
Advanced C
Programming

Student Workbook

© 1994-1999 by itcourseware, Inc. 8/99

2 Advanced C Programming

Advanced C Programming

Jeff Howell

Published by itcourseware, 10333 E. Dry Creek Rd., Suite 150, Englewood, CO 80112

Special thanks to: Many instructors whose ideas and careful review have contributed to the
quality of this workbook, including Brandon Caldwell, Denise Geller, Todd Gibson, Roger
Jones, Channing Lovely, and Danielle Waleri, and the many students who have offered
comments, suggestions, criticisms, and insights.

Copyright © 1994-1999 by itcourseware, Inc. All rights reserved. No part of this book may
be reproduced or utilized in any form or by any means, electronic or mechanical, including
photo-copying, recording, or by an information storage retrieval system, without permission in
writing from the publisher. Inquiries should be addressed to itcourseware, Inc., 10333 E. Dry
Creek Rd., Suite 150, Englewood, Colorado, 80112. (303) 874-1099.

All brand names, product names, trademarks, and registered trademarks are the property of
their respective owners.

© 1994-1999 by itcourseware, Inc. 8/99

3Advanced C Programming

Contents

Chapter 1 - Course Introduction ... 7

Course Objectives ... 9
Course Overview ... 11
Suggested References .. 13

Chapter 2 - The C Development Evnironment .. 15

Chapter Objectives .. 17
The cc (1) Command ... 19
Include Files ... 21
Libraries .. 23
Exercises .. 25

Chapter 3 - Basic and Derived Data Types in C .. 27

Chapter Objectives .. 29
Simple C Data Types ... 31
Integral Data Types .. 33
Floating Point Types .. 35
Derived Data Types ... 37
Array Data Types - Single and Multi-dimensional ... 39
Structure Data Types .. 41
Simple Pointer Types... 43
Pointers to Structures / Multiple Pointers .. 45
Pointers to Functions ... 47
The const Qualifier ... 49
Bit Operators ... 51
Using typedef... 53
Exercises .. 55
Appendix ... 57

Chapter 4 - Functions: Calling, Passing, and Returning Values .. 59

Chapter Objectives .. 61
Anatomy of a Function ... 63
Parameter Passing - Pass by Value ... 65

© 1994-1999 by itcourseware, Inc. 8/99

4 Advanced C Programming

Parameter Passing - Pass by Reference ... 67
Exercises .. 69

Chapter 5 - Standard I/O .. 71

Chapter Objectives .. 73
Standard I/O Streams... 75
File Access .. 77
Formatted I/O... 79
String I/O .. 81
File Positioning Operations.. 83
Block I/O .. 85
Exercises .. 87

Chapter 6 - Low Level File I/O ... 93

Chapter Objectives .. 95
Standard I/O vs System I/O... 97
File Access .. 99
Low Level I/O - Read and Write .. 101
File Positioning .. 103
Error Handling ... 105
Exercises .. 107

Chapter 7 - Memory Allocation with malloc and calloc .. 109

Chapter Objectives ...111
Dynamic Memory Allocation Overview.. 113
malloc(), calloc()... 115
realloc(), free() ... 117
Example .. 119
Example: Array of Pointers to Structures .. 121
Exercises .. 123

Chapter 8 - Memory Organization and Scope of Variables .. 125

Chapter Objectives .. 127
Command Line Arguments (argc, argv) .. 129
The Memory Layout of a C Program... 131
The Stack Segment ... 133
The Heap Segment.. 135
Exercises .. 137

© 1994-1999 by itcourseware, Inc. 8/99

5Advanced C Programming

Chapter 9 - Data Structures: Linked Lists .. 139

Chapter Objectives .. 141
Problem - Array Limitations .. 143
Solution - Linked Lists.. 145
Linked List - Formation .. 147
List Operations - Delete ... 149
Exercises .. 151

Appendix A ... 153

Debugging Techniques .. 155
Debugging Hints .. 157
Debugging with Pre-Processing Directives .. 163
Debug Macro... 165
Symbolic Debuggers ... 167

Appendix B ... 169

Coding from Pseudo Code .. 171
Project Header Files .. 173
Project Source Files .. 175
Project Tracking (Bookkeeping) ... 177

Appendix C ... 179

Overview of the Make Utility ... 181
Using the Make Utility .. 183
Simple Makefile Commands .. 185

Appendix D ... 187

Preparing to Use a Debugger .. 189
Project Header Files .. 191
Project Source Files .. 193
Project Tracking (Bookkeeping) ... 195

Solutions - Advanced C Programming ... 197

Exercise Solutions ... 198

© 1994-1999 by itcourseware, Inc. 8/99

6 Advanced C Programming

Course Introduction 7Chapter 1

© 1994-1999 by itcourseware, Inc. 8/99

Chapter 1 - Course Introduction

Notes

8 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Course Introduction 9Chapter 1

© 1994-1999 by itcourseware, Inc. 8/99

Course Objectives

Continue development of C programming abilities by writing a
variety of C programs.

Deepen understanding of variable attributes such as local, global,
external and static.

Develop proficiency in writing programs that perform file and
interactive I/O.

Gain an understanding of how C implements data structures.

Write small scale applications that “brings together” the newly
gained knowledge and skills.

Notes

10 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Course Introduction 11Chapter 1

© 1994-1999 by itcourseware, Inc. 8/99

Course Overview

Audience: This course is for intermediate C programmers who need
to design, implement, debug, and test C programs of varying
complexity.

Prerequisites: A beginning course in C. This course does not teach
basic C programming. It is meant as a more advanced course for
people who have basic C programming skills.

Student Materials:

Student Workbook.

Classroom Environment:

Individual Terminals.

Reference Materials.

Notes

12 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Course Introduction 13Chapter 1

© 1994-1999 by itcourseware, Inc. 8/99

Suggested References

Kelley, A., and Pohl, I. 1998. A Book on C, Fourth Edition. Addison Wesley,
Reading, MA. ISBN 0-201-18399-4.

Kernighan, B., and Ritchie, D. 1988. The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, NJ. ISBN 0-13-110362-8.

Kruse, R., Leung, B. and Tondo, C. 1996. Data Structures and Program Design in
C. Prentice Hall, Englewood Cliffs, NJ. ISBN 0-13-288366-X.

Kumar, R., and Agrawal, R. 1992. Programming in ANSI C. West Publishing Co.,
St. Paul, MN. ISBN 0-314-89563-9.

Stevens, W. 1992. Advanced Programming in the UNIX Environment. Addison
Wesley, Reading, MA. ISBN 0-201-56317-7.

Notes

14 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

The C Development Environment 15Chapter 2

© 1994-1999 by itcourseware, Inc. 8/99

Chapter 2 - The C Development Environment

Notes

16 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

The C Development Environment 17Chapter 2

© 1994-1999 by itcourseware, Inc. 8/99

Chapter Objectives

Explain what happens at the cc(1) command.

Understand the difference between include and library files.

Create a library of object files.

Link with external libraries.

Optimize executable size.

Debug ‘undefined symbol’ errors.

Create robust code using cc(1) command line options.

Notes

18 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

The cc(1) command automatically invokes the four phases described on the following
page. Options to the cc(1) command allow you to stop the compilation after completing
any particular phase. Use the -V option to display the phases of the compile process.

As an example, create the (infamous) program hello_world.c. Compile
hello_world.c with the -V option to cc(1):

$ cc -V hello_world.c

Now convert hello_world.c to a function, then create hello_main.c which calls the
function in hello_world.c. Compile hello_main.c. What happened? What
additional information must be supplied to cc(1)?

INVESTIGATE:

Read the man pages to see other options available to cc(1). What option is used to pre-
process the source? Which option compiles but doesn’t assemble the code? What are the
names of their corresponding output files?

The C Development Environment 19Chapter 2

© 1994-1999 by itcourseware, Inc. 8/99

The cc (1) Command

cc(1) is typically a “driver” program.
cc(1) executes the following programs:

1.) C pre-processor (cpp) 3.) Assembler (as)
2.) C compiler (acomp or ccom) 4.) Linker (ld)

The C pre-processor looks for pre-processing directives to the
compiler.

Syntax errors will not be caught yet.
The output is typically placed in a file with suffix .i.
What are examples of C statements processed in this phase?

The C compiler translates the pre-processed source into assembler
code.

This phase of the compiler catches syntax errors.
The output is typically placed in a file with suffix .s.

The assembler turns the compiled source into a binary object file.

The resulting .o file is normally deleted if a single C source file
is compiled and then immediately linked.
What option to cc(1) would you use to keep the .o file? (We
will see many instances of why to keep the object file.)

The link editor combines object files to produce an executable file.

The ld(1) command resolves external references.
You may also specify library files to search for objects. (We
will discuss libraries soon).
The resulting executable, by default, is named a.out.
What option to cc(1) is used to override the default
executable name?

Notes

20 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Your code will be more portable and robust if you use command line options to specify
pathnames to header files rather than hardcoding them in your source. Command line
options are usually placed within makefiles.

For example, to include specified header files that exist in directories /home/denise/
mydir and /home/fred/theirdir, use the following command line:

cc fn.c -o fn -I/home/denise/mydir -I /home/fred/theirdir

To further clarify what an include file is, change the function hello_world to return the
value of pi (3.14). What modifications did you make to the function? Create the
corresponding header file, hello_world.h.

Add the following pre-processing directive to hello_main.c:

#include <hello_world.h>

Also, add the following statements to hello_main.c:

float pi;

pi = hello_world();
printf ("Have a piece of %f\n", pi);

Compile hello_main.c. What happened? Could the compiler find your header file?
Try compiling with the command:

$ cc hello_main.c -I.

What happened? What error message did you get? On which phase of the compile
process did it fail? What additional information must be supplied? Why?

The C Development Environment 21Chapter 2

© 1994-1999 by itcourseware, Inc. 8/99

Include Files

Include (header) files contain C source statements that are read in
during the pre-processing phase of the compiler.

They contain declarations (what).
Header files are customarily suffixed by .h.
What are examples of things to place in header files?
What are examples of things not to place in header files?
Why?

On UNIX, standard header files included with the C environment are
found in /usr/include.

The angle brackets in #include <stdio.h> tell the compiler to
search for the file stdio.h in the directory /usr/include/.

The double quotes in #include "myheader.h" tell the compiler
to search for the file myheader.h in the same directory as the
source.

The -I option to cc(1) tells the compiler to also look for header
files in the directory paths specified on the command line.

This option works only for header files specified with a relative
pathname. Absolute pathnames override the search paths
specified by -I.
The compiler will search these directories (in the order
presented) prior to searching the usual directories for header
files.
Repeat the -I option for each directory to be searched.
If more than one directory is specified, searching stops at the
first directory containing the specific header file.
Either notation (quotes or brackets) may be used with the -I
option.

Notes

22 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

When writing code, you will often create functions that others will want to use. The
compiled (and presumably tested) functions can be placed into a library accessible to other
programmers. The Standard C library contains hundreds of object files, each representing
a separate function. These previously created functions have already saved you vast
amounts of time in your code development. How much longer would it take you to develop
code if you could not access the existing I/O or math routines?

Libraries act as depositories for object modules (*.o). Which objects should be placed in
libraries? Any functions that may be called by multiple programs should be compiled
separately, thoroughly tested, and their objects placed within a library. Anyone reusing that
function will be implicitly “reusing” the associated testing, saving time from having to retest
that function.

In UNIX, the ar(1) command is used to create libraries. The ld(1) command will access
libraries in attempting to resolve remaining external references. If the function is found in a
library, only that function is linked into the executable file. This reduces executable size
since only what you need is loaded.

To list the contents of the Standard C library: $ ar t /usr/ccs/lib/libc.a

How would you list the contents of the math library?

The steps to create a library are :

1) Create and test hello_world.c.
2) Place the function prototype in a (new) header file.
3) Create the object to be archived:
 $ cc -c hello_world.c.
4) Archive hello_world.o.
 $ ar rv /home/denise/libmine.a hello_world.o
5) Remove hello_world.o from your source directory.
 $ rm hello_world.o

The rv keys to ar(1) tell it to create the library if it does not already exist. If it did exist,
then create or replace the hello_world.o file in the library. Use v for verbose mode.
How would you delete a file from the archive?

To link hello_world.o in a program:
$ cc new_prog.c -L /home/denise -I /home/denise -l mine

The C Development Environment 23Chapter 2

© 1994-1999 by itcourseware, Inc. 8/99

Libraries contain object (*.o) files that are searched during the link phase
of the compiler.

They contain the function definitions (how).
Libraries are searched to resolve external references.

The standard C Library, libc.a, is automatically loaded by the cc(1)
command when it calls ld(1).

Functions listed within sections 2, 3C and 3S of the man pages
constitute the standard C library.

Other function libraries to be searched must be specified to ld(1).

“undefined symbol” errors are solved by linking with additional object files,
often stored within a library.

The -l option to cc(1) tells the compiler to look for object files in the
libraries specified on the command line.

This option and its argument are passed to ld(1).
Repeat the -l option for each library to be searched.
The compiler will search the specified libraries in the order
presented.
Searching stops when a reference is resolved.

The command $ cc fn.c -lx tells the linker to search libx.a.
By convention, UNIX libraries are named libname.a.
The ld(1) command will look for unresolved symbols in libx.a
before searching the standard C library.

Searches other than in the default library directories must be specified with
the -L option.

The directories specified with -L are searched before the Standard
C library.
This option and its argument are passed to ld(1).
Repeat the -L option for each path to be searched.

Any remaining unresolved references result in an “undefined symbol” error.

Libraries

Notes

24 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

The C Development Environment 25Chapter 2

© 1994-1999 by itcourseware, Inc. 8/99

1) Create the header file “joke.h”. Include the following 2 lines inside joke.h:

 printf (“To get to the other side.\n”);
 #define ANSWER 42

Now create the program “joke_main.c” as:
 void main (void)
 {
 printf ("Why did the chicken cross the road?\n");
 #include "joke.h"

 printf

 ("The meaning to life, the universe and everything is %d.\n",ANSWER);

 }

Compile and execute joke_main. What affect does the #include statement have?
When does the named number ANSWER get its value? What option to the cc
command can you use to verify this? Try it and look at the resulting file.

2) What are the primary differences between an include file and a library?
Why don’t we have to compile include files separately?

3) What are the advantages of using separate compilation and placing commonly used
functions alone in their own .c source files?

4) Place the previously created function hello_world into a library, then remove the
object file from your current directory. Recompile and link the hello_main program
using your new library. What options to cc did you use?

OPTIONAL

A) Try to create the executable for joke_main.c by manually invoking each of the
four separate phases of the cc command. Were you able to generate an a.out?
What was the error message produced when you tried to link the object file?

What library must you include manually with the ld command that the cc command
automatically links in for you?

What happened when you ran a.out? Investigate the man pages for cc to see
what additional files must be linked, then execute the resulting program again.

Exercises

Notes

26 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Standard I/O 71Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

Chapter 5 - Standard I/O

Notes

72 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Standard I/O 73Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

Chapter Objectives

Create, access and close files using the standard I/O routines.

Redirect I/O using the operating system.

Read and write formatted I/O using fscanf().

Write robust code by using fgets() instead of gets().

Read and write structures to a file using block I/O.

Update data in a file using random access.

Notes

74 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Three streams are opened automatically at the start of every C program. Their names and
associated FILE pointers are: standard input (stdin), standard output (stdout) and
standard error (stderr). These are defined in <stdio.h> and, by default, are connected
to your terminal.

stdin is where functions like gets() and scanf() read their input from. stdout is
where functions like printf and puts() write their output to. stderr is where your error
messages go, which may or may not be the same place as your standard output.

Programs that read from stdin and write to stdout/stderr can have their streams
redirected by the shell.

stdin and stdout are buffered: characters are not written to the device until a newline
character is encountered. stderr is never buffered.

Standard I/O 75Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

Standard I/O Streams

A stream is a file pointer that is used to uniquely identify an open
file.

I/O on files consists of 3 basic steps :

1) Establish a stream on file open
2) Perform I/O on file
3) Close the file

When opening a file for I/O, the programmer will establish a unique
stream (FILE *) to associate with the file.

This provides the “connection” between the program and the
data file.

All subsequent operations on the file are conducted through
the file pointer.

Notes

76 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

There are 6 modes to select from on a file open:

r - allows read only on file
r+ - allows read and write
w - allows write only to file, truncates existing files
w+ - allows read and write to file, truncates existing files
a - allows append to file
a+ - allows append to and read from file

r, r+ will require that the file already exist
w, w+ will create a new file by the specified name
a, a+ will allow append to end of existing files, and will create the file if not existing

 (modes specified with + are used for update mode: both reading and writing)

Additionally, you may append a “b” (e.g.: “wb+”) to the above mode to specify to the system
to use a binary (instead of a text) stream. UNIX treats both binary and text files the same,
making the appended “b” uneccessary.

Another useful function is perror() (in <errno.h>) whose prototype is:

void perror (char *string).

The externally defined errno is automatically set by most library routines when an error is
encountered. perror() prints string, followed by the error text associated with errno.
If the routine terminated with no error, the previous errno value is left unchanged, so be
sure to check that the library routine failed before using perror().

Standard I/O 77Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

File Access

#include <stdio.h>
FILE * fopen (const char *fname, const char *mode);
int fclose (FILE *fp);

fopen() is used to open a stream for reading or writing.

fname is the name of the file.
mode describes how the file is to be used.

A file pointer is returned, pointing to the FILE structure defined in
<stdio.h>.

The FILE structure contains information about the file such as
the current character position and the file mode.
NULL is returned if the fopen() fails.

fclose() closes the associated stream.

Any buffered data gets written out.
Returns 0 if successful, or EOF if there were any errors.

For example:
 ...
 FILE *fp;
 /* open existing file for update */
 if (NULL == (fp = fopen (“filename”, “r+”)))
 {
 /* if no such file, then create */
 if (NULL == (fp = fopen (“filename”, “w+”)))
 {
 /* fatal error: perhaps permissions problem? */
 perror (“filename”);
 exit (errno);
 }
 }
 ...
 fclose (fp);

Notes

78 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

The scanf() function is particular about the format string arguments. Embedded blanks in the
format string are ignored when using numeric or string conversions. On input, leading white space
on numeric or string arguments is skipped. For example:

Using input containing “16ducks 42.000000”, the following program:

#include <stdio.h>
void main(void)
{
 FILE * fp;
 int int_x, int_x2;
 char str_var2 [6];
 float flt_y2;
 fp = fopen ("ex2.out", "r");
 fscanf (fp, "%d %s %f", &int_x2, str_var2, &flt_y2);
 fprintf (stdout, "%d %s %4.1f\n", int_x2, str_var2, flt_y2);
}

produces the output: 16 ducks 42.0

But when using character format conversion (“%c”), white space becomes significant (the normal
skip over white space characters is suppressed). For example, using input containing A two 22,
the following program:

#include <stdio.h>
void main(void)
{
 char ch_one, ch_two, ch_three, ch_four, ch_five, ch_six;
 FILE *fp;
 fp = fopen ("ex3", "r");
 fscanf (fp, "%c%c%c%c%c%c",
 &ch_one, &ch_two, &ch_three, &ch_four, &ch_five, &ch_six);
 fprintf (stdout, "%c%c%c%c%c%c\n",
 ch_one, ch_two, ch_three, ch_four, ch_five, ch_six);
}

produces the output: A two

Inserting a blank within the format argument string will force leading white space to be ignored. In
the example above, changing the format string in fscanf() from “%c%c%c%c%c%c” to
“%c %c %c %c %c %c” produces the output: Atwo22

Standard I/O 79Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

Formatted I/O

#include <stdio.h>
int fprintf (FILE *fp, const char *format, ...)
int fscanf (FILE *fp, const char *format, ...)

fprintf() is similar to printf().
fprintf() converts, formats and prints its arguments into fp
using format’s descriptions of any subsequent arguments.
It returns the number of converted and printed values or a
negative number on error.
printf(...) can be implemented as fprintf(stdout,

...).

For example:
fprintf (fp, "%d %s %f", int_x, str_var, flt_y);

fscanf() is similar to scanf().
Each argument of fscanf() must be a pointer.

Input fields are a string of non-white space characters, extending to
either the next white-space character or until a specified field width is
met.

fscanf() is the input equivalent of fprintf().
fscanf() converts, formats and reads its values from fp into
the subsequent arguments using format’s descriptions.
It returns the number of converted and assigned values, or EOF
on error.
fscanf() is often used in conjunction with fprintf().

For example:
fscanf (fp, "%d %7s %f", &int_x, str_var,
&flt_y); reads and converts input into integer, string and
floating point variables.
fscanf (fp, "%*d %7s %f", str_var, &flt_y); will
skip a preceding integer value, continuing with the next string.

Notes

80 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

In C, you are responsible for protecting your array bounds. The compiler will not catch
overstepped bounds. The following program:

#include <stdio.h>
void main(void)
{
 int a = 1, b = 2;
 char str[3];
 printf ("Enter a string ");
 gets (str);
 printf ("The value of a is %d b is %d and str is %s\n",a,b,str);
}

produced: Enter a string hi
The value of a is 1, b is 2 and str is hi

But running the script a second time produces the following:
Enter a string this is a long string
The value of a is 1814061344 b is 1936269427 and str is this is a
long string
Memory fault(coredump)

Too many characters were entered into the string variable str. (We will see what
happened in memory in a later chapter.) You can protect your array bounds by using
fgets(), which will allow a maximum of limit-1 characters to be read. Changing
gets(str); above to fgets (str, 3, stdin);

produced: Enter a string this is a long string.
The value of a is 1, b is 2 and str is th

Standard I/O 81Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

#include <stdio.h>
int fputs(const char *string, FILE *fp);
char *fgets(char *string, int limit, FILE *fp);

Use fgets() in combination with fputs().

fputs() is similar to puts().

fputs(), unlike puts(), will not automatically append a
newline character.

Returns a non-negative number, or EOF if an error occurs.

For example:

 fputs (“This string will be input to the file\n”, fp);

fgets() is similar to gets().

Reads until limit-1 characters are read, or a newline
character is read.

The nth character will be \0.

Returns string, or NULL on error or end of file.

fgets(), unlike gets(), will not automatically strip off a
newline character.

Using fgets() is safer than using gets().

String I/O

Notes

82 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

As an example of using file positioning operations, this program finds the misspelled word
“decypher”, and replaces the incorrect 'y' with the correct character 'i'.

 #include <stdio.h>
 #include <errno.h>
 void main (void)
 {
 FILE *fp;
 char me [10];
 fpos_t pos;
 int position;
 if (NULL == (fp = fopen ("filename", "r+")))
 {
 /* fatal error */
 perror ("filename");;
 exit (errno);
 }
 while (1)
 { /* get current position */
 position = fgetpos (fp, &pos);
 /* scan to first white space */
 fscanf (fp, "%s",me);
 if (!feof(fp)) /* haven’t yet read end of file */
 {
 if (strcmp (me, "decypher") == 0)
 {
 /* found the typo, set position back on preceding white space */
 fsetpos (fp, &pos);
 /* go to the erroneous character 'i' */
 fseek (fp, 4, SEEK_CUR);
 /* make the correction */
 fprintf (fp, "%c", 'i');
 /* read back the corrected word for display */
 fsetpos (fp, &pos);
 fscanf (fp, "%s",me);
 }
 fprintf (stdout, "%s ",me);
 }
 else
 {
 /* at end of file, put in the \n */
 fprintf (stdout, " \n ");
 break;
 }
 }

 }

On the input file filename containing the string: “The word decypher is spelled with an
'i'.” The above program corrects the misspelled word decipher.

This program also introduces the function feof(), which returns non-zero if the previous read
operation on the stream hit the end of file.

Standard I/O 83Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

File Positioning Operations

#include <stdio.h>
long ftell (FILE *fp);
int fseek (FILE *fp, long offset, int start);
void rewind (FILE *fp);
int fgetpos (FILE *fp, fpos_t *position);
int fsetpos (FILE *fp, const fpos_t *position);

You do not have to access each byte successively to obtain data
from a file. File positioning operations allow random access to files.
ftell() reports the current value of the file position indicator.

The returned value may be used as argument to fseek() to
reset the file position indicator.
Returns -1L on error.

fseek() sets the file position indicator for the next operation.
The new position is set at offset bytes from start.
start has values of beginning of file (SEEK_SET), current
position in file (SEEK_CUR) and end of file (SEEK_END).

On non-UNIX systems, fseek() and ftell() are guaranteed to
work correctly only on binary files (append “b” onto mode in
fopen()).
rewind() places the file position indicator to the beginning of the
file and clears error indicators for fp.
fgetpos() is new to ANSI C.

Returns the current value of the file position indicator into
position.
position may be used as an argument to fsetpos().
Returns a non-zero if error.

fsetpos() is new to ANSI C.
position is retrieved previously with fgetpos().
Sets the file position indicator for the next operation at
position.
Returns a non-zero if error.

Notes

84 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

fread() and fwrite() also read from and write to files. These functions are used to read and
write unformatted data (ie: no conversions are performed). You can use these routines to write one
object or an array of objects to a file. The example below illustrates both:
 #include <stdlib.h>
 #include <errno.h>
 #include <stdio.h>
 void main (void)
 {
 FILE *fp;
 int nobj,i;
 int a[3] = {54, 55, 56};
 int b[4] = {0}; /* use to verify the write */

 /* open the file for update : both writing and reading */
 if (NULL == (fp = fopen ("sfile", "w+")))
 {
 /* fatal error */
 perror ("filename");;
 exit (errno);
 }
 /* write second element of the array to the file */
 if ((nobj = fwrite (&a[1], sizeof (int), 1, fp)) < 1)
 {
 perror ("writearray.c *** 1");
 exit (EXIT_FAILURE);
 }
 /* now write the entire array to the file */
 fwrite (a, sizeof (int), (sizeof a)/sizeof(int), fp);

 /* must flush buffer before switching from write to read mode */
 rewind (fp);
 /* read the first element into b */
 if ((nobj = fread (&b[0], sizeof (int), 1, fp)) < 1)
 {
 perror ("writearray.c *** 3");
 exit (EXIT_FAILURE);
 }
 /* now read rest into remaining b array elements */
 fread (&b[1], (sizeof b)-sizeof (int), 1, fp);
 /* print results to verify I/O */
 for (i=0; i<4; i++)
 printf("b[%d] is %d\n",i,b[i]);
 }

Standard I/O 85Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

#include <stdio.h>
size_t fread (void *ptr, size_t size, size_t nobj, FILE *fp);
size_t fwrite (const void *ptr, size_t size, size_t nobj,

FILE *fp);

fread() reads from stream fp into the array ptr.

At most nobj objects of size bytes are read into ptr.

The number of objects read is returned, which may be less
than the number requested. If less than nobj objects are
read, the end of file marker was probably encountered.

fwrite() writes from the array ptr onto stream fp.

Writes at most nobj objects, each object being size bytes.
If less than nobj objects are written, an error occurred.

Block I/O

Notes

86 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

By default, reading and writing is buffered (except to stderr). For example, rather than
going directly to the device for every character on every read, the system reads in a buffer
full of characters on the first read request. Further reads are taken from the buffered
characters. A new buffer full of characters is retrieved when the buffer empties.

An explicit call to fflush() will write out any buffered data.

int fflush (FILE *fp);

A 0 value is returned if no errors occurred, otherwise it returns EOF.

fflush (NULL) flushes all opened output streams. fflush (stdin) eliminates
remaining (unwanted) characters from the standard input stream.

When switching from read mode to write mode (or vice versa) on a file opened in update
mode, the buffer must be flushed. Ways to accomplish this are:

1) close the file, then reopen the file.
2) explicity calling fflush().
3) calling a file positioning function: fseek(), fsetpos() or rewind().

Standard I/O 87Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

Exercises

1) Standard input and standard output are automatically defined for a program by
UNIX. You may redirect stdin and stdout. Create the following program
inp.c:

#include <stdio.h>
void main (void)
{

char s[80];
printf ("The contents of the file follow : \n");
while (gets (s) != NULL)

puts (s);
}

After testing your program interactively, create the file ex1_in with the
following text:

This is an example
file to display
redirection of input and output.

Run your program using the following command: $ inp < ex1_in > ex1_out

Describe what happened.

2) What will be output from the following program?

#include <stdio.h>
void main (void)
{

fprintf (stdout, "C ");
fprintf (stderr, "is ");
fprintf (stdout, "fun.\n");

}

Enter the program and verify your answer.

Notes

88 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Standard I/O 89Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

3) Enter and run the following (buggy) program that prompts the user to enter 2
characters, one at a time:

#include <stdio.h>
main()
{

 char ch1, ch2;
 printf ("Please enter one character ");
 fscanf (stdin, "%c", &ch1);
 printf ("Please enter one character ");
 fscanf (stdin, "%c", &ch2);

 printf ("You entered the following chars %c %c\n", ch1,
ch2);

}

What happened when you ran the program? What do you think the ch2
variable contains? To fix the program, study the fflush function and apply it
in your program. Does it work now? What did the fflush function do?

Exercises (continued)

Notes

90 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Standard I/O 91Chapter 5

© 1994-1999 by itcourseware, Inc. 8/99

4) Enter the following program. This program uses the fwrite function to input
the contents of the iarr array into the moose file.

#include <stdio.h>
#include <stdlib.h>
void main(void)
{

 int iarr[] = {71,79,79,68,32,74,79,66,33,0};
 FILE *fp;
 int c,i;

 if ((fp = fopen ("moose", "w")) == NULL)
 {
 perror ("lab4");
 exit (EXIT_FAILURE);
 }

 fwrite (iarr, sizeof(int), (sizeof iarr)/sizeof(int),
fp);

}

What does sizeof(iarr)/sizeof(int) represent? Would this statement
still apply within a function that you had sent in the array as a parameter?

After running the program, view the contents of the moose file.
What was entered into moose and why?

Optional

A) Create two additional functions for your employee program. The first function
will write the array of employee data into a file. The second will read the
employee data back into an array of employees. What parameters must you
supply for the function prototypes? Change your program so that at program
startup, it reads existing employees from a file into the array. At program
end, write out the (new/changed) array of employees to the file.

Exercises (continued)

Notes

92 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Data Structures:t Linked Lists 139Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

Chapter 9 - Data Structures: Linked Lists

Notes

140 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Data Structures:t Linked Lists 141Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

Chapter Objectives

Explain self-referential data types.

Determine when a linked list may be the best choice for a data
structure in solving a programming problem.

Design and write C programs to perform operations on linked lists.

Notes

142 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Arrays are often suitable for holding constant amounts of information. However, your
programs will often have to meet dynamic (constantly changing) conditions while
processing data. How would an array of employees accommodate the following situations?

1) If your company should grow or shrink in size, you may have to change your code to
adjust the array size.

2) If a new employee starts, you may have to place them in sorted order into your existing
list. Those with names following will have to be pushed downward within the array.

3) Another employee wins the Lotto and resigns. Those following them in name order will
have to be pushed up to fill the vacant spot in the array.

4) What if your program is to be used corporate wide to keep track of all 30,000 employees,
while at the same time be used within the individual branches which may have between 25
and 5000 employees? How big should you dimension your array?

Data Structures:t Linked Lists 143Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

Problem - Array Limitations

Up to now, you have been using arrays to maintain a list of
information.

If your company has 10 employees, you might read their data
into an array of 10 employee structures.

Typically, you would store the information in a sorted array.

Because arrays are fixed in size, they may not be the appropriate
data structure for all situations.

Arrays are allocated statically (at compile time) and in most
programming languages they cannot be re-sized during run
time to meet changing needs.

Maintaining the array can be cumbersome.

Notes

144 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

The structures in a linked list are typically called nodes. Each node must contain at least 2 fields: a
data value field and a field containing the address of the next node in the list. For example, we can
simulate a string of characters using a linked list of alpha_node objects declared below:

struct alpha_node {
 char val;
 struct alpha_node *next;
};

Each alpha_node object will contain a character value, and the address of the next alpha_node
object in the list. We could assign and display the values of each node with the following:

#include <stdlib.h>
void main ()
{
 struct alpha_node char_node1, char_node2, char_node3, *tmp;

 /* each node knows the address of the next node */
 char_node1.next = &char_node2;
 char_node2.next = &char_node3;
 char_node3.next = NULL;
 /* assign the values to each node */
 char_node1.val = ‘P’;
 char_node2.val = ‘T’;
 char_node3.val = ‘R’;

 /* get a starting point to traverse the list */
 tmp = &char_node1;
 /* traverse the list, printing each nodes’ val field */
 while (tmp != NULL) {
 printf (“%c->”,tmp->val);
 tmp = tmp->next;
 }
 printf (“END_OF_LIST_SENTINEL\n”);
}

This produces the output: P->T->R->END_OF_LIST_SENTINEL

Here is a graphic representation of what the code is doing:
char_node1 char_node2 char_node3

 val next val next val next
'P' 'R''T'

 tmp
 tmp tmp tmp

Data Structures:t Linked Lists 145Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

Solution - Linked Lists

A linked list is a chain of data structures joined together.

Linked lists do not usually reside in consecutive memory locations.

Each element in the chain knows where the next element is
located.

An element is added to or removed from the list as needed.

The addition or removal of an element in the list requires only
a pointer adjustment.

Linked lists are “traversed” to obtain needed information.

Starting with the first node, each node is “visited”, and its
corresponding data value(s) reported.

Traversal ends when a known sentinel is reached.

Just as the character ‘\0’ flags the end of a string, a pointer
with value 0 is used to flag the end of a linked list.

The value NULL (defined in <stdlib.h>) represents a
pointer with value 0.

Notes

146 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Use the steps described below to append a new node onto a linked list. Create a node. Check if
there are any nodes yet in the list. If not, set the head and tail pointers to the address of the new
node, else if there are nodes already in the list, append the node onto the end of the existing list.
Reset the tail pointer to the new node.
#include <stdio.h>
#include <stdlib.h>
typedef struct alpha_node {
 char val;
 struct alpha_node *next;} alpha;
void insert_node (alpha **head, alpha **tail, alpha temp);
void print_nodes (const alpha * head);
void main (void)
{
 alpha *head = NULL, *tail = NULL, tmp;
 int c;
 for (c='A'; c<'F'; c++){
 tmp.val = c;
 insert_node (&head, &tail, tmp);}
 print_nodes (head);
}
void insert_node (alpha **head, alpha **tail, alpha temp)
{
 /* initialize the new node pointer */
 alpha *newn = NULL;
 /* allocate the new node */
 if (NULL == (newn = (alpha *)malloc (sizeof (alpha)))){
 perror ("insert_node");
 exit (EXIT_FAILURE); }
 /* assign the contents to the newly allocated space */
 *newn = temp;
 /* always initialize your pointers */
 newn->next = NULL;
 /* Will this be the first node in the list? */
 if (*head == NULL){
 /* initialize the pointers */
 *head = *tail = newn; }
 else {
 /* append the new node onto the end of the list */
 (*tail)->next = newn;
 *tail = (*tail)->next; }
}
void print_nodes (const alpha *head)
{
 /* starting with the first node in the list */
 const alpha *tmp_node = head;
 /* traverse the list, printing values until you hit the NULL sentinel */
 while (tmp_node != NULL){
 printf ("%c -> ",tmp_node->val);
 /* advance the pointer to the next node in the list */
 tmp_node = tmp_node->next; }
 /* at NULL sentinel */
 printf ("NULL\n");
}

Data Structures:t Linked Lists 147Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

Linked List - Formation

The previous example joined three statically defined structure
objects. This would rarely be the case.

The nodes of a linked list are dynamically allocated using malloc()
or calloc().

You may allocate and free nodes as you need.
We will be discussing single-linked lists.

Each new node is joined to a previous node, and points to
(knows the location of) the next node in the list.

The start of the list will be kept track of with a head pointer.
The head pointer will always contain the address of the first
node in the list. If the first node should change (e.g.: it may be
removed, or shifted to another position in the list), the head
pointer is updated accordingly.
Other pointers may be defined for the list (e.g.: previous,
last, etc...)

The last node in the list will have the value NULL as the location of
its next node.

NULL is used to flag the end of a linked list.
There are several basic operations that are performed on linked
lists:

Insert a new node.
 Delete an existing node.
Traverse the list.
Search for and display a particular node in the list.
Display the entire list.
Sort the list.

Notes

148 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

When you remove a node from the list, you must be careful to maintain your pointers. After you
have located the node to be removed, there are 3 cases you should consider:

case 1) Removing the first node:
 Assign a temp pointer to the node to be removed.
 Reposition the head pointer to the new top of list.
 Free the space referenced by the temp pointer.

temp

head

case 2) Removing a node from the middle of a list:
 Traverse the list using a trailer pointer to follow one node behind.
 Assign a temp pointer to the node to be removed.
 Assign the address of temp’s next node into trailer’s next field.
 Free the space referenced by the temp pointer.

head

trailer

case 3) Removing the last node in the list:
 Follow the steps in case 2, then check the value of the trailer’s next field. If it is NULL, then
 you know you’re at the end of the list.
 Reassign the tail pointer to point at the trailer node.

trailer temp

 head

tail

temp

Data Structures:t Linked Lists 149Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

List Operations - Delete

Removing a node requires changing the address stored in the
previous node to be the location of the removed node’s succesive
node.

When a node is removed from the list, return the allocated space
returned back to the heap using free().

There is only a finite amount of heap available.

When a node is removed from the list and not de-allocated
with free(), there is no way of freeing the space back to the
heap. This allocated space which is never freed is referred to
as memory leak.

Notes

150 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

Data Structures:t Linked Lists 151Chapter 9

© 1994-1999 by itcourseware, Inc. 8/99

Exercises

In this set of exercises, you will be changing your existing array of structures to a
linked list of structures. Change your menu options accordingly using the program
developed in Chapter 4 Exercises:

1) Make any modifications to your employee structure declaration to allow for the
creation of a linked list of employees.

2) Modify your function that allowed the user to insert a new employee into the
array, so that it will now add employee nodes into the linked list.

3) Modify your function that allowed the user to display all employees in the array
to traverse the linked list, printing all employee information.

4) Create a menu option that prompts the user for a certain employee id to
display. Create a corresponding function that will locate the specified
employee in the list. If found, display the employee. If not found, allow the
user to enter the new employee if they choose.

5) Create a menu option that prompts the user for a certain employee id to
remove from the list. Create a corresponding function that will locate the
specified employee in the list. If found, remove the employee from the list.
If not found, display an informative error message.

Optional:

A) Modify your insert function to insert employees ordered by their names.
(Watch your pointers!)

B) Create a menu option that allows the user to delete all employees in the list.

C) At the start of the program, read existing employees from a file into a linked list.
At the end of the program, write out the current list of employees to a file.

D) Provide the ability to edit any data field of an employee record.

Notes

152 Advanced C Programming

© 1994-1999 by itcourseware, Inc. 8/99

