tCOU SewWwdadre

. TRAINING MATERIALS FOR IT PROFESSIONALS

..... Intermediate Python
ey Student Workbook

ohn Strickler

&%athon 3

72

//(OO Verrch 2020
£ &
) F

Table of Contents

About this course

Welcome!

Classroom etiquette

Course Qutline

Student files o &

Extracting theistudentfiles
Examples

Lab Exercises

Appendices :
Chapter 1: Python Refresher
Objectives

Variables

Basic Python Data types
Sequence Types

Mapping Types

Program structure

Files and console I/O
Conditionals

Loops

Builtins

Functions

Modules

Packages

Chapter 2: OS Services
Objectives

The os module

Paths, directories and file names
Walking directory trees
Environment variables
Launching external programs
Chapter 3: Dates and Times

Objectives

© 00 1 O Ul b W N e

G U1 s R R W W W W NN NN NN N R R e e s e
= o 00D W TN R R 0N U NN R, O 00N U RN e

Python modules for dates and times
Ways to store dates and times
Basicidates and times
Formatting dates and times
Parsing date/time strings
Parsing dates theeasier way
Converting dates andstimes
Time zones .« .
Generating calendars . .
Chapter 4:-Binary Data
Objectives
"Binary" (raw, or-non-delimited) data
Binary vs Text data . ,
Using Struct
Bitwise operations
Chapter 5: Pythonic Programming
The Zen of Python
Tuples
Iterable unpacking
Unpacking function arguments
The sorted() function
Custom sort keys
Lambda functions
List comprehensions
Dictionary comprehensions
Set comprehensions
Iterables
Generator Expressions
Generator functions
String formatting

f-strings

Chapter 6: Functions, Modules and Packages

Functions

Function parameters

52
53
54
57
61
63
66
72
73
79
79
80
81
82
88
95
96
97
98
100
104
105
110
112
114
116

117

119

A21

123
125
129
130
133

Default parameters 137

Python Function parameter behavior (from PEP 3102) 139
Name resolution (AKA Scope) 140
The global statement 143
Modules 144
Usingdmports 145
How import * cansbe dangerous 149
Module search path 151
Executing modules as scripts 152
Packages v 4 154
Configuring importwith’_init_ .py 156
Documenting modules.and packages 159
Python style £\ > o 160
Chapter 7: Intermediate Classes) 163
What is a class? 7/ - 4 164
Defining Classes . . 4 165
Object Instances oM & 4 . 166
Instance attributes . . y .., 167
Instance Methods - A 4 168
Constructors RPN . N . 4 170
Getters and setters / o 171
Properties s y . 172
Class Data) . 175
Class Methods ‘. 4 . 177
Inheritance) . y 179
Using super() . y ». . 180
Multiple Inheritance A4 : el /185
Abstract base classes ") . 188
Special Methods < 400191
Static Methods . 197
Chapter 8: Metaprogramming 199
Objectives 199
Metaprogramming 200
globals() and locals() 201

The inspect module 204

Working with attributes 207

Adding instance methods 210
Decorators 213
Applying decorators 214
Trivial Decorator 217
Decorator functiens 218
DecoratorClasses 221
Decorator parameters 225
Creating classes atruntime 228
Monkey Patching." & W 232
Callable classes N - - 4 X 235
Do you need a Metaclass? ' . A 237
About metaclasses. . , = § 238
Mechanics of a metaclass - N 240
Singleton with a metaclass’. . 4 : 244
Chapter 9: Developer Tools) : 4 249
Objectives ” V A \ 249
Program development () |) 250
Comments . A 4 251
pylint \ .. .5 4 252
Customizing pylint / . 253
Using pyreverse (/o 4 Y 254
The Python debugger @) . 256
Starting debug mode /, : 1 257
Stepping through a program /) . L .. . 258
Setting breakpoints L 259
Profiling . 260
Benchmarking .. 262
Chapter 10: Unit Tests with pytest « 267
Objectives 267
What is a unit test? 268
The pytest module 269
Creating tests 270
Running tests (basics) 271

Special assertions 272

Fixtures 274

User-defined fixtures 275
Builtin fixtures 277
Configuring fixtures 281
Parametrizing tests 284
Marking testss 287
Running tests (advanced) 289
Skipping.and failing 291
Mocking data /... .« 294
pymock objects 4 4 295
Pytest and Unittesty,. . .4 . 302
Chapter 11:(Database Access 305
Objectives 'Q - -4 305
The DB API \ . o) 306
Connecting to a Server.” .. y 307
Creating a Cursor . . 4 310
Executing a Statement oM & 4 . 311
Fetching Data . . y .., 312
SQL Injection - A 4 315
Parameterized Statements AP : N . 4 317
Dictionary Cursors iy o 325
Metadata /s y . 329
Transactions) : 332
Object-relational Mappers [) 4 . 333
NoSQL) . y 334
Chapter 12: PyQt . y . 341
Objectives A 341
What is PyQt? () . 342
Event Driven Applications 4. 343
External Anatomy of a PyQt Application 3 345
Internal Anatomy of a PyQt Application 346
Using designer 347
Designer-based application workflow 348
Naming conventions 350

Common Widgets 351

Layouts 354

Selectable Buttons 356
Actions and Events 357
Signal/Slot Editor 361
Editing' modes 362
Menu Bar. N 363
Status Bar - 364
Forms and validation 366
Using Predefined Dialogs 369
Tabs .7 /. £ 373
Niceties /. N - - 4 X 375
Working with Images . A 376
Complete Example ., = 4 379
Chapter 13: NetworkProgramming N 383
Objectives . . 4 383
Grabbing a web page (Y, & 384
Consuming Web services ¢ V A \ 388
HTTP the easy way () |) 391
sending e-mail . A 4 398
Email attachments \ o . .3 4 401
Remote Access / . 405
Copying files with Paramiko (/o 4 Y 408
Chapter 14: Multiprogramming) . . 413
Objectives { 4 ¥ 413
Multiprogramming .., | L. 414
What Are Threads? A £z 415
The Python Thread Manager -t fo 416
The threading Module (). 417
Threads for the impatient Q A18
Creating a thread class 420
Variable sharing 423
Using queues 426
Debugging threaded Programs 429
The multiprocessing module 431

Using pools 435

Alternatives to multiprogramming 441

Chapter 15: Effective Scripts 443
Using glob 444
Using shlex.split() 446
The subprocess module 447
subprocess convenience functions 448
Capturing stdoutand stderr 451
Permissions . .4 ‘ 454
Using shutil. . /... & 456
Creating a useful commanddine script 459
Creating filters >. . 4 P 460
Parsing thelcommand line . .« 463
Simple Logging .. o -4 468
Formatting log entries ¥ & 470
Logging exception information 4 473
Logging to other destinations . 4 475

Chapter 16: Serializing Data .\, V 4 \ 479
About XML (), : y . 4 480
Normal Approaches to XML s v 4 481
Which module to use? A , y. .4 482
Getting Started With ElementTree /e [- 483
How ElementTree Works /S, # Y 484
Elements) -\ - 485
Creating a New XML Document /o~ £ A 488
Parsing An XML Document : .) B 491
Navigating the XML Document . V4 o . 492
Using XPath A 0. 1496
About JSON () . 500
Reading JSON 4..501
Writing JSON 3 504
Customizing JSON 507
Reading and writing YAML 511
Reading CSV data 516
Nonstandard CSV 518

Using csv.DictReader 520

Writing CSV Data 522

Pickle 524
If time permits... 529
Chapter 17: Advanced Data Handling 531

Objectives/. 531

Deep vs shallowcopying 532

Default dictionary values 535

Counting with Counter . .. 538

NamedTuples .. 4 .. & 539

Printing/data structures £ 542

Zipped archives : 4 545

Tar Archives. - . 547

Serializing Data A) 2% g 550
Chapter 18: Type Hinting : N 355

Objectives) 4 2 355

Type Hinting /, . 556

Static Analysis Tools. <. p. . 4 . 557

Runtime Analysis Tools A4 L y..4 558

typing Module o .5 : 560

Input Types /N N 4 563

Variance 0 ... e 565

Union and Optional /> 4 A 567

multimethod and functools.singledispatch /., A P 568

Stub Type Hinting /7 # : 570
Appendix A: Python Bibliography A N A 45573
Appendix B: Virtual Environments el & .. 579

What are virtual environments? 7)., 580

Preparing the virtual environment /A 581

Creating the environment V., 581

Activating the environment 582

Deactivating the environment 583

Freezing the environment 584

Duplicating an environment 385

The pipenv/conda/virtualenv/PyCharm swamp 5386

s, Q)
%0
%
Q‘O@A
% J‘

Intermediate Python 3 1

About this course

© 2020 CJ Associates About this course

2 Intermediate Python 3

Welcome!

* We’re glad you're here
* (Class hasthands-on labs for nearly every chapter

e Please make a name tent

Instructor name:

Instructor e-mail:

Have Fun!

About this course © 2020 CJ Associates

Intermediate Python 3 3

Classroom etiquette

* Noisemakers off
*.No phone conversations

» Come/and go quietly during class.
Please turn off cell phone ringers and other noisemakers.
Ifyou need to have a phone conversation, please leave the classroom.

We’re“all adults here; feel free to leave the clasroom if you need to use the restroom, make a
phone callyetc. You don’t have to wait for a lab or break, but please try not to disturb others.

Pleasepdognot bring, any exploding penguins to class. They might maim,

IMPORTANT
dismembergot otherwise disturb your fellow students.

© 2020 CJ Associates About this course

4 Intermediate Python 3

Course Outline

Day 1

Chapter 1 Python Refresher
Chapter 2 OS Services
Chapter 3 Dates/and Times
Chapter 4 Binary Data

Day 2

Chapter 5 Pythonic Programming

Chapter 6 Functions, Modules, and Packages
Chapter 7 Intermediate Classes

Chapter 8 Metaprogramming

Day 3

Chapter 9 Developer tools

Chapter 10 Unit Testing with PyTest
Chapter 11 Database access
Chapter 12 PyQt

Day 4

Chapter 13 Network Programming

Chapter 14 Multiprogramming

Chapter 15 Scripting for System Administration
Chapter 16 Serializing Data

Time Permitting

Chapter 17 Advanced Data Handling
Chapter 18 Type hinting

The actual schedule varies with circumstances. The last day may include ad hoc

NOTE
topics requested by students

About this course © 2020 CJ Associates

Intermediate Python 3 5

Student files

Youswill need to load some student files onto your computer. The files are in a compressed
archive., When you extract them onto your computer, they will all be extracted into a directory
named py3interm.

What’s in the files?

py3interm contains data and other files needed for the exercises
py3interm/EXAMPLES contains the examples from the course manuals.
py3interm/ANSWERS contains sample answers to the labs.

The studentdfiles dognot contain Python itself. It will need to be installed

NOTE
séparately. This hasfprobably already been done for you.

© 2020 CJ Associates About this course

6 Intermediate Python 3

Extracting the student files

Windows

Open the file py3interm.zip. Extract all files to your desktop. This will create the folder
py3interm.

Non-Windows (includes Linux, OS X, etc)

Copyor download py3interm.tgz to your home directory. In your home directory, type

tar xzvf py3interm.tgz

This will create the py3interm directery under your home directory.

If your version of Unix is-elderly, its‘tar comnmand may not support the z option. If this is
s0, use this command line inStead:

gzip -dc py3interm.tgz | tar(xvf -

About this course © 2020 CJ Associates

Intermediate Python 3 7

Examples

Nearly all examples from the course manual are provided in EXAMPLES subdirectory. Many of
the examples have callouts —numbers that refer to notes just below the code.

It will look like this:

Example

¢md_line_args.py

#!/usr7bin/env<python
import sys <@
print(sys.argv)/@

name = sys.argv[1] '@
print("name is", name)

@ Import the sys module
@ Print all parameters, including script itself

® Get the first actual parameter

cmd_line_args.py apple mango 123

['/Users/jstrick/curr/courses/python/examples3/emd_line_args.py', “apple', 'mango’,
'123']
name is apple

© 2020 CJ Associates About this course

8 Intermediate Python 3

Lab Exercises

— the labs are not quizzes

free to modify labs
ktor for help

your scripts or data
O&Amswetﬂzrm/ANSWERs

C\

%0
%
Q-
%
%, O
ye
%
% R
O,ﬁ/)

About this course © 2020 CJ Associates

Intermediate Python 3 9

Appendices

. endix A: Python Bibliography
de'ﬂ/irtual Environments

/O/’,o O
4o A
%
7%
(04

© 2020 CJ Associates About this course

10 Intermediate Python 3

About this course © 2020 CJ Associates

Intermediate Python 3 11

Chapter 1: Python Refresher

&tives
. res ic (intro-level) Python concepts

%, Q
%
ye
%
)
4o A
%
%
(04

© 2020 CJ Associates Chapter 1: Python Refresher

12 Intermediate Python 3

Variables

s Declared by assignment

* Dynamic typing

Variables/ are declared by assigning to them. Python does not require explicit type specifiers,
butsets the typeimplicitly by examining the value that was assigned.

Thus, assigning a literal‘integer to a variable creates a variable of type int, while assigning
quoted text.to a variable creates@ variable of type string. Once a variable is assigned to, it will
cause an error if the variableds used with an operator or function that is inappropriate for the

type.
A variable cannot be used'before itis assigned to.

Variables must be assigned'some value: A value of None may be assigned if no particular value
is needed.

Names may contain only letters, digits; and underscores, and may not start with a digit. The
Python convention for variable names i5al1_lower_case_words_with_underscores.

A "variable" is really an object with a name assigned to it. What we think of as the variable is the
name. Objects may have more than one name.

x =10
y =X
print(x)
print(y)

This creates an object of type int, accessible via both the name x and the name y{Both names
refer to the same object.

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 13

Example

ame = 'Fred Flintstone'

5%
Oé/)

© 2020 CJ Associates Chapter 1: Python Refresher

14 Intermediate Python 3

Basic Python Data types

» Python has many data types

e Use builtin functions to convert

Python has many data types. There are builtin functions to convert from one type to another. If
the'source type cannot’be converted to the target type, a TypeError is thrown.

Numerictypes

* bool

* int

* float

* complex
Sequence types

e str

* bytes

e list

* tuple
Mapping types

o dict
o set

» frozenset

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3

Sequence Types

Strings are text (arrays of Unicode characters)

s = "text";

Bytes are arrays/of bytes

/ Ny 4
b = b"text";

Lists are sequences of values

my_list = {4
sequence[start:Limit:stride]

Tuples are readonly sequences.of values (used as'records)

my_tuple = 'Mary', 'Poppins!;, 'London’

Python supports four types of sequences — strings, hytes, lists, and tuples: All sequences share a
common set of operations, methods, and builtin functions; each type also has operations specific

to that type.

A str object is a list of Unicode characters. A bytes object is alist.of bytes.

All sequences support slicing, which means returning a subset of. the sequence using the [

start:*limit*:*step*] syntax.

© 2020 CJ Associates

15

Chapter 1: Python Refresher

16 Intermediate Python 3

Example

colors = ['red', 'green', 'blue', 'purple', 'pink', 'yellow', 'black']
¢1 = colors[0] # 'red'

c2,= colors[1:4] # ‘'green', 'blue', 'purple'

c3 = ¢olors[-1] # 'black'

cd =/colors[:3] # 'red', 'green', 'blue'

c5 ='colors[3:d # 'purple', 'pink', 'yellow', 'black'

Table 1. Slicing syntax

| A
sequence[START:STOP] START to STOP - 1

\
sequence[START:] 7 7 478TARTtoend
sequence[:STOP] . \b;ginni;g to STOP -1
sequence[START:STOP:STEP] “C STAthoST6P-1counﬂngbySTEP
sequencel:] 7 wallelé;;;ﬁt347 |
sequencel::] ail élements 7 4
sequence[::STEP] all eiér;lents counting]c; STE;

Remember that the starting value of a slice is INcluSive, while the endingjvalue is

NOTE .
EXclusive.

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 17

Mapping Types

* Dictionaries are mapped sets of values

* Sets are similar to dictionaries but contain only keys

e Syntax
ded}
. S = set()
/T = frozenset()

Python also supports. mapping types—=dictionaries and sets.

A dictionary (dict) is a'set of values indexed by an immutable keyword. Dictionaries are used for
many tasks, including mapping oneset of valuesto another, and counting occurrences of values.
. Prior to version 3.6, dictionaries were unordered, but beginning with 3.6, dictionaries preserve
the order in which items are added.

Dictionary keys must be hashable, which means in general that they must be immutable. This
means that most dictionary keys are strings, but cantbe numbers, or tuples of immutable types.

A set is an unique collection of values. There)are two types —the normal set is dynamic
(mutable), and a frozenset is fixed (immutable), like,a tuple.

© 2020 CJ Associates Chapter 1: Python Refresher

18 Intermediate Python 3

Program structure

o All'imports at top

Variables, functions, and classes must be declared before use
« Main/function goes at top

* Mainfunction called at bottom

In Python,, modules must be imported before their contents may be accessed. Variables,
Functions,sand classes must be declared before they can be used. Thus most scripts are ordered
in this way:

1. import statements

2. global variables

3. main function

4, functions

5. call to main function

You may want to make a template for your Python scripts« Most editors and IDEs support
templates or code snippets.

In PyCharm, go to Settings— Editor - File and:Code Templates to create a new file
template.

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 19

Example Script Format

script_template.py

(" #l/usr/bin/env python

mmn

This is the doc string for the module/script.

. import sys
other imports (standard library, standard non-library, local)
constants (AKAnglobal<variables -- keep these to a minimum)

main function
def main(args):

This is the docstring for the main() function

:param args: Command(Line arguments.
:return: None

function1()

other functions
def functionl1():

This is the docstring for functionl().

:return: None

pass
if name_ == "' main__'

main(sys.argv[1:]) # Pass command line args (minus script nameé) to main()

TIP copy/paste this script to create new scripts

© 2020 CJ Associates Chapter 1: Python Refresher

20 Intermediate Python 3

Files and console I/O

o print()
* open()
*“input()

Screen output

To output to.the screen, use the print() function. print() normally outputs a newline after its
arguments, this can be controlled with the end parameter.

print() puts spaces between its arguments.by default. To use a different separator, set the sep
parameter to the desired separator, which might be an empty string.

Reading files

To read a file, open it with the open() function as part of a.with statement.

To read it line by line, iterate through-the file with a for loop. To read the entire file, use
file.read(); to read all the lines into a list, use'file.readlines(). Toread a specified number of bytes,
use file.read(n).

To navigate within a file, use file.seek(offset, whenee); to get the current location, use file.tell().

User input

To get input from the user, use input(). It provides a prompt<to the user, and returns a string,
with the newline already trimmed.

file_name = input("What file name? ") J

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 21

Conditionals

* Test a Boolean value

o, if-elif-else
The conditional statement in Python, like most languages, is if. There are several variations on
how if is used«All depend on testing a value to see whether it is true or false.

The.following valuesare false:

» False
* Empty collections (empty stringgempty list, empty dictionary, empty set, etc.)

¢ Numeric zero (0-er 0.0)

Just about everything else is’true. (User-defined objects, and many builtin objects are true. If you
create a class, you can control when it it true, and whenit is false.)
Python has a shortcut if-else that is something like the A?B:C.operator in C, Perl and other curly-

brace languages

valuel if condition else value2

Example
if name == 'root:
print("do not run this utility as root")
elif name == 'guest':
print("sorry — guests are not allowed to run this utility")
else:

print("starting processing")

limit = sys.args[1] if len(sys.args) > 1 else 100

© 2020 CJ Associates Chapter 1: Python Refresher

22 Intermediate Python 3

Loops

o Twokinds of loops
o while waits for condition

- for iterates over a sequence (iterable)

Python has twe'kinds of loops.

The whileloop is used for reading data, typically from a database or other data source, or when
waiting for user input to end a loop.

The for loop is*used to iterate through a sequence of data. Because Python uses iterators to
simplify access to many kinds of'data, the for loop is used in places that would use while in most
languages. The most frequent example of this isin reading lines from a file.

while and for loops can alse’have an else block, which is always executed unless a break
statement is executed.

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3

Example

loops_ex.py

#1/usr/bin/env python

23

colors = ['red', 'green', 'blue', 'purple', 'pink', 'yellow', 'black'] @®

for color in.eolors: @
print(color)
print()

with open(.'../DATA/mary«<txt') as mary_in: @
for Line in mary_in: @
print(line, end=""')" ®
print()

while True: ®
name = input("What /s your name?") @

if name.lower() == 'q'x
break
print("Welcome,", name)

@ create a list

@ loop over list

® open text file for reading

@ loop over lines in file

® print line with extra newline
® loop "forever"

@ read input from keyboard
exit loop

© 2020 CJ Associates

Chapter 1: Python Refresher

24 Intermediate Python 3

loops_ex.py

red
gr

p1e
yellow

ack

a littl

Its f e was as snow
And ever e tha

The lamb wa re to o

What is your nam ed

Welcome, Fred 45

What is your name?

Welcome, Amir /‘O

What is your name? Jacint /

0
Welcome, Jacinto <:2:\

What is your name? q ¢¢$’
Qs

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 25

Builtins

. builtin functions (as of Python 3.7)
Not/called from an object or package

» Can workson many different data types

%hon h uiltin functions. These provide generic functionality that is not tied to a
lar type o
ma

They ca@) gpph ifferent data types, but not all functions can be applied to all data
types.

In some languaglpr mi atic methods.

© 2020 CJ Associates Chapter 1: Python Refresher

26 Intermediate Python 3

Functions

s Declared with def
* Two reasons
- Refactor.duplicate code
o Make code modular
« Parameters
¢’ positional'or named
o required or optional

 Default return value None
Functions are critical to'any language. They are used to isolate code which is used in more than
one place, as well as to organize code into manageable chunks.

Functions may be called with argaments, which are copied into parameters that are part of the
function definition.

Functions always return something. The return statement.returns any value (any Python object).
If there is no return statement, a function retirns None.

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 27

Modules

* No different from scripts
*, Refactor duplicate code
» Share code among scripts

* Define PYTHONPATH to add search folders

If imported

o _name __set to "modulename"

Ifexecuted directly

o _name_ setto" main

Modules are used to share code among multiple scripts. They allow you to isolate code in one
place. They are also used.te.organize the codé ina project, even if there is no shared code.

There is technically no difference between a "module” and a "script". The only difference is how
they are used. A module is imported-by some other Python file. A script is run directly from the
Python interpreter. A file can be usedas either one.

Modules can be imported with one of the following forms:

import amodule
from amodule import afunc1, afunc?

To specify the folder a module should be loaded from; define an /environment variable
PYTHONPATH which contains one or more folders separated by semicolon (Windows).or colon
(Unix/Linux/Mac).

A file can know which way it’s being used by checking the value of the’ ~name__ variable. If this
variable is set to "__main__", then the script is being run directly. If it is'set’to the name of the
module, then it’s being imported.

© 2020 CJ Associates Chapter 1: Python Refresher

28 Intermediate Python 3

Packages

s Really just a folder
» Can contain modules or other packages
* Become prefixes for modules
» _ init" is optional, and can contain
> Doc'strings
¢’ €ode common‘to modules in package
- Impeort statements for convenience

o Code shaed by all modulesin package

A package is a folder than‘Contains modules or other packages.

Packags are usually arranged(in at least two levels,with the top level being the name of the
organization. The next level contains functionalfor or other divisions, which then contain
modules. This hierarchy can be nested as deeply/@as desired.

Given the following structure, making sure'that the parent.of myeorp is in PYTHONPATH:

mycorp
—— eng

| L—— calc.py
L—— mkt

L—— sales.py

To import the sales module, use from mycorp.mkt import sales.

To import functions from the calec module, use from mycorp.eng.calc import” func1, func2.

NOTE In Python 2, __init__ was mandatory for packages; in Python 3, it’s optipnal.

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3 29

Chapter 1 Exercises

Exercise 1-1 (pres_by_state.py, pres_by_state_sorted.py)

Usingthe file presidents.txt (in the DATA folder), count the number of Presidents who were born
ineach state. In other words, the output of your script should be a list, sorted by state name, with
the state andithe number of presidents that were born in that state:

Firstideclare a dictionary to hold the data. Then read the file in one line at a time.
TIP Split each lifve into fields using a colon as the separator. Add/update the element of
the dietignary whege the key is the state. Add 1 each time the state occurs.

expected output

Arkansas
California
Connecticut
Georgia

etc

——) — —

Exercise 1-2 (pres_dates.py, pres-dates_amb.py)

Write an interactive script that asks for a president’s last name. For each president whose last
name matches, print out their date of birth and‘date.of death. For presidents who are still alive,
print three asterisks for the date.

NOTE Dates of death and term end date might be thé string "NONE",

For the ambitious

1. Make the name search case-insensitive

2. Change your script to print out matches for partial names - so "jeff" ‘would find "Jefferson®;
e.g.

© 2020 CJ Associates Chapter 1: Python Refresher

30 Intermediate Python 3

Chapter 1: Python Refresher © 2020 CJ Associates

Intermediate Python 3

Chapter 2: OS Services

jectives
Working with the OS
O * Runni ernal programs
OQ-Walkin a directory tree

© 2020 CJ Associates

31

Chapter 2: OS Services

32 Intermediate Python 3

The os module

rovides OS-specific services
The m é!e provides many basic services from the operating system. The interface is the
dat

same for operating systems. These services include file and folder utilities, as well as
éﬁll’(ing w

o,
O/}é@ O

imes, running external programs, and many others.

Chapter 2: OS Services © 2020 CJ Associates

Intermediate Python 3

Table 2. The os module

Method or Data
path

ctermid()

device /encoding()
dup(

dup20

exec...()

fchdir()
fchmod()
fchown()
fdatasync()
fork()
forkpty(
fpathconf()
fstat()
fstatvfs()
fsync(Q)
ftruncate()
getcwd()
getegid()
getenv()
getenvb()
geteuid()

getgid()

© 2020 CJ Associates

33

Description

either posixpath or ntpath

Return name of the controlling terminal

Return string describing the encoding of the device
Return a duplicate of a file descriptor.

Duplicate file descriptor.

Execute file, with different configurations of arguments, environment,
etc.

Change to directory of given file descriptor.

Change permissionsof file given by file descriptor

Change owner/group id of the file given by file descriptor
force'write of file withifile descriptor to disk.

Fork a childprocess.

Fork a new process with a new pseudo-terminal

Return the configuration limit name for the file descriptor

Return stat result for an open file descriptor.

Return stat result for open file.descriptor on virtual file system
force write of file with filedescriptor to disk.

Truncate a file to a specified length.

Return unicode string representing current working directory.
Return the current process’s effective group id.

Get specified environment variable or None/Default (returns string)
Get specified environment variable or None/Default (returns bytes)
Return the current process’s effective user id.

Return the current process’s group id.

Chapter 2: OS Services

34

Method or Data
getgroups()
getloadavg()
getlogin()
getpgid()
getpgrp()
getpidQ
getppid(
getresgid()
getresuid()
getsid()
getuid()

initgroups()

isatty()
killQ
killpg0
Ichown()
link()
listdir()
Iseek()
Istat()
major()
makedev()
makedirs()

minor()

Chapter 2: OS Services

Intermediate Python 3

Description

Return list of supplemental group IDs for the process.
Return number of processes averaged over 1, 5, and 15 minutes
Return the actual login name.

Call the system call getpgid().

Return the current process group id.

Return the current process id

Return'the parent’s process id.

Return tuple of real, effective, saved group IDs
Return tuple of real, effective, saved user IDs

Call the system/call getsid():
Return‘the‘currentprocess’s user id.

Initialize the group access list with all groups of which the specified
username is a member, plus the specified group id.

Return True if file deScriptor is an open file descriptor
Kill a process with a signal.

Kill a process group with a signal.

Change owner/group of path (don’tfollow symlinks)
Create a hard link to a file.

Return list of all entries in the directory.

Set the current position of a file descriptor.

Like stat(path), but do not follow symbolic links.

Extracts device major number from a raw device number.
Composes a raw device number from major/minor device numbers.
Super-mkdir (like unix mkdir -p)

Extracts device minor number from a raw device number.

© 2020 CJ Associates

Intermediate Python 3

Method or Data
mkdir()
mkfifo()
mknod()
nice()
open()
openpty()
pathconf()
pipe()
putenv()
read()
readlink()
remove()
removedirs(name)
rename()
renames()
rmdir()
setegid()
seteuid()
setgid()
setgroups()
setpgid()
setpgrp()
setregid()
setresgid()

setresuid()

© 2020 CJ Associates

35

Description

Create a directory.

Create a FIFO (a POSIX named pipe).

Create a filesystem node

Decrease priority of process by inc and return new priority.
Open a file (for low level 10).

Open a pseudo-terminal

Return configuration limit name for file or directory path.
Create a pipe.

Changeor add an environment variable.

Read a file descriptof.

Returnrstring representation of symlink target

Remove(a file (same as unlink(path)).

Super-rmdir; réemove leaf directoryand all empty intermediate ones
Rename a file or directory.

Super-rename; create directories as necessary.

Remove a directory.

Set the current process’s effective group id.

Set the current process’s effective user.id.

Set the current process’s group id.

Set the groups of the current process to list.

Call the system call setpgid().

Make this process a session leader.

Set the current process’s real and effective group ids.

Set the current process’s real, effective, and saved group ids.

Set the current process’s real, effective, and saved user ids.

Chapter 2: OS Services

36

Method or Data
setreuid()
setsid()
setuid()
spawn...()
stat()
stat_fleat times()
statvfs()
strerror()
symlink()
sysconf()
system()
tcgetpgrp()
tesetpgrp()
times()
ttyname()
umask()
uname()
unlink()
unsetenv()
utime()
wait...()
walk()

write()

Chapter 2: OS Services

Intermediate Python 3

Description

Set the current process’s real and effective user ids.

Call the system call setsid().

Set the current process’s user id.

Execute file with arguments from args in a subprocess.

Perform a stat system call on the given path.

Determine whether os.[If]stat represents time stamps as float objects.
Perform a statvfs system call on the given path.

Translate an error code to a message string.

Create a symbolic link

Return an integer-valued system configuration variable.
Executethe command (a string) in a subshell.

Return the process group associated with the terminal given by a fd.
Set the process group associated with the terminal given by a fd.
Return tuple of floats-indicating process times.

Return the name of the terminal device

Set the current numeric umask and return the previous umask.
Return a tuple identifying the currentoperating system.
Remove a file (same as remove(path)).

Delete an environment variable.

Set the access and modified time of file

Wait for completion of a child process.

Directory tree generator.

Write a string to a file descriptor.

© 2020 CJ Associates

Intermediate Python 3 37

Paths, directories and file names

 import os.path module

*,Many routines for working with file and folder attributes

The, os.path module provides many functions for working with file and directory names and
paths:/These are all about the file and directories attributes, not the contents.

Some of the:more commonmethods are

os.path.abspath()
os.path.basename
os.path.dirname()
os.path.getmtime()
os.path.getsize()
os.path.isdir()
os.path.isfile()
os.path.join()
os.path.exists()

© 2020 CJ Associates Chapter 2: OS Services

38 Intermediate Python 3

Example
paths.py
#id/usr/bin/env python

import sys
import os.path

L_unix_p1 = "bin/spam.txt" @
unix_p2 = "fusr/local/bin/ham" @
win_pT.<)r"spam\ham¢doc" @
win_p2 =‘c”\\spam\ham\eggs\toast\jam.doc" @

if sys.platform'==_'win32': &
print("win_p?:" win_pT)
print("win_p2:", win_p2)
print("dirname(win_p1):", os.path.dirname(win_p1)) ®
print("dirname(win_p2):", os.path.dirname(win_p2))
print("basename(win_p1) ", os.path.basename(win_p1)) @
print("basename(win_p2):",+0s,path.basename(win_p2))
print("isabs(win_p1):", os.path.isabs(win_p1)) ®
print("isabs(win_p2):", os.pathwisabs(win_ p2))

else:
print("unix_p1:", unix_p1)
print("unix_p2:", unix_p2)
print("dirname(unix_p1):", os.path.dirname(unix_p1)) ®
print("dirname(unix_p2):", os.path.dirname(unix_.p2))
print("basename(unix_p1):", os.path.basename(unix/pl1)) @
print("basename(unix_p2):", os.path.basename(unix_p2))
print("isabs(unix_p1):", os.path.isabs(unix_p1)) ®
print("isabs(unix_p2):", os.path.isabs(unix_p2))
print(

"format("cp spam.txt {}".format(os.path.expanduser("~")))", @
format("cp spam.txt {}".format(os.path.expanduser("~"))),

)

print(
"format("cd {}".format(os.path.expanduser("~root"))):"', @
format("cd {}".format(os.path.expanduser("~root"))),

)

Chapter 2: OS Services © 2020 CJ Associates

Intermediate Python 3 39

@ Unix relative path

@ Unix absolute path
@Windows relative path

@ Windows UNC path

® What'platform are we on?
® Just the folder name

@.Just thedfile (or folder) name
Is’it an absolute path?

@ ~ is’curcent user’s home

~NAME is NAME’s home

paths.py

unix_p1: bin/spam. txt

unix_p2: /usr/local/bin/ham

dirname(unix_p1): bin

dirname(unix_p2): /usr/local/bin

basename(unix_p1): spam.txt

basename(unix_p2): ham

isabs(unix_p1): False

isabs(unix_p2): True

format("cp spam.txt {}".format(os.path.expanduser("~"))): cp spam.txt /Users/jstrick
format("cd {}".format(os.path.expanduser("~root"))): cd /vag/root

© 2020 CJ Associates Chapter 2: OS Services

40

Table 3. os.path methods

Method
abspath(path)
basename(path)

commonprefix(list)

dirname(path)

exists(path)

lexists(path)

expanduser(path)

expandvars(path)

getatime(path)
getmtime(path)
getctime(path)

getsize(path)

isabs(path)

isfile(path)

isdir(path)

islink(path)

Chapter 2: OS Services

Intermediate Python 3

Description
Return normalized absolutized version of the pathname path.
Return the base name of pathname path.

Return the longest path prefix (taken character-by-character) that
is a prefix of all paths in list. If list is empty, return the empty
string (").

Return the directory name of pathname path.

Return True if path refers to an existing path. Returns False for
broken symbolic links. May be subject to permissions

Return True if path refers to an existing path. Returns True for
broken symbolic links.

On Unix, return the argument with an initial component of "~" or

"~user" replaced by that user’s home directory. Only "~" is
supported on Windews.

Return the/argument with environment variables expanded.
Substrings of the form "$name” or "${name}" are replaced by the
value of environment variable name. Malformed variable names
and references to non-existing variables are left unchanged.

Return the time of last access of path. (seconds since epoch).
Return the time of last modification of path. (seconds.since epoch).
Return the system’s ctime. (seconds since epoch).

Return the size, in bytes, of path. Raise os.error if path does not
exist or cannot be accessed.

Return True if path is an absolute pathname (bégins. with a slash).

Return True if path is an existing regular file. This follows
symbolic links.

Return True if path is an existing directory. Follows symbolic links.

Return True if path refers to a directory entry that is a symbolic
link. Always False on Windows.

© 2020 CJ Associates

Intermediate Python 3

Method
ismount(path)
join(pathl[, path2[, ...]})

normcase(path)

normpath(ph)

realpath(path)

samefile(pathl, path2)

sameopenfile(fp1, fp2)

samestat(statl, stat2)

split(path)

splitdrive(path)

splitext(path)

© 2020 CJ Associates

41

Description
Return True if pathname path is a mount point (Unix only).
Join one or more path components intelligently.

Normalize the case of a pathname. On Unix, this returns the path
unchanged; on case-insensitive filesystems, it converts the path to
lowercase. On Windows, it also converts forward slashes to
backward slashes.

Normalize a pathname. This collapses redundant separators and
up-level references so that A//B, A/./B and A/foo/../B all become A/B.

Return the canonical path of the specified filename, eliminating
any symbolic links encountered in the path.

Return True ifboth pathname arguments refer to the same file or
directory (as indieated by device number and i-node number).
Raise an exception if a os.stat() call on either pathname fails.
Availability: Macintosh, Unix.

Return True if the file descriptors fp1 and fp2 refer to the same
file. Availability: Macintosh; Unix.

Return True(if the stat tuples statl and stat2 refer to the same file.
These structures may have been réeturned by fstat(), Istat(), or
stat(). Availability: Macintosh, Unix.

Split the pathname path/into a pair, (head, tail) where tail is the
last pathname component and head is everythingleading up to
that. The tail part will never contain a slash.

Split the pathname path into a pair (drive, tail),where drive.s
either a drive specification or the empty string. On systems which
do not use drive specifications, drive will.always be the empty
string..

Split the pathname path into a pair (root, ext) such that root+ ext
== path, and ext is empty or begins with a period and contains at
most one period.

Chapter 2: OS Services

42

Method

splitunc(path)

walk(pathy visityarg)

supports_unicode_filename
s

Chapter 2: OS Services

Intermediate Python 3

Description

Split the pathname path into a pair (unc, rest) so that unc is the
UNC mount point (such as r'\\host\mount’), if present, and rest the
rest of the path (such as r'\path\file.ext"). For paths containing drive
letters, unc will always be the empty string. Availability: Windows.

Calls the function visit with arguments (arg, dirname, names) for
each directory in the directory tree rooted at path (including path
itself, if it is a directory). Note: The newer os.walk() generator
supplies similar functionality and can be easier to use. (Like
FilexzFind in Perl)

True if arbitrary Unicode strings can be used as file names (within
limitations imposed by the file system), and if os.listdir() returns
Unicode strings for a Unicode argument. New in version 2.3.

© 2020 CJ Associates

Intermediate Python 3 43

Walking directory trees

* Use os.walk()
*, Returns tuple for each directory

» Tuple contains directory path, subdirectories, and files
The os.walk'method provides a way to easily walk a directory tree. It provides an iterator for a
directory and all its subdirectories. For each directory, it returns a tuple with three values.

The first_element is\the full{(absolute) path to the directory; the second element is a list of the
directory’ssubdirectories/(relativemames); the third element is a list of the non-directory entries
in the subdirectory, (also relative names).

Be sure to use os.path.join() toput together the directory and the file or subdirectory name.

Do not use "dir" as a variable when looping through the iterator, because it will overwrite
Python’s builtin dir function.

© 2020 CJ Associates Chapter 2: OS Services

44 Intermediate Python 3

Example

walk_ex.py

#id/usr/bin/env python
““"print size of every python file whose name starts with "m" """

import oS

START DIR =«™.." # start in root of student files @

def main()4
for currdir, subdirss files im os.walk(START DIR): @
for file.in files: ®
if file.endswith("'.py') and file.startswith('m"):
fullpath = os.pathyjoin(ctrrdir, file) @
fsize ="0s.path.getsize(fullpath)
print("{:8d} {:s}".format(fsize, fullpath))

if __name__ == "__main__
main()
@ starting location
@ walk folder tree
® loop over file names

@ get file path

Chapter 2: OS Services © 2020 CJ Associates

Intermediate Python 3 45

walk_ex.py

828 ..
../custom/pynavy/1.0/f5_week2/EXAMPLES/mathop.py
| 167 ..
../custom/pynavy/1.0/f5_week2/EXAMPLES/modtest.py
../acc_django_outlines/py3sci3day/EXAMPLES/mammal.py
../py3scicust.old/1.0/StudentFiles/unix/py3scicust/ANSWERS/media.py

175

| 469
1176
228

] 139 ..
../py3scicust.old/1.0/StudentFiles/unix/py3scicust/EXAMPLES/moreindex.py

- 849
190

/custom/pynavy/1.0/f5_week2/EXAMPLES/moreindex.py

/custom/pynavy/1.0/f5_week2/EXAMPLES/multi_ex.py

/py3scicust.old/1.0/StudentFiles/unix/py3scicust/EXAMPLES/mammal.py

../py3scicust.old/1.0/StudentFiles/unix/py3scicust/EXAMPLES/math_operators.py

43,

./py3seicust.old/1.0/StudentFiles/unix/py3scicust/EXAMPLES/modtest.py

© 2020 CJ Associates Chapter 2: OS Services

46 Intermediate Python 3

Environment variables

o Shell.or OS variables
o Same for Windows and non-Windows

o Syntax

value = os.environ[varname]

ivalue = o0s.environ.get(varname)
value = os.getenv(varname)

value = os.getenv(varname,default)
str2 4= os.path.expandvars(str1)

There are several ways to@ccess environment variables from Python.

The most direct is to use os.environ, which is‘a dictionary of the current environment. If a non-
existent variable name is specified, a KeyError will be raised, so it is safer to use
os.environ.get(varname[,default]) than os.environ[varname].

You can also use the os.getenv(varname[;default]) method. At takes the name of an environment
variable and returns that variable’s value. Anfoptional second argument provides a default value
if the variable is not defined.

Another way to use environment variables is to expand a string that.contains them, using the
expandvars(string) method of the os.path object. This takes a string containing one or more
environment variables and returns the strings with environment variables expanded to their
values.

If the variables do not exist in the environment, they are left unexpanded.

Chapter 2: OS Services © 2020 CJ Associates

Intermediate Python 3 47

Example

getenv_ex.py

(" #l/usr/bin/env python

import sys
import ostpath

/Af sys.platform == 'win32':
user_key = 'USERNAME'
else:
user-key = "USER'

count_key ='COUNT'

os.environ[count_key] = "42" @

print("count is", os.environ[count_keyls “user is", os.environ[user_key]) @
print("count is", os.epviron.get(count_key),."user is", os.environ.get(user_key))
®

user = os.getenv(user_key) @

count = os.getenv(count_key)

print("count is", count, "user is”;,user)

cmd = "count is ${} user is ${}".format(count_key, diser_key)

print("emd:", cmd)

print(os.path.expandvars(cmd)) ®

@ set environment variable
@ os.environ is a dictionary
® os.environ.get() is safer than os.environ(]
@ os.getenv() is shortcut for os.environ.get()

® expand variables in place; handy for translating shell scripts

getenv_ex.py

count is 42 user is jstrick
count is 42 user is jstrick
count is 42 user is jstrick
cmd: count is $COUNT user is $USER
count is 42 user is jstrick

© 2020 CJ Associates Chapter 2: OS Services

48 Intermediate Python 3

Launching external programs

o Different ways to launch programs
oy Justlaunch (use system())
o Capture output (use popen())

* import os module

« Use system() or/popen() methods
In Python, yow.can launch an external command using the os module functions os.system() and
os.popen().

os.system() launches any external command, as though you had typed it at a command prompt.
popen() opens a commarid, returning afile-liketobject. You can read the output of the command
with any of the methods used for a file.

You can open a process for writingias well, by specifying a mode of "w".

TIP For more sophisticated contf@l.of processes, see the subprocess module.

Chapter 2: OS Services © 2020 CJ Associates

Intermediate Python 3

Example

external_programs.py

(" #l/usr/bin/env python

\. impo

os.system("hostname") @

rt os

/with ospopen('metstat -an') as netstat_in:
for entry/in netstat_in:
if "ESTAB" in entry:

prin

@ Just run "hostname'

t()

®
@
print(entry; end="")

@ Open command line”'netstat -an" as a file-like object

® Iterate over lines in output of "netstat -an"

@ Check to see if line contains'ESTAB"

external_programs.py

MacBook-Pro-8.attlocal.net

tcpd
tcpd
tcpd
tcpd
tcpd
tcpd
tcpd
tcpd
tcpb
tcpb
tepb
tcpd
tcpd
tcpd

© 2020 CJ Associates

0

[« RN RN G RN G I GO RN G RN G B S BN G IS I G BN S BN G

0

[SSINCS IS NG I G I G G I S BN S BGS BGS B BN

192.
192.
192.
192.
192.
192.
192.
192.
2600:1700:
2600:1700:
2600:1700:
192.168.1.
192.168.1.
192.168.1.

168.
168.
168.
168.
168.
168.
168.
168.

_—e 2 2 2

.66.56791
.66.56790
.66.56776
.66.56775
.66.56773
.66.56772
.66.56771
.66.56770

3901:6.56750
3901:6.56729
3901:6.56728
66.56660
66.56657
66.56653

18.214.24.118.443
63.251.114.182.443
74.121.138.88.443
3.210:11.140.443
35.174,92.20.443
3.216.212:.104.443
52.4.252.13.443
18.210.147.153.443
2607:18b0:4002:8.443
2607:18b0:4002:c.443
2607:18b0:4002:c.443
107.178.254.65.443
23.221.46.225.443
35.190.72.21.443

49

ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLLSHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED

Chapter 2: OS Services

50 Intermediate Python 3

Chapter 2 Exercises

Exercise 2-1 (path_files.py)

List each,component of your PATH environment variable, together with the number of files it
contains. This is the set of files you can execute from the command line without specifying a
their path. Output should look something like this (for Windows, the paths will look different, but
the'idea is the same):

/usr/bin 2376
/usr/loeal/bin 17
/usr/local/sbin 1
/usr/sbin 263

Use os to get(tlhe pathsep value; them use os.listdir to get the contents of each

TIP :).
directory after splitting PATH.

Exercise 2-2 (oldest_file.py)

Write a script that, given a directory on the command line, prints out the oldest file in that
directory. If there is more than one file sharing-the oldest timestamp, print any one of them.

TIP Use os.path.getmtime()

Exercise 2-3 (all_python_lines.py)

Write a script that finds all the Python files (.py) in the studentfiles (starting at py3interm), and
counts the total number of lines in all of them.

Chapter 2: OS Services © 2020 CJ Associates

Orchard R

Gréenwood Villag

h: 303-3C

9-35-00049-000-03-02-20

	Intermediate Python 3
	Table of Contents
	About this course
	Welcome!
	Classroom etiquette
	Course Outline
	Student files
	Extracting the student files
	Examples
	Lab Exercises
	Appendices

	Chapter 1: Python Refresher
	Objectives
	Variables
	Basic Python Data types
	Sequence Types
	Mapping Types
	Program structure
	Files and console I/O
	Conditionals
	Loops
	Builtins
	Functions
	Modules
	Packages

	Chapter 2: OS Services
	Objectives
	The os module
	Paths, directories and file names
	Walking directory trees
	Environment variables
	Launching external programs

	Chapter 3: Dates and Times
	Objectives
	Python modules for dates and times
	Ways to store dates and times
	Basic dates and times
	Formatting dates and times
	Parsing date/time strings
	Parsing dates the easier way
	Converting dates and times
	Time zones
	Generating calendars

	Chapter 4: Binary Data
	Objectives
	"Binary" (raw, or non-delimited) data
	Binary vs Text data
	Using Struct
	Bitwise operations

	Chapter 5: Pythonic Programming
	The Zen of Python
	Tuples
	Iterable unpacking
	Unpacking function arguments
	The sorted() function
	Custom sort keys
	Lambda functions
	List comprehensions
	Dictionary comprehensions
	Set comprehensions
	Iterables
	Generator Expressions
	Generator functions
	String formatting
	f-strings

	Chapter 6: Functions, Modules and Packages
	Functions
	Function parameters
	Default parameters
	Python Function parameter behavior (from PEP 3102)
	Name resolution (AKA Scope)
	The global statement
	Modules
	Using import
	How import * can be dangerous
	Module search path
	Executing modules as scripts
	Packages
	Configuring import with __init__.py
	Documenting modules and packages
	Python style

	Chapter 7: Intermediate Classes
	What is a class?
	Defining Classes
	Object Instances
	Instance attributes
	Instance Methods
	Constructors
	Getters and setters
	Properties
	Class Data
	Class Methods
	Inheritance
	Using super()
	Multiple Inheritance
	Abstract base classes
	Special Methods
	Static Methods

	Chapter 8: Metaprogramming
	Objectives
	Metaprogramming
	globals() and locals()
	The inspect module
	Working with attributes
	Adding instance methods
	Decorators
	Applying decorators
	Trivial Decorator
	Decorator functions
	Decorator Classes
	Decorator parameters
	Creating classes at runtime
	Monkey Patching
	Callable classes
	Do you need a Metaclass?
	About metaclasses
	Mechanics of a metaclass
	Singleton with a metaclass

	Chapter 9: Developer Tools
	Objectives
	Program development
	Comments
	pylint
	Customizing pylint
	Using pyreverse
	The Python debugger
	Starting debug mode
	Stepping through a program
	Setting breakpoints
	Profiling
	Benchmarking

	Chapter 10: Unit Tests with pytest
	Objectives
	What is a unit test?
	The pytest module
	Creating tests
	Running tests (basics)
	Special assertions
	Fixtures
	User-defined fixtures
	Builtin fixtures
	Configuring fixtures
	Parametrizing tests
	Marking tests
	Running tests (advanced)
	Skipping and failing
	Mocking data
	pymock objects
	Pytest and Unittest

	Chapter 11: Database Access
	Objectives
	The DB API
	Connecting to a Server
	Creating a Cursor
	Executing a Statement
	Fetching Data
	SQL Injection
	Parameterized Statements
	Dictionary Cursors
	Metadata
	Transactions
	Object-relational Mappers
	NoSQL

	Chapter 12: PyQt
	Objectives
	What is PyQt?
	Event Driven Applications
	External Anatomy of a PyQt Application
	Internal Anatomy of a PyQt Application
	Using designer
	Designer-based application workflow
	Naming conventions
	Common Widgets
	Layouts
	Selectable Buttons
	Actions and Events
	Signal/Slot Editor
	Editing modes
	Menu Bar
	Status Bar
	Forms and validation
	Using Predefined Dialogs
	Tabs
	Niceties
	Working with Images
	Complete Example

	Chapter 13: Network Programming
	Objectives
	Grabbing a web page
	Consuming Web services
	HTTP the easy way
	sending e-mail
	Email attachments
	Remote Access
	Copying files with Paramiko

	Chapter 14: Multiprogramming
	Objectives
	Multiprogramming
	What Are Threads?
	The Python Thread Manager
	The threading Module
	Threads for the impatient
	Creating a thread class
	Variable sharing
	Using queues
	Debugging threaded Programs
	The multiprocessing module
	Using pools
	Alternatives to multiprogramming

	Chapter 15: Effective Scripts
	Using glob
	Using shlex.split()
	The subprocess module
	subprocess convenience functions
	Capturing stdout and stderr
	Permissions
	Using shutil
	Creating a useful command line script
	Creating filters
	Parsing the command line
	Simple Logging
	Formatting log entries
	Logging exception information
	Logging to other destinations

	Chapter 16: Serializing Data
	About XML
	Normal Approaches to XML
	Which module to use?
	Getting Started With ElementTree
	How ElementTree Works
	Elements
	Creating a New XML Document
	Parsing An XML Document
	Navigating the XML Document
	Using XPath
	About JSON
	Reading JSON
	Writing JSON
	Customizing JSON
	Reading and writing YAML
	Reading CSV data
	Nonstandard CSV
	Using csv.DictReader
	Writing CSV Data
	Pickle

	If time permits…​
	Chapter 17: Advanced Data Handling
	Objectives
	Deep vs shallow copying
	Default dictionary values
	Counting with Counter
	Named Tuples
	Printing data structures
	Zipped archives
	Tar Archives
	Serializing Data

	Chapter 18: Type Hinting
	Objectives
	Type Hinting
	Static Analysis Tools
	Runtime Analysis Tools
	typing Module
	Input Types
	Variance
	Union and Optional
	multimethod and functools.singledispatch
	Stub Type Hinting

	Appendix A: Python Bibliography
	Appendix B: Virtual Environments
	What are virtual environments?
	Preparing the virtual environment
	Creating the environment
	Activating the environment
	Deactivating the environment
	Freezing the environment
	Duplicating an environment
	The pipenv/conda/virtualenv/PyCharm swamp
	Multiple Python versions with pyenv

	Index

