

324 Design Patterns

Notes

“AntiPatterns represent the latest concept in a series of revolutionary changes in computer
science and software engineering thinking. As we approach the 50-year mark in
developing programmable digital systems, the software industry has yet to resolve some
fundamental problems in how humans translate business concepts into software
applications. The emergence of design patterns has provided the most effective form of
software guidance yet available, and the whole patterns movement has gone a long way in
codifying a concise terminology for conveying sophisticated computer science thinking.

“While it is reasonable to assume that the principle reason we write software is to provide
solutions to specific problems, it is also arguable that these solutions frequently leave us
worse off before we started. In fact, academic researchers and practitioners have
developed thousands of innovative approaches to building software: from exciting new
technologies to progressive processes, but with all these great ideas, the likelihood of
success for practicing managers and developers is grim.

“A survey of hundreds of corporate software development projects indicated that five out of
six software projects are considered unsuccessful. About a third of software projects are
canceled. The remaining projects delivered software that was typically twice the expected
budget and took twice as long to develop as originally planned [Johnson 95]. These
repeated failures, or "negative solutions", are highly valuable, however in that they provide
us with useful knowledge of what does not work, and through study: why. Such study, in
the vernacular of Design Patterns can be classified as the study of Anti-Patterns. “1

1 From the website, www.antipatterns.com

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 325

Anti-Patterns Overview

● Negative patterns of behavior exist in all
walks of life
 (especially software development – design, architecture, management, etc.)

● Anti-Patterns tell you what to avoid and how to fix it

● Comedy = most serious tragedy

… the state of software engineering today
 is mostly a tragedy …

Like a small child throwing a tantrum – maybe it only works 10% of the time, but he doesn’t
yet have a better model…

With patterns, benefits exceed consequences.

 With anti-patterns, consequences exceed benefits.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

326 Design Patterns

Notes

►There is a tutorial on anti-patterns on the website <www.antipatterns.com>.

Common Architectural Infrastructure

(small set of shared mechanisms)

Common Architectural Infrastructure

(large set of shared mechanisms)

Domain-specific framework
 GUI/desktop environment
Domain model
 Application environment
Domain-independent framework

Distributed object management
 Common error handling mechanism
Logging facility
 Networking
 etcetera
 Persistent Object Store

Base Operating System

2

Note the stovepipe components on the left above… and the refactored
solution on the right which brings common functionality into the architectural
infrastructure. This is reuse that really counts, when the infrastructure works
for all the typical applications you do…

2 Explore more on this in Booch’s Object Solutions, p. 43-54.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 327

1. Stovepipe System (aka: Legacy System, Uncle Sam Special, Ad Hoc Integration)

Most Frequent Scale: System

Refactored Solution Name: Architecture Framework

Refactored Solution Type: Software

Root Causes: Haste, Avarice, Ignorance, Sloth

Unbalanced Forces: Management of Complexity, Change

Anecdotal Evidence:
 □ The software project is way over budget;
 □ has slipped its schedule repeatedly;
 □ my users still don’t get expected features;
 □ and I can’t modify the system.

Every component is a stovepipe.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

328 Design Patterns

Notes

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 329

1b. Stovepipe Enterprise
 (aka: Islands of Automation)

Typical Causes:

 ● Lack of Enterprise
 Technology Strategy

 ● Lack of incentive for cooperation
 across system developments
 (competing business areas, executives)

Mission-specific
Custom Services

Basic Services
Infrastructure

Value-Added
Functional Services

Building Codes,
Zoning Laws

System C

System B

System A

 ● Lack of communication between system development projects

 ● Lack of knowledge of the technology standard being used

 ● Absence of horizontal interfaces in system integration solutions

Symptoms & Consequences:
 □ Incompatible terminology, approaches, technology;
 □ brittle, monolithic system architectures and undocumented architectures;
 □ inability to extend systems to support business needs;
 □ incorrect use of a technology standard;
 □ lack of reuse between systems;
 □ lack of interoperability (even with same standards);
 □ excessive maintenance costs due to changes;
 □ employee turnover and project discontinuity with maintenance problems.

►Describe a refactored solution:

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

330 Design Patterns

Notes

“Immature artists imitate. Mature artists steal.” -- Lionel Trilling

► Certification is required for many professionals – why not software architects?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 331

2. Reinvent the Wheel
(aka Design in a Vacuum, Greenfield System—
assuming a build from scratch)

Most Frequent Scale: System

Refactored Solution Name: Architecture Mining

Refactored Solution Type: Process

Root Causes: Pride, Ignorance
 (Why do we do this?!)

Unbalanced Forces: Management of Change, Technology Transfer

Anecdotal Evidence:
 □ “Our problem is unique.”
 □ Software developers generally have minimal knowledge of each other’s work.
 □ Even widely used software packages available in source code rarely have more than
one experienced developer for each program.

Known Exceptions: Pattern may be suitable for research environment where developers
with different skills work at logistically remote sites.

► What would typical causes include?

► Describe symptoms and consequences?

► What would a refactored solution look like?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

332 Design Patterns

Notes

Golden Hammer Forces:

• Development team committed to technologies they know
• Development team NOT familiar with other technologies
• Unfamiliar technologies are seen as risky
• It’s easy to plan and estimate for development using the familiar technology

Examples: Web companies keep using and maintaining their internal homegrown caching
systems when open source alternatives are in use.

For more examples, see the Portland Pattern Repository’s WIKI at http://c2.com/.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 333

3. Golden Hammer (aka: Old Yeller, Head-in-the–sand)

Most Applicable Scale: Application

Refactored Solution Name: Expand your horizons

Refactored Solution Type: Process

Root Causes: Ignorance, Pride, Narrow-Mindedness

Unbalanced Forces: Management of Technology Transfer

Anecdotal Evidence: “I have a hammer and everything else is a nail.”
 “Our database is our architecture.”
 “Maybe we shouldn’t have used Excel macros for this job after all.”

General Form: Software development team has gained competence in particular solution
or vendor product (the Golden Hammer). It may be a mismatch for problem, but minimal
effort devoted to exploring alternative solutions.

Typical Causes:

 □ Several successes have used this particular approach

 □ Large investment in training with product or technology

 □ Group isolated from industry, other companies

 □ Reliance on proprietary product features not available in other industry products

 □ “Corncob” (prevalent but difficult person) proposing solution

► What would be an exception to this anti-Pattern?

► Describe possible symptoms and consequences:

► What would be a refactored solution?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

334 Design Patterns

Notes

It is essential to baseline early and rarely. Otherwise the ability to track changes is lost.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 335

4. Death by Planning
 (aka: glass Case Plan, Detailitis Plan)

Most Frequent Scale: Enterprise

Refactored Solution Name: Rational Planning

Refactored Solution Type: Process

Root Causes: Avarice, Ignorance, Haste

Unbalanced Forces: Management of Complexity

Anecdotal Evidence:
 □ “We can’t get started until we have a complete program plan.” (Compare with XP)
 □ “The plan is the only thing that will ensure our success.”
 □ “As long as we follow the plan and don’t diverge from it, we will be successful.”
 □ “We have a plan … just need to follow it.”

Typical Causes/Symptoms:

 □ Lack of pragmatic, common-sense approach to planning, schedules and capture of
progress
 □ Ignorance of basic project-management principles
 □ Sales aid for contract acquisition
 □ Forced customer compliance (or executive management)
 □ No up-to-date plan showing software component deliverables
and their dates

► Describe a refactored solution:

► How is the analysis paralysis anti-pattern related?

► Compare with the approach of Extreme Programming, XP.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

336 Design Patterns

Notes

Some cynics contend that all software projects are death-march projects…

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

Chapter 11 Selected Anti-Patterns 337

5. Death March

Yourdon has described the death march project as one with unreasonable commitments --
any project with goals or resources that are scoped 50% outside of reasonable norms…

 ●Schedule: 50% too short

 ● Staff: half what’s needed

 ● Budget: 50% too small

 ● Number of features: 50% greater than comparable successful projects.

 ● _____________________ (fill in the blanks)

 ► What’s your best war story of this anti-pattern?

 ► Describe a refactored solution:

 ► How might an iterative process help?

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

338 Design Patterns

Notes

Note more books in addition to the original on anti-patterns (see references):

Anti-Patterns in Project Management and Anti-Patterns and Patterns in Software
Configuration Management", both published by J.S. Wiley and Sons.

Business Process Management With a Business Rules Approach: Implementing the
Service-Oriented Architecture, by Tom Debevoise, Oct. 2005 – which was initially billed
as Refactoring IT Business Failure Before the Money is All Gone.

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

http://www.wiley.com/compbooks/wiley.htm

Chapter 11 Selected Anti-Patterns 339

Additional Management AntiPatterns

● Blowhard Jamboree: influence of so-called industry experts

● Viewgraph Engineering: developers doing materials instead of
real development

● Smoke and Mirrors: demonstration systems which create misperceptions

● Throw It Over the Wall: code is finished! (no testing, no documentation)

● Fire Drill: months of boredom followed by demands for
immediate delivery

● E-mail is Dangerous: (aka blame-storming)
 email is an inefficient mode for complex/sensitive topics

● The Feud: personality conflicts between managers, aka
dueling corncobs…

● Intellectual Violence: some expert uses knowledge to
intimidate others in meetings

● Seagull Manager: Flies in, makes a lot of noise, craps on
everything, and leaves.

● Project Mismanagement: “All you need in this life is ignorance and confidence; then
success is sure.” - Mark Twain

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

340 Design Patterns

Notes

© 2003 - 2008 Associated Consultants 5/08, rev 1.5c

	IT Courseware Intro.doc
	IT Courseware - Chapter 1.doc
	IT Courseware - Chapter 2.doc
	How concisely can you describe your last software design?
	What is your definition of a software pattern? (e.g., define a “for” loop)
	(Template Brainstorm:
	 (A canonical form for elements you want to see in a Pattern…)

	IT Courseware - Chapter 3.doc
	IT Courseware - Chapter 4.doc
	IT Courseware - Chapter 5.doc
	
	Marker Interface
	
	General Responsibility Assignment Software Patterns (GRASP)

	IT Courseware - Chapter 6A.doc
	IT Courseware - Java Support for Observer 180A.doc
	IT Courseware - Chapter 6B.doc
	IT Courseware - Chapter 7.doc
	IT Courseware - Chapter 8.doc
	IT Courseware - Chapter 9.doc
	IT Courseware - Chapter 10.doc
	IT Courseware - Chapter 11.doc
	IT Courseware - Chapter 12.doc
	IT Courseware - Appendix A.doc
	IT Courseware - Appendix B.doc
	IT Courseware - Appendix C.doc
	IT Courseware - Appendix D.doc
	IT Courseware - Appendix E.doc
	Index.doc
	Games.doc

