tCOU SewWwdadre

. TRAINING MATERIALS FOR IT PROFESSIONALS

.................. C# Essentials
£ Student
Workbook

C# Essentials
Rev. 4.8.5

Student Guide

Information in this'”document is subject to change without notice. Companies, names and data
used(n'examples herein arefictitious unless otherwise noted. No part of this document may be
reproduced.or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of
their respective owners.

Object
l \ .1 VA] ‘ 0 N s ™ is7a trademark of Qbject Innovations.

Author: Robert J. Oberg
Special Thanks: Johnathon McAlister

Copyright ©2019 Object Innovations Enterprises, LLC Allrights reserved.

Obiject Innovations
877-558-7246
www.objectinnovations.com

Printed in the United States of America.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter5
Chapter 6
Chapter 7

Appendix A
Appendix B
Appendix C
Appendix D

Rev. 4.8.5

Table of Contents (Overview)

Introduction to .NET

C# Overview for the Sophisticated Programmer
Object-Oriented Programming in C#

C# and the .NET Framework

Delegates and Events

Introduction to Windows Forms

Newer Features in C#

Using Visual Studio 2019
Language Integrated Query (LINQ)
Unsafe Code and Pointers in C#
Learning Resources

Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

Directory Structure

The course software installs to the root directory

C:\OIC\CsEss.

Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and
SO on.

Example programs for Appendices A, B and C are in the
directories AppA; AppB and AppC.

The Labs directory.contains one subdirectory for each lab,
named after the lab number. Starter code is frequently

supplied, and answers are provided in the chapter directories.

The CaseStudy directory contains a case study in multiple
steps.

The Demos directory is provided for performing in-class
demonstrations led by the instructor.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC

All Rights Reserved

Table of Contents (Detailed)

Chapter 1 Introduction t0 .NETcccoiiiiiiiiiiieeieeee e 1
LAY L R AL SR 3
LiDraries and TOOISocviiiiiieiee e bbb 4
APPHCALION MOUEIS........ooiiee e 5
Y g T Vo= J O oo - USSR 6
NET Programming in @ NUEShell ..o 7
ViISUAT STUAIO 20191 ...ttt bbb 8
ViASUAL STUAIO STON TN ..o 9
Creating a Console APPHCALIONccciiiiiiicie e 10
CoNFIgure YOURNEW PIOJECTcoiiiiiiiiiiieieiese ettt 12
Program.Cs Starter COUE ..o ittt sae e 13
Using the Visual StUtio TEXE EAITOr..........ccooviiiiieiieie e 14
LT I T R S TP PR PP 15
BUID the ProJeCho i i 16
U I T o (0] 1= B USSR SSPRRP 17
PaUSING the OULPUL. £2. ittt ettt nbe e 18
Visual C# and GUI Programsccceeoeeieiforneeie e seese e seesie e saesae e seenaesnnesneens 19
INET DOCUMENTATION ... e anreieeiiesieeieeaiinnee s siiine s tihneeeeseesteensesseesseeseeneesseesseasessseesees 20
A U010 S SRR PPPO 21

Chapter 2 C# Overview for the Sophisticated Programmer..............ccccceevvenenne. 23
HEHO, WOTTU ..o bbb 25
Compiling, Running (Command LiNe) .. et it st 26
Program STTUCTUIEuviiiiie it e bbb e ettt e st e e st e e ens 27
NAMESPACES.eeereeririeree e G e B e e e 30
VANADIES ... e it e 31
INPUL TN CH o e bbbttt 32
MOTE 8DOUL ClIASSESviuveviiiiiiieiieiie ettt it s a fue e S EEE SR Eor e ne e s el e 33
INPUEWIEPPET CIASS ... e b bbb 34
SAMPIE PrOQIaM .. .cciiiieieic ittt ste et e skt st mateene e te b e neesneeadanneeand 35
Input Wrapper Implementation............ooooiiririieneese e et 36
Compiling MUIIPIE FIIEScveeieee e e et 37
CONTIOL STIUCTUIESveve et neesre e e e n b e e e sneeneeenee e 38
SWITCH L.ttt el n b r s 39
CH OPBIALOTS ...ttt ettt n e ne e e 40
Precedence TabIe ... e e b e 41
TYPES IN CH et b ettt 42
Y1001 0] (I Y/ 01 USSP 43
Types IN SYStemM NAMESPACEoeieieiiieite st 44
a1 T (=T B U B Y o1 USSP 45
Floating POINE DAta TYPESccuveiiiiiieieeitesie e 46
IMPHCIE CONVEISIONSeouiiitieiieeie sttt et e e ssaesreesnesraesteeneeaneennes 47
EXPHCIT CONVEISIONS......eiiiiiiieiieiie sttt et sb et 48

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC %

All Rights Reserved

BO0IEaN Data TYPE ..ottt 49

] 11 SRS PR PRI 50
Uninitialized Variablesooiioiioi et 51
ENUMETALION TYPBS 1.cuvieiieitieiieeie ettt e ettt e te et e e e saesneesae e e ene e reeteeneenneeneas 52
NUHBDIE TYPES .ttt ettt et beebe e nreas 53
RETEIENCE TYPES. .. tiite ettt ettt e st et e eseesreesteenaesseeteeneenneas 54
(O S Y 1T UR SRR 55
(0]] 1< SRS 56
11100 [PPSR 57
(@00 0)Y7 [0 T0 TS 1o USSR 58
SNGBUITAET ClaSSo e e 59
C1aSSES AN SIIUCES.eiviiiiiiieiieiei ettt bbbt 61
Static and INStANCE MENAUScoiiiiiie e 62
METNOO Par@MEBLEIS ...cii i iiiiitiiiecee et b e 63
NoO “Freestanding” FUNCLIONSAN CH........coviiiiiiiiieie et 64
Classes with All Static MEtNOASccoceiiiiiieieie e 65
ParamEter PASSINGc.vi v aiioneesdaeeeeiiesteeieaseesteesteeseesbeesteseesbeesbeeseesreesbeenbesseesreeneennes 66
Parameter TErmMINOIOQY ..o .o i ittt e e e naeenee e 67
VAlUE PAIaMeTEIS iy e bir et cde s b ettt ettt e sbeenbe e e reesbeenee s 68
RETEIENCE ParamMETEIS, ci...oviiviiieeee sttt bbb 69
Reference Parameters EXampledu i 70
OULPUL ParaMETEIS. ... esdeniiieiieee s e iaee s ad 80ttt et et e et eennb e e e nnb e e e nbaeeeneee e e 71
Output Parameters EXamMpPI vt e 72
STIUCTUIE ParamMeTerScoeiee etk ettt 73
ClaSS ParameLerScouveieeriieiee et dBimaine e s bt esee st e be st e steesaeeneesneenneens 74
Method OVErloadingcooverieiiess et st ie e b iih e e ste e ae e nneas 75
Variable Length Parameter LiStS ... i idore e 77
AATTAYS .ot T ettt e et 78
ONE-DimeNSIONal AITAYScviiiiiieeieiie e ecsite s ae e seeseesveseesvssianeneesreeabieeesaeeseeesee e 79
SYSTEIMLAITAY ..t ittt e e 80
JAQGEA AITAYS.....eeieeiece ettt et e o€ nt s aaeesteensain e teeseeess et B SRR e ee e 81
RECIANGUIAT ATTAYS ...c.veviiieiisiieeeeee sl s onnt s 82
FOrEACH TOF ATTAYS ... S e ettt saan e e reeanaare s 83
BoxXing and UNDOXINGcoveiiiiiiiiiiisiieee s e S b 84
Implicitly Typed VariableSccovoiiiiieiiee e e annes 85
Implicitly Typed Variables — EXample ... i 86
OULPUL IN CH. ettt sre et sna e e faadadhe e e s e e e 87
FOIMALTING ... e e 88
Formatting EXample.........cco oo b 89
EXCEPTIONS ...t e e 90
EXCEPLION EXAMPIEoceviieie ettt 91
Checked Integer ArtNMETIC..........ooviiiiiiiieeeee e 92
Throwing NeW EXCEPLIONSccviiiieieiie et reesre e 93
FINAITY L. 94
SYSIEM.EXCEPLION.eiiiieic ettt aa e re e reene s 95
7 o 1SS 96
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC vi

All Rights Reserved

SUMIMAIY ..ttt bttt e ket e at e e e be e e st e e ke e e me e e ebeeanbeeabeeenneeneneannis 97

Chapter 3~ Object-Oriented Programming in C#..........cccooevieieninninnc e 101
C# Object-Oriented FEALUIEScceiiiie e 103
ENcapsulation and ACCESSOIS........iiierieeierierieeie e steesie e se e e e steeaesnae e eneeaneenseens 104
Asymmetric ACCeSSOr ACCESSIDIIITYoviiiiiiiiie e 105
USING @ PTOPEILY ..ottt e e e este e e eneennaenne s 106
INEBXEIS .. ettt ettt bbb bt b et n e b e e ene e 107
ViSual'Studio Console PrOJECTS.c.civeiieiieiieie e 108
Files in SKEleton SOIULIONcoiiiiiiieiee e e 109
SOUICE FIIES 41ttt 110
Bank EXAMPIE....ct o 111
ACCOUNT CIBSSa vttt bbbttt e e 112
CONSIIUCTONS ettt ettt ekttt ettt bt e bt e et e sse e et e e ebe e et e e saneembeeaneeennee e 114
STAICAMIEIMDETS (i chh bbbttt 115
SEALIC INAMAIN ... ettt nneas 116
SEALIC CONSTIUCTON tiwifhee v cedfiabi sttt eiee ettt ettt bbbt e e 117
Constant and.Readonly FIeldscc....o..ooiiiiii e 118
AULO-IMPIEeMENIE PrOPEITIES .. ot ettt 119
Auto-Implemented Property EXamMPIe ..i . e 120
INNEIITANCE IN CH ..ottt 121
New Version 0f Base ClaSS..........c.iiieiiie o 122
Features of the New Base Class...........cotridiiiiiiie s 123
DErVEA ClaSS...cceiiiiiiiieiiee e lesiina e ettt nae e 124
Overriding a Virtual FUNCHION. ...ciiii it et e 125
ADSEFACT CIASSES ...t st te et adhr e e et ee sttt esbe et enee e 126
KEeYWOId: @DSTIACE.......ccviiieiieeieciese s e ae e e dan e ioe et e nte e sreesteenee e enee e 127
DEIIVEU ClaSS ...ttt ettt sdon e bbbttt e e e ee e 128
TESE PrOQgramcceeiiiieeieee s bR e 129
SEAIEA ClIASSES......eviiiiiieiieieeie et B Bttt fope ettt et nre e 130
Access Control and ASSEMDBIIES.........ccveiviieiiei e et e 131
Internal ACCESSIDIILYooveiieiiee e i S s e e 132
ASSEMBDIY EXAMPIE ..o e bbb 133
(O F Sl I o] - U 1= OO S0 SR TORTTUIN APPSR 134
7. o T SRS -o N SRS oo e 135
SUMMIANY .ttt st e st e s sbe e e snbe e e snbeessa b e s T e e s aneeensneesndinenere 136

Chapter4 C#and the .NET Frameworkccccccovvvviiiiiiises et 141
Components and OO N CHooovveieeecece e s e s 143
INEEITACES IN CH ..ot re e 145
INterface INNEITANCEooiiieee bt 146
Programming With INterfaces..........cocuviiiiiiiiiee e 147
IMplementing INtEIrfaCESccvi i e 148
USING 8N INEEITACE ...t 150
Example: SMallINterface........ccovoviiieii e 151
Dynamic USE OF INTEITACES.cveiiiiiiiesiee s 152
EXample: TryInterfaCes.......covciiiiiiii e 153
(30 0 1=] =1 (o] ST S T U VTP PR URPPTPRTPRPIN 154

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC vii

All Rights Reserved

IO 0T -1 (0] PRSI 155

ReSOIVING AMDIGUILY ...c.veiieiie et 156
Explicit Interface IMplementation ..o 157
EXplicit Interfaces TeSt PrOgramcccvcveiieiierieciesee e 158
SYSIEM.ODJECT ...t ettt nne s 159
COIBLLIONS ...ttt bbbt 161
N g -\ L PSRRI 162
AITAYLISEIMETNOUS ... 163
EXAMpPle: SINGLIST.......ooiiiee e e 164
IEnumerable and TENUMETALON ..o 165
USING ENUMIBIALOIS ettt sttt be e ne e e e 166
Collections of User-Defined ODJECES.........ccccvevveieiieiieie e 167
ACCOUNT CIASS ...ttt sr e e 168
ACCOUNTLIST CIASS ... sif ettt ettt 170
CopY -SEMANTICS TN CH.....ooeocidhe ettt sbe e nneas 172
Deep Copy-and ICIONEADIEcoveiieieeieceee e 173
LD A A e ettt bttt re ettt nas 174
WIItiNG GeNeriC COde ... o i de e ittt ae e nre e 175
USING @ Class O ODJECTccee it sir i e 176
GNEIIC TYPES ..t eiaesueesteeieaneesueesfanaesteesseasaesseessesseesseesseaseesseaneesseesseeneesneesseeneennens 177
GENEriC SYNTAX 1N CH il ittt ettt nne s 178
GENEIIC EXAMPIE. ... il idi et et te et e e e e s e e eneesneesneeneenneas 179
Generic CHENt COOB...........i et et 180
SYStemM.CollECtIONS. GENEIIC ... li ki ieeie et re e shae e ae e e e e e e saeenaesnees 181
LD 4B e Rt f ettt ettt e et ee e 182
ODBJECE INITIANIZEIS ... et e dB e ste e e saeenaenneas 183
ColleCtion INIHIAHZEIS.ocviieeeieee e S or e e 184
ANONYMOUS TYPES ..ot 5o et b et 185
ATTIDULES. ..ot sfre et Bt 186
Attribute Usage EXample ... e it 187
SUMMIAIY ettt e e sba e e s e g b e r e e snbee e s b e esbeeensse e G EERRR e ne 188
Chapter 5 Delegates and EVENTSccccoeiveiiiiieii e e b, 193
Overview of Delegates and EVENTS.........ccovovviieiieie i et de e 195
Callbacks and Delegatescccoovieiiiiniiieieeese e St SR 196
USAQe Of DEIEGALESccveeviceiiciiecie et e e e st o e te e reendannne s 197
Declaring a Delegate..........ccoiiiiiiiiiieiee e e e s 198
Defining @ MEtNOGc.ooviiie e o e 199
Creating a Delegate ODJECTccoiiieiiiiiiiiieeee e D g 200
Calling @ DEIBGALE.c..e it ae T s 201
Random NUMDEr GENEratioNcueiviiiiieiieie e ee e 202
F N R LaT0 (o] o (AN - | 2SS 203
ANONYMOUS METNOUSouiiiieitc e 204
Combining Delegate ODJECEScccueiiiiii i 205
F o1 11| Y o F T TS PP PP PPR PP 206
DElegatEACCOUNL.CS ...veeiveieie ettt te e be e be et e e e reene e reeee e 207
LambDda EXPrESSIONSccueitiiiiiiiiieieie sttt bbb 208
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC viii

All Rights Reserved

NAMEA IMEBENOM. ... e nnns 209

ANONYMOUS IMETNOU.ccuiiicic e 210
Lambda EXPression EXAMPIEooveiiiiiie e e 211
B NS e s 212
EVENtS IN CH aNd INET ... e 213
Client Side EVENE COUB.....c.coiiiiieiiesii st 215
Chat ROOM EXAMPIE ... e 216
LD D it bbbttt r e 217
SUIMIMAITY ... eitt ettt ettt ettt ekt et ekt e sk bt e be e e ab e e be e abe e e beesheeenbeeab e e esbeesaneanbeeaneeennee e 218
Chapter6 . Introduction to WIindows FOImMSccccooeiiiiiiinnienie e 221
Creating @ WINAOWS FOIMS ADP.....eiuieiieiieie e sieeie ettt ae e sne e 223
PATIAl CIaSSES M. . ittt 227
Windows Forms Event Handling..........cccooeiiiiiiniieee e 228
Add EVENts TOra Controlcooviiiiiiiii e 229
EVentS.DOCUMENTALION ...t it 230
ClOSING @ FOIM........o it atii i e ee e et tee s te e s esteestesseesseeeesseesteeneesneenaeeneennens 231
LIStBOX CONIOL L. et fe ettt 232
LiStBOX EXAMPIE 1.kttt nne s 233
(7. o1 USRS 234
SUMMEBNY . ettt o ettt e et e et e e be e e e e e e enbe e e e 235
Chapter 7 Newer Features iN CH# ..o il eesieseeseeseesieesee e sseenesaenseens 239
AYNAMIC TYPC . eeieeiieiereie e e F et se e ot de e et et et e et e e teenaesneesneenaennees 241
RUNtIME Error EXAMPIE ... i et 242
dYNAMIC VEISUS ODJECT......viveee sl e sasdie e iae st s eesta e e sneesteeneesneesaeeneennens 243
Behavior OF ODJECT........ooi i s 244
Behavior Of dyNamiC........ccvieeiiieies i b fen e 245
NAMEA AFGUIMENTS ...t it st e e e este s b aka e seeseesbeesteeneesreesreessesneenseens 246
Optional ArgUMENTS......cciviiieieieieienesese s fh i 247
BOOK CIaSS ...ttt e sd s sttt sttt tab et 248
Using Optional ATQUMENTScoueiiiiiieiiesiesiesies e 5ottt s 249
Variance in GeNeriC INTErfaCES.cuuvvviiriiiieiesiees st o adheas 250
CoVvarianCe EXAMPIE ..o b b 251
Variance With ICOMPArer<T>........ccccoiiiiieiieiecese e e st e ninn e 252
Interfaces With Variance SUPPOIT.........cccoviiiiiiieieeie e 253
Contravariance EXamPpPIe..........ccoveiveiiiieiecc e bt e s e 254
Asynchronous Programs in C# 5.0 ... sl adeaf s 255
Task and TaSK<STRESUITSc.ooiiiiiiiece e b ag e 256
AYSNC METNOUS ... e e 257
ASYNC EXAMPIE ...ttt e e bandn e 258
SYNChronOUS Call ..o 259
L[O 1 | BSOS 260
TRIEAAING ...ttt 261
NEW FEALUIES 1N CH B.0......iiviiiiiieiieiieeie ettt 262
NUII-Conditional OPEIaLOrcc.oiviiiiiiiiiireee s 263
Composite FOrMat StHNGc.ciieieiieciece e 264
INEIPOIALE STFINGSvitiiieitieiee ettt bbbt 265
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC ix

All Rights Reserved

INEW FRATUIES 1N CH 7.0 ettt ennnnnnnnn 266

I LRSS 267
Nullable Reference Types iN CH# 8.0ccoiiiiiiiiiieiiee e 268
Nullable Reference Example Program..........c.ccccveeiieiieeiesieesieese e sie e see e 269
SUIMIMAIY ...tttk etttk ekt ekt e s hb e e bt e e be e e bt e ehe e et e e eb e e e sbeesaeeenbeeaneeennee e 270
Appendix A Using Visual Studio 2019..........cccciiiiiiinieie e 271
Visual Studio 2019 COMMUNILY.......ooiiiieiiiie e 273
MOodifying Visual STUAIO.........ccveiiiiieiiec e 274
VIASUAL STUAIO STGN TN L 275
SIGNAN AAVANTAGES ..ottt e e et e e e reeae e sneeeas 276
Visual StUAIO STArt PAGEooveeiieee s 277
A Visual STUAIO SOIULIONcviiiiiiiiiiiiee e 278
TOOMDAIS ... ot 280
Customizing @ TOOIDAN...........ccecieiiee e 281
Creating @, CoNS0IE ADPD ..ot 284
o [0 a0 - W = | L RS SS 286
Using the VisuahStudio TeXE EAITOr ... 287
Build and Run the)Bytes ProjJeCti.........c.oiiiieiieisiese e 288
RUNNING the BYIES PIOJECTior et 289
Executable File LOCAIONcoviveidiiiiiiecaiie i 290
Managing ConfIQUIAtIONS veiviiieeie e sttt 291
Project CoNfiQUIatiONS ...t i i e e iine e es b sae e s teesee e sreeseesneesreesaesnaenneas 292
Creating @ NeW ConfigUIatiON .iu oo veiee e der ettt 293
Setting Configuration Build SEttingsS............cccuveieeciiurenedotineie e 294
=] oTU o [0 g Lo T SO SO PR 295
BT o 1010] e S S OSSR 296
WaALCH VariahIeS.......cveiiiiieciice ettt 297
Debug TOOIDAT ... e TR e 298
Stepping With the DEDUQGQET.........ooieee e et et 299
Demo: Stepping With the DeDUGQET........ccvvviee et 300
Call Stack and Call Hierarchy..........cccoooveiioiiiiie s e il it st 301
Multiple-Project SOIUtION DEMO.........ccoviiiieiiieieiee e e b b 302
AdAING @ RETEIENCE........eeiiiieece e s sre e b 303
Project DEPENUENCIES.ccueiviieirieriisiieiieie et el Sea e SRE e 304
SEATUP PrOJECT. ...ttt T e teeneesneadhnaen 305
[TT0 o [T T L= S TES 306
SUMMIAIY .ttt e et e e e snbe e e snbeessnneesnsneedagh e e b rbeeenteeennes 307
Appendix B Language Integrated Query (LINQ)....c.ccccooviviiviicviiiec e i 309
Language-Integrated QuUery (LINQ)cccooieiiiiiiieieee e b e 311
LINQ EXAMPIE. ...t 312
UsSING IENUMErabIEST > ..ot 313
Basic LINQ QUETY OPEIALOISc.eeuieieiiiesiesiesiesieeeeie ettt 314
ODbtaining @ DAt SOUICEcccivieieiie et sreeneeneas 315
LINQ QUENY EXAMPIE ... 316
1L C=T T o USSR 317
(@] (0 (=1 81 oo TSSO TP PSR PRPPPO 318
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC X

All Rights Reserved

F N [0 (=10 LA o] PO TSRS 319

ODbtainiNg LiStS @N0 ATTAYS ...c.veiveeieerieiiesieeiestee e eesee e eseessae e eeesseeseeaseesseessesneessnns 320
Deferred EXECULIONcoveiiieiiieiieeee sttt sttt st naeenne s 321
SUMMIATY ...ttt et ekt e et e s sttt e s ab e e ea bt e e sbb e e e bt e e e bb e e enbeeeanbeeennes 322
Appendix C Unsafe Code and Pointers in CH#.......cccovvveviee v 323
UNSAIE COOR......ueeiiiieieee bbb bbbttt n e 325
UNSATE BIOCKS ..o e 326
Unsafe Option in Visual StUAIOc.ccviieiiiiiccice e 328
POINEELS .ottt ittt sttt bt e bt st e s be e beenb e s be e sbeeneesbeenbeente s 329
SWAPPING VA POINIETS.cvieieiieciee ettt ste e e e e saeenaenneas 331
FIXEA IMIBIMONY ...ttt ettt sttt nre et ne e be e b e 332
Fixed Memory HTUSIratIONcccviiiece e 333
SUMIMAIY .. ittt ettt ettt et e st e bt e be e e bt e ehe e et e e ebe e et e e saeeenbeeaneeennee e 335
AppendiX:D Learning RESOUKCESc.cceeiiiiiiieie ettt e 337
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC xi

All Rights Reserved

Rev. 4.8.5

Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

Xii

CsEss Chapter 1

Chapter 1

Introduction to .NET

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 1
All Rights Reserved

CsEss Chapter 1

Introduction to .NET

Objectives

After-completing this unit you will be able to:
o Give a high-level overview of .NET.
e QOutline the architectural components of .NET.

e Describe the essentials of creating and running a
program in the .NET environment.

e Build andrun a simple C# program.

e Use Visual Studio 2019 as aneffective environment
for creating C# programs.

e Use the .NET documentation.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 2
All Rights Reserved

CsEss Chapter 1

What Is .NET?

NET is Microsoft's software platform for building
applications for many environments.

— Originally proprietary and restricted to Microsoft Windows,
NET is now open source and cross-platform.

NET applications can be built using multiple
languages.

— C# and Visual Basicare object-oriented languages.

— F# is a functional language which also supports object-
oriented anddmperative programming.

NET Standard is a base‘set of APIs common to all
NET platforms.

There are multiple implementations of .NET
supporting.NET Standard.-Each implementation can
support additional APIs specific to the OS on which it
runs.

— .NET Framework is the original implementation of .NET
supporting server and desktop applications on-Windows: As
of version 4.5 it supports .NET Standard.

— .NET Core is designed for server and cloud applications. It
runs on Windows, macOS and Linux.

— Xamarin/Mono supports apps running on mobile devices.

— Universal Windows Platform (UWP) supports touch-enabled
apps running on various Windows platforms.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 3

All Rights Reserved

CsEss Chapter 1

Libraries and Tools

e Microsoft and third parties provide many libraries to
extend .NET.

— Many:-libraries are furnished through NuGet packages.

— NuGet isa package manager specifically designed for .NET.

e Microsoft and third parties provide many libraries to
extend .NET.

e Visual Studio isa full-featured IDE running on
Windows for building all types of .NET applications.

e Visual Studio for Mac runs on-Mac computers.

— It can be used for building i10S and macOS apps as well as
Android and Windows apps with Xamarin.

— It can also be used for ASP.NET Core apps and services.

e Visual Studio Code is a lightweight code editor
available for Windows, macOS and Linux.

— It comes with built in support for JavaScript and extensions
for many languages, including C#, C++, Java, Python, PHP,
and others.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 4
All Rights Reserved

CsEss Chapter 1

Application Models

Web applications and services
= ASP.NET supports web applications on Windows

— ASP.NET Core is cross-platform, targeting Windows,
macOS and Linux

Moabile applications

— Cross-platform targeting i0S, Android and Windows

Desktop

— Windows desktop applications'using Windows Forms or
Windows Presentation Foundation (WPF).

— Mac desktop applications

Microservices -- a design pattern in which apps are
composed of small, independent modules:

— Docker containers combine microservices into single
deployable units.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 5
All Rights Reserved

CsEss Chapter 1

Managed Code

e Compilers for .NET languages generate common
intermediate language (CIL).

e ‘A ClL-program does not run directly on hardware
but on.a virtual machine, called a runtime.

e “NET runtimesinclude:
— Cammon Language Runtime (CLR) for .NET Framework.

— Core Common Language Runtime (CoreCLR) for .NET
Core.

— Mono runtime-for Xamarin iOS and Android and Mono
desktop.

— .NET Native for UWP:

e A runtime provides various.servicessuch as
automatic memory management, type safety, and so
on.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 6
All Rights Reserved

CsEss Chapter 1

NET Programming in a Nutshell

1. Write your program in a high-level .NET language, such as C#.
2. Compile your program into CIL.

3. Run your CIL program, which will launch a runtime such as
CLR or.CoreCLR to execute your CIL, using its just-in-time
compiler to translate your program to native code as it executes.

e In-this course we will use the .NET Framework.

— Programs will compile into .EXE files that will run in the
CLR.

e We will look‘at-a simple example of a C# program,
and run it under-NET.

// SimpleCalc.cs

//

// This program does a simple calculation:
// calculate area of a rectangle

using System;

public class SimpleCalc

{
static void Main()
{
int width = 20;
int height = 5;
int area;
area = width * height;
Console._WriteLine(*'area = {0}", area);
}
}
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 7

All Rights Reserved

CsEss Chapter 1

Visual Studio 2019

e While it is possible to write C# programs using any
text editor, and compile them with the command-line
compiler, it is very tedious to program that way.

o An IDE makes the process of writing software much
easier.

— An IDE provides convenience items, such as a syntax-
highlighting editor.

— An IDE reduces the tedium of keeping track of
configurations, environment settings and file organizations.

e You may use Visual Studio 2019 throughout this
course to create and-compile your C# programs.

e Visual Studio 2019 is discussed in more detail in
Appendix A.

e In this course you may use any version of VS 2019,
including the free Visual Studio 2019 Community.

e Although itis easy to create and run-NET Core
programs using Visual Studio, in this course we will
use .NET Framework.

— We are using .NET Framework 4.7.2, which supports .NET
Standard, and comes bundled with Visual Studio 2019.

— Hence our programs will run on any .NET implementation,
including .NET Core.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 8
All Rights Reserved

CsEss

Visual Studio Sign In

Chapter 1

e When you first bring up Visual Studio on a new
device, you will be invited to sign in.

Visual Studio

Welcome!
Connect to all your developer services.

Signin to start using your Azure credits, publish code to a private Git
repasitory, sync your settings, and unlock the IDE.

Learn more

Sign in |

Don't have an account? Sign up

Mot now, maybe later.

e Sign in with any Microsoft ID.

e By doing so you will synchronize your settings among

devices and connect to online developer services.

Rev. 4.8.5

Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

CsEss Chapter 1

Creating a Console Application

e We will now create a simple console application using
Visual Studio.

— Qur program is the simple calculator whose code we showed
earlier.

1. From theVisual Studio start page click on "Create a new
project”. This will bring up the New Project dialog. (You can
also-use the menu File | New | Project when the main Visual
Studio 'window is open.)

él Clone or check out code

Get code from an onling’repository like GitHub or Azure
DevOps

‘i')@ Open a project or solution
Open a local Visual Studio project or .sln filg

¢, Open a local folder
Mavigate and edit code within any folder

"'@ Create a new project

Choose a project template with code scaffolding to gat
started

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 10
All Rights Reserved

CsEss Chapter 1

Creating a Console App (Cont'd)

2. Choose Console App (.NET Framework) with language C#.

Filtering by: C#

r.f‘* WPF App (.MET Framework)
e Windows Presentation Foundation client application

C# Windows Deskiop
nﬁf‘* Class Library ({NET Standard)
‘..'I: ! A project for creating a dass library that targets \NET Standard.

C# Android i0s Linwee macls Windows Library

Eﬂ* Cansole App (.NET Framewark)

A pragect for creating a‘@ammand-line application
C# Windows Zansclz
DC.‘I* Windows Formis App (.NET Framewark)
A project for creating.an application with a Windows Forms (WinForms) user interface
C# Windows Desktop
nﬁf‘* Class Library {.NET Framework)
‘..'I: ! A project for creating a C# dass library (.dil)
C# Windows Library
rf‘* IUnit Test Project (LMET Framework)
& A project that contains unit tests.

C# Windows Test

3. Click Next.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 11
All Rights Reserved

CsEss

Configure Your New Project

Chapter 1

4. In the Project name field, type SimpleCalcVs and for Location
browse to C:\OIC\CsEss\Demos. Leave Solution name as
SimpleCalcVs. Leave unchecked "Place solution and project in
the same-directory." ! For Framework select .NET Framework

4.7:2.

Configure your new project

Console App.(.NET Framework) c# Windows Console

Project name

SimpleCalcys

Location

C:\OIC\CsEss\Demos),

Solution name (j

SimpleCalcvs

|:| Place solution and project in the same directory

Framework

.NET Framework 4.7.2

5. Click Create.

! Examples in later chapters may place project and solution in the same directory.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

|_1

12

CsEss

Chapter 1

Program.cs Starter Code

e There will be a number of starter files. The key file is
Program.cs, which will be shown, ready to edit.

Rev. 4.8.5

program,csy, = > [

SimpleCalcy's - | &, SimpleCalcys.Program

A .;i‘l‘using System;

2 using System.Collections.Generic;
3 usinggSystem.Ling;
- usifie System.Text;
5 using Syskem.Threading.Tasks;
6
7 —Inamespace SimpleCalcvs
5N 1
U FETETENEE S
9 Bl class Ppegram
1@ A 1
BTErEnCaS
11 - static®wvoid Madn(string[] args)
12 7
13 3
14 1
15 1
16
Copyright © 2019 Object Innovations Enterprises, LLC 13

All Rights Reserved

CsEss Chapter 1

Using the Visual Studio Text Editor

e The file Program.cs will be open in the Visual Studio
text editor. Replace the starter code with the
highlighted code shown below:

using System;

using System.Collections.Generic;

using System.Ling;

using.-System.Text;
using: System.Threading.Tasks;

public class SimpleCalc

{
static vord Main(Q)
{
int width = 20;
int height ='5;
Int area;
area = width * height;
Console._WriteLine(area = {0}", area);
+
+
— Notice that the starter code provided-several using
statements. The only one that is needed.is.for the System
namespace.
— Unneeded ones can be removed by right-clicking over the
using area and selecting Remove ... from the context. menu.
-lusing System;
sing System.Collections.Generic;
. _:E Z’iz: ¢ Quick Actions and Refactorings. .. Ctrl+.
e B Rename. .. Ctri+R, Ctrl+R
Remove and Sort Usings Ctrl+R, Ctrl+G
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC

All Rights Reserved

14

CsEss Chapter 1

IntelliSense

e A powerful feature of Visual Studio is IntelliSense.

= IntelliSense will automatically pop up a list box allowing you
to easily insert language elements directly into your code.

using System;

=
pu=b:'[16c class simple@@lc
{ - 4
st;tiec‘v.cid Main(}
1
int width = 28; —
int height’= 5; |
int area;
area = width *height;
Console.Writeling]"area = {8}", area);
Console. |
« 1 @ SetWindowSize -
¥ H Title
A TreatControlCAsInput
A WindowHeight
A WindowlLeft
A WindowTop
A WindowWidth
@ Write y 4
& WriteLine - *.foiq -:-:-*s-:Ae.Rﬁ.’l'h:eL@ne(] (+_18 overloads)
e @3 A o F o f (Writes the currentﬁet_ermlnatur to the standard output stream.
— For now, don’t actually add another WriteL.ine() statement.
We’ll see the effect of the extra statement shortly.
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 15

All Rights Reserved

CsEss Chapter 1

Build the Project

e Building a project means compiling the individual
source files and linking them together with any
library files to create an IL executable .EXE file.

e To make iteasier to build, add the Build toolbar (if it
is not already present) by a right-click over the
toolbar area. Check Build.

Application Insights
v Build
Compare Files

Debug

e Then you can build the project'by using one of the
following:

— Menu Build | Build Solution or toolbar button & or
keyboard shortcut Ctrl+Shift+B.

— Menu Build | Build SimpleCalcVs or toolbar button & (this
just builds the project SimpleCalcVs)®.

% The two are the same in this case, because the solution has only one project, but some solutions have
multiple projects, and then there is a difference.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 16
All Rights Reserved

CsEss Chapter 1

Run the Project

e You can run the program without the debugger by
using one of the following:

— Menu-Debug | Start Without Debugging

— Toolbar button » (This button is not provided by default;
see Appendix A for how to add it to your Build toolbar.)

— Keyboard shortcut Ctrl + F5

e You canrun the'program in the debugger by using
one of the following:

— Menu Debug |- Start Debugging
— Toolbar button * st

— Keyboard shortcut F5.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 17
All Rights Reserved

CsEss Chapter 1

Pausing the Output

e If you run the program in the debugger from Visual
Studio, you will notice that the output window
automatically closes on program termination.

o To keep the window open, you may prompt the user
for some input.

publsc. class SimpleCalc

{

static void Main()

{
int width = 20;
int height = 5;
int area;
area = width * height;
Console._WriteLine(area = {0}, area);
Console._WriteLime('Prese Enter to exit');
Console.ReadLine();

}
}

e This program is saved as a Visual Studio solution in
Chap01\SimpleCalcVs.

e Remember that you can always make the console
window stay open by running without the'debugger
via Ctrl + F5.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 18
All Rights Reserved

CsEss Chapter 1

Visual C# and GUI Programs

e Microsoft’s implementation of the C# language,
Visual C#, works very effectively in a GUI
environment.

— Using Windows Forms (available in .NET Framework but
not .NET Core), it is easy to create Windows GUI programs

in C#:
Example: See' Chap01\SimpleCalcGui

-101 x|
Width | 20
o
Area (100

o We will discuss GUI programming using C#n
Chapter 6.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 19
All Rights Reserved

CsEss Chapter 1

.NET Documentation

e .NET Framework documentation is available online.

e |tis.now part of comprehensive Microsoft
documentation at

https://docs.microsoft.com

— Select .NET.

- 9 %] n@o +» @@\ =

V oy A i -

Microsoft Docs

docs.microsoft.com is the home forMierosoft documentation forend users, developers, and IT professionals.
Check out our quickstarts, tutorials, API reference, and‘code examples.

Enterprise Mobility
ASP.NET SQL + Security ’
Dynamics 365 ¢ Xamarin

Azure DevOps PowerShell
Microsoft Graph Microsoft Education

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 20
All Rights Reserved

CsEss

Summary

Chapter 1

NET is Microsoft's software platform for building
applications for many environments.

NET applications can be built using multiple
languages, including C#.

— C# isan object-oriented language designed by Microsoft for
NET.

NET Standard is-a base set of APIs common to all
NET platforms.

There are multiple implementations of .NET
supporting .NET Standard,including the classical
NET Framework and the newer .NET Core.

Visual Studio is a full-featured 4DE running on
Windows for building all types of .NET applications.

With Visual Studio it is easy toCreate and run
programs using C#.

You can access extensive .NET Framework
documentation online.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC

All Rights Reserved

21

CsEss Chapter 1

5%
Oé/)

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 22
All Rights Reserved

CsEss Chapter 2

Chapter 2

C# Overview for the
Sophistieated Programmer

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 23
All Rights Reserved

CsEss Chapter 2

C# Overview for the Sophisticated Programmer

Objectives

After-completing this unit you will be able to:

e Compile and run C# programs in your local
development environment.

e Describe the basic'structure of C# programs.

e Describe how related C# classes can be grouped into
namespaces.

e Describe objects and classes in C#.
e Perform input andoutput in C#.

e Outline the principle control structures and operators
in C#.

e Qutline the principle data typesin C#.

e Describe the difference between value and reference
types, and explain how C# achieves a unified.type
system through “boxing” and “unboxing.”

e Describe parameter passing in C#.
e Use structures, strings and arrays.
e Perform formatting in C#.

e Use exceptions in C#.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 24
All Rights Reserved

CsEss Chapter 2

Hello, World

e Whenever learning a new programming language, a
good first step is to write and run a simple program
that'will display a single line of text.

— ‘Such a program demonstrates the basic structure of the
language, including output.

—“You must learn the pragmatics of compiling and running the
program.

e Here is “Hello, World” in C#:
— See Hello\Hello.cs in the Chap02 directory.

// Hello.cs
class Hello
{ _ . _ -
public static int Main(string[] args)
{
System.Console._Writekmme("'Hello, World");
return O;
}
}
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 25

All Rights Reserved

CsEss Chapter 2

Compiling, Running (Command Line)

e The Visual Studio 2019 IDE (integrated development
environment) was introduced in Chapter 1, and we
will‘use it throughout the course.

— See Appendix A for more details.

— To open an existing project or solution, use the menu File |
Open | Project/Solution. You can then navigate to a .csproj
orcsln file.

e If you are-using the .NET SDK, you may do the
following:

— Open up Develaper Command Prompt for VS 2019.

Visual Studio 2019
Visual Studio Toals
.:._1 Del:uuggal:ule F‘au:kage Manager

VMware

Windows Kits Developer Command Prompt for V52019
WinZip Open Visual Studio 2019 Tools Command, Prompt
1 —

— Compile the program via the command line:

csc Hello.cs

— An executable file Hello.exe will be generated.” To execute
your program, type at the command line:

Hello

— The program will now execute, and you should see the
greeting displayed. That’s all there is to it!

Hello, World

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 26
All Rights Reserved

CsEss Chapter 2

Program Structure

// Hello.cs

class Hello

{
}

e Every C# program has at least one class.

— Aclass is the foundation of C#’s support of object-oriented
programming.

— A class encapsulates data (represented by variables) and
behavior (represented by methods).

— All of the code defining the class (its variables and methods)
will be contained between the curly braces.

— We will discuss classes in‘detail later.
e Note the comment at the beginning of the program.

— A line beginning with a double slash-is present.only for
documentation purposes and is ignored.by the compiler.

e Ctt files have the extension .cs.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 27
All Rights Reserved

CsEss Chapter 2

Program Structure (Cont’d)

// Hello.cs
class Hello

{
public static int Main(string[] args)

{
return 0O;
}

e There is a distinguished‘class which has a method
whose name must be Main.

— The method should be public and-static.

— An int exit code can be returned to the operating system. Use
void if you do not return-an exit code.

public static void Main(string[] args)
— Command line arguments are passed as an array of strings.
— The argument list can be empty:

public static void Main()

— The runtime will call this Main method—it is the entry point
for the program.

— All of the code for the Main method will be between the
curly braces.

— Note that in C#, it is not necessary for the file name to be the
same as the name of the class containing the Main method.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 28
All Rights Reserved

CsEss Chapter 2

Program Structure (Cont’d)

// Hello.cs
class Hello
{
pubkic static int Main(string[] args)
{
System.Console._WriteLine("'Hello, World");
return 0O;
i
}

e Every method in C# hasone or more statements.
e A statement is terminated by a semicolon.
— A statement may be‘spread out over several lines.

e The Console class provides support for standard
output and standard input:

— The method WriteLine() displays a string, followed by a
new line.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

29

CsEss Chapter 2

Namespaces

e Much standard functionality in C# is provided
through many classes in the .NET Framework.

e Related classes are grouped into namespaces.

o - The fully.qualified name of a class is specified by the
namespace, followed by a dot, followed by class name.

System.Console

e A using statement allows.a class to be referred to by
its class name alone.

— See Hello2\Hello2.cs.
// Hello2.cs

using System;

class Hello

{
public static int Main(string|[] args)
{
Console_WriteLine("'Hello, World™);
return O;
}
}
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 30

All Rights Reserved

CsEss Chapter 2

Variables

In.C#, you can define variables to hold data.

Variables represent storage locations in memory.

In.CH#, variables are of a specific data type.

—~ Some common.types are int for integers and double for
floating point numbers.

— You must declare variables before you can use them.

A variable declaration reserves memory space for the
variable andmay optionally specify an initial value.

int fahr = 86; // reserves space and assigns
// an intial value
int celsius; // reserves space but does

// not nitialize

— If an initial value is not specified, C# initializes the variable
to a default value, such as 0.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 31
All Rights Reserved

CsEss Chapter 2

Input in C#

e A useful program in C# will typically perform some
input.

e 'An easy, uniform way to obtain input for various
data types is to read the data in as a string and then
convert it to the desired data type.

— Use ReadLine() method of System.Console class to read in
a string.

— Use ToXxxx() methods of System.Convert class to convert
the data.

Console._WriteLine(''How many temperatures? ');
string buf = Console.ReadlLine();
int numTemp = Convert.Tolnt32(buf) ;

e Because this pattern of prompting for input and
reading it is common in our console programs, we
provide a simple InputWrapper class to'shorten our
code.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 32
All Rights Reserved

CsEss Chapter 2

More about Classes

e Although we will discuss classes in more detail later,
there is a little more you need to know now.

e ‘A class-can be thought of as a template for creating
objects:

— An object is an instance of a class.
e A class specifies data and behavior.
— The datais different for each object instance.

e In C#, you instantiate a class by using the new
keyword.

InputWrapper iw = new . InputWrapper();

— This code creates the object instance iw of the
InputWrapper class.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 33
All Rights Reserved

CsEss

Chapter 2

InputWrapper Class

e The InputWrapper class “wraps’ interactive input for
several basic data types.

The supported data types are int, double, decimal, and
string.

Methods getint, getDouble, getDecimal, and getString are
provided.

A prompt string is passed as an input parameter.

See the file InputWrapper.cs in directory InputWrapper,
which implements the class, and TestInputWrapper.cs,
which tests the-class.

e You do not need to'be familiar with.the
Implementation of InputWrapper.in order to use it.

That is the beauty of “encapsulation”—complex
functionality can be hidden by-an easy-to-use interface.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 34

All Rights Reserved

CsEss Chapter 2

Sample Program

e This program will convert from Fahrenheit to
Celsius.

— See Convert:

// Convert.cs
/7
using System;

class ConvertTemp

{
public static void Main(string[] args)

{
// Input 1S _done directly
Console._Write('Temperature. in Fahrenheit: ");
string buf = ConsolecReadLine();
int fahr = Convert.Tolnt32(buf);

int celsius = (fahr-= 32) *'5 / 9;
Console_WriteLine("fahrenheit = {0}", fahr);
Console._WriteLine("celsius = {0}", celsius);

// Use the InputWrapper class
InputWrapper iw = new InputWrapper();
fahr = 1w.getiInt(

"Temperature in Fahrenheit: ™);

celsius = (fahr - 32) * 5 / 9;
Console_WriteLine("fahrenheit = {0}", ¥ahr);
Console_WriteLine(celsius = {0}", celsius);

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 35
All Rights Reserved

CsEss Chapter 2

Input Wrapper Implementation

// InputWrapper.cs

//

// Class to wrap simple stream i1nput
// Datatypes supported:

// int

// double
// decimal
/7 string

using System;

class InputWrapper
{
public Int-getint(string prompt)
{
Console._Write(prompt);
string buf ="Console.ReadLine();
return Convert:Tolnt32(buf);

public double getDouble(string prompt)
{
Console._Write(prompt);
string buf = Console.ReadlLine();
return Convert.ToDouble(buf);

+
public decimal getDecimal(string_prompt)

{
Console.Write(prompt);
string buf = Console.ReadlLine();
return Convert.ToDecimal (buf);

+
public string getString(string prompt)

{
Console._Write(prompt);
string buf = Console.ReadLine();
return buf;

}
}

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 36
All Rights Reserved

CsEss Chapter 2

Compiling Multiple Files

e It is easy to compile multiple files at the command
line.

csc /out:Convert.exe *.cs
— This will.compile all of the files in the current directory.

—~ The /out option specifies the name of the .EXE file.
Directory. of C:\OIC\CsEss\ChapO2\Convert

02/18/2019 ~01:56 PM' <DIR>
02/18/2019 .01:56 PM <DIR>

02/18/2019 01:40 PM 144 app.config
0271872019 01:56 PM <DIR> bin
07/19/2001 08:33PM 909 Convert.cs
02/18/2019 01:40 PM 5,407 Convert.csproj
02/18/2019 01:56 PM 4,608 Convert.exe
11/13/2009 01:10 PM 898 Convert.sln
11/13/72009 01:38 PM 11,264 Convert.suo
05/17/2001 10:23 AM 747 InputWrapper.cs
02/18/2019 01:56 PM <DIR> obj

7 File(s) 23,977 bytes

4 Dir(s) 36,389,105,664 bytes free

— If multiple classes contain a Main method; you can‘use the
/main command line option to specify which class contains
the Main method that you want to use as the entry-point into
the program.

csc /out:Convert.exe *.cs /main:ConvertTemp

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 37
All Rights Reserved

CsEss Chapter 2

Control Structures

e C# has the familiar control structures of the C family
of languages:

—if

— while

~ do

— for

— switch
— break
— continue
— return
— goto

e EXxcept for switch, which is less error-prone in C#,
these controls all have standard semantics:

e There is also a foreach statement, which we will
discuss later in connection with arrays and
collections.

e The throw statement is used with exceptions.

e The lock statement can be used to enforce
synchronization in multi-threading situations.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 38
All Rights Reserved

CsEss Chapter 2

switch

e In C#, after a particular case statement is executed,
control does not automatically continue to the next
statement.

— You.must explicitly specify the next statement, typically with
a breakor goto label.

switch (code)
{
case 1:
goto case 2;
case 2:
Console_WriteLine('Low™);
break;
case 3:
Console_WriteLine("'"Medium™);
break;
case 4:
Console_WriteLine(""High'");
break;
default:
Console._WriteLine("'Special case);
break;

}

e You may also switch on a string data type.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 39
All Rights Reserved

CsEss Chapter 2

C# Operators

e The C# operators are similar to those in C and C++,
with similar precedence and associativity rules.

e There are three kinds of operators.

— Unary operators take one operand and use prefix notation
(e.g. =a) or postfix notation (e.g. a++).

— Binary operatorstake two operands and use infix notation
(e.g-a +.Db).

— The one ternary operator .2 takes three operands and uses
infix notation (e.g. expr? x :y).

e Operators are applied in'the precedence order shown
on the next page.

e For operators of the same precedence, order is
determined by associativity.

— The assignment operator is right-associative (operations are
performed from right to left).

— All other binary operators are left-associative (operations are
performed from left to right).

e Precedence and associativity can be controlled by
parentheses. The parentheses indicate which
operation is performed first, shown as the primary
operator (x) in the precedence table.

e C# has operators checked and unchecked, which will
be discussed later.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 40
All Rights Reserved

CsEss

Chapter 2

Precedence Table

e Precedence goes from the top (highest) to bottom

(lowest).

Category Operators

Primary xX) x.y T(X) a[x] x++ x--
new typeof sizeof checked
unchecked

Unary + - I ~ ++x --x ()X

Multiplicative * S %

Additive + -

Shift << >>

Relational < >/ <= >=018

Equality == 1=

Logical AND &

Logical XOR N

Logical OR |

Conditional &&

Conditional OR 11

Conditional ?:

Assignment = *= /= += -= <<= >>= §&=
A==

Rev. 4.85 Copyright © 2019 Object Innovations Enterprises, LLC 41

All Rights Reserved

CsEss Chapter 2

Types in C#

e There are three kinds of types:
= Value types
— Reference types
— Pointer.types
o Value typesdirectly contain their data.
— Each'variable of a-value type has its own copy of the data.

— Value types are typically allocated on the stack and get
automatically-destroyed when. the variable goes out of scope.

e Reference types do'not contain data directly, but only
refer to data.

— Variables of reference types-store references to data, called
objects.

— Two different variables can reference the same data.

— Reference types are typically allocated on the heap and
eventually get destroyed through a process known as.garbage
collection.

e Pointer types are only used in unsafe code.

— Appendix C discusses pointers and unsafe code.

! For a discussion of garbage collection see Chapter 6 of Object Innovations’ course .NET Framework
Using C#.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 42
All Rights Reserved

CsEss

Chapter 2

Simple Types

e The simple data types are general-purpose, value
data types, including numeric, character, and
boolean.

The sbyte data type is an 8-bit signed integer.

The byte data type is an 8-bit unsigned integer.

The short data type is a 16-bit signed integer.

The ushort 16-bit unsigned integer.

The int data’type is‘a 32-bit signed integer.

The uint 32-bit‘unsigned integer.

The long data type is‘a 64-bit signed integer.

The ulong 64-bit unsigned integer.

The char data type is a Unicode character (16 bits).
The float data type is a single-precision floating: point.
The double data type is a double-precision floating point.
The bool data type is a Boolean (true or false).

The decimal data type is a decimal type with 28 significant
digits (typically used for financial purposes).

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC

All Rights Reserved

43

CsEss

Types in System Namespace

Chapter 2

e There is an exact correspondence between the simple
C# types and types in the System namespace.

— C# reserved words are simply aliases for the corresponding

type.in the System namespace.

C# Reserved Word Type 1In System Namespace
sybte System.SByte
byte System.Byte
short System.Intl6
ushort System.UIntl6
int System. Int32
uint System_UInt32
long System. Int64
ullong System.UInt64
char System.Char
Tloat System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

Rev. 4.8.5

Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

44

CsEss

Chapter 2

Integer Data Types

o C# defines the following 9 integral data types:

Thessbyte type is a signed 8-bit integer with the range of
—128 to 127, inclusive.

The shorttype is a signed 16-bit integer with the range of
—32768to 32767, inclusive.

The int type is a signed 32-bit integer with the range of
—2147483648 t0 2147483647, inclusive.

The long type is a signed 64-bit integer with the range of
—09223372036854775808t0 9223372036854775807,
inclusive,

The byte type is an-unsigned 8-bit integer with the range of 0
to 255, inclusive.

The ushort type is an unsigned 16-bit integer with the range
of 0 to 65535, inclusive.

The uint type is an unsigned 32-bit integer with the range of
0 to 4294967295, inclusive.

The ulong type is an unsigned 64-bit integer-with the-range
of 0 to 18446744073709551615, inclusive.

The char type is an unsigned 16-bit integer with the range of
0 to 65535, inclusive. This set of values represents the
Unicode character set.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 45

All Rights Reserved

CsEss Chapter 2

Floating Point Data Types

e C# supports the following pre-defined floating point
data types.

— The float data type is a single-precision floating point.

— The double data type is a double-precision floating point.

e The float data type is represented in the IEEE 754
32-bit single-precision floating point format.

e The double data type is represented in the IEEE 754
64-bit double-precision floating point format.

e IEEE 754 define the following-special floating point
values:

— Positive zero results from dividing 0.0 by a non-zero positive
value.

— Negative zero results from dividing 0.0 by a non-zero
negative value.

— Positive infinity results from dividing a'non-zero positive
value by 0.0.

— Negative infinity results from dividing a non-zero negative
value by 0.0.

— Not-a-Number (also known as NaN) results from dividing
0.0 by 0.0.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 46
All Rights Reserved

CsEss Chapter 2

Implicit Conversions

e Implicit conversions are provided by the compiler
automatically where they are required.

e ‘Implicit conversions are guaranteed to be safe, in that
no loss of information can occur.

e For example, the conversions from int to long, or
from float to double, are implicit conversions, which
are inherently safe.

— This is because all values that can be represented by an int
can be precisely represented by.a long, and all values that can
be represented.hy a float canbe precisely represented by a
double.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 47
All Rights Reserved

CsEss Chapter 2

Explicit Conversions

e EXxplicit conversions are performed only where the
programmer uses a cast expression explicitly.

e EXxplicit conversions are risky, in that loss of
information can easily occur.

e ‘Special‘care may need to be taken when explicitly
casting an expression.

— For example, the eonversions from long to int, or from
double to'float, are explicit. conversions, which are
inherently risky.

— This is because not all values that can be represented by a
long can be precisely-represented by an int, and not all
values that can be represented by a‘double can be precisely
represented by a float.

e An explicit conversion can also be used toforce the
compiler to perform the desired type of arithmetic
operation (e.g. floating point division).

// Cast one of the i1ntegers to double and use
// a double variable for celsius

double dblCel = (fahr - (double) 32) *.5 / 9;

e If an expression attempts to use an unsafe conversion,
and the programmer has not provided an explicit cast
to perform the conversion, then a compiler error will
be generated.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 48
All Rights Reserved

CsEss Chapter 2

Boolean Data Type

e The bool data type represents a Boolean value.

~ Boolean values are also known as logical values and may
only be set to the values true or false.

o _No predefined conversions exist between bool and
other types.

e In Cand C++, there are implicit conversions.

— An integer value of.0/or pointer value of null converts to
false.

— A non-zero or'non-null value converts to true.

e In C#, you have toexplicitly use relational operators.
iIT (numTemp == 0)

iIT (objRef = null)

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 49
All Rights Reserved

CsEss Chapter 2

struct

e A struct is a value type which can group
inhomogeneous types together.

— It can-also have constructors and methods, which we will

look at later.
public struct Hotel
{
public string city;
public string name;
public \int roems;
public decimal cost;
+

e A struct object isicreated.using the new operator.

Hotel hotel = new Hotel();

e A struct object can also becreated without new, but
then the fields will be unassigned, and the-object
cannot be used until the fields have been initialized.

Hotel hotel;

hotel .name = "'‘Sheraton"';

// Now 1t iIs OK to use hotel.name field
hotel.city = "Atlanta';

hotel .rooms = 100;

hotel .cost = 50.00m;

// Now i1t 1s OK to use hotel object

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC
All Rights Reserved

50

CsEss Chapter 2

Uninitialized Variables

e The C# compiler will detect attempts to use
uninitialized variables.

— A struct object cannot be used until its fields have been
assigned.

— A simple variable must be initialized before it can be used.

Int X;
ConsoleWriteLine("x = " + X); // error
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 51

All Rights Reserved

CsEss Chapter 2

Enumeration Types

e Finally, an enumeration type is a distinct value type
with named constants.

e 'An enumeration type is a distinct type with named
constants.

e ‘Every enumeration type has an underlying type,
which is one of:

— byte
— short
— int

— long

e An enumeration type is‘defined‘through an enum
declaration.

public enum BookingStatus : byte

{
HotelNotFound, // 0 implicitly

RoomsNotAvailable, // 1 implicitly
Ok =5 // explicit value

— If the type is not specified, int is used.

— By default, the first enum member is assigned the value 0,
the second member 1, etc.

— Constant values can be explicitly assigned.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 52
All Rights Reserved

CsEss Chapter 2

Nullable Types

e Sometimes it is convenient to allow a special null
value for a variable, as well as the range of values
allowed by the underlying type.

— A good example is in databases, where a null value is
typically used to represent missing data.

e You.can declare avariable to be nullable by placing a
guestion mark after the data type.

INt? number;

— This is equivalent to using System.Nullable.

System._Nullable<rnt>. number;

e You can then test whether thevariable has this
special null value by usingthe property HasValue.

e See the example program Nullable.

public static void Main()
{
int? number = null;
ShowNumber (number) ;
number = 37;
ShowNumber (number) ;

}

private static void ShowNumber(int? number)
{
1T (number_HasValue)
Console._WriteLine(number);
else
Console._WriteLine(""UNDEFINED'™);

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 53
All Rights Reserved

CsEss Chapter 2

Reference Types

e A variable of a reference type does not directly
contain its data, but instead provides a reference to
the-data stored elsewhere (on the heap).

o In"'C#, there are the following kinds of reference
types:

— Class
— Array
— Interface

— Delegate

e Reference types have a special value, null, which
indicates the absence ‘of an instance.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 54
All Rights Reserved

CsEss Chapter 2

Class Types

e A class type defines a data structure that has data
members, function members, and nested types.

e Class types support inheritance.

— Throughinheritance, a derived class can extend or specialize
a base class.

— Wewill discuss inheritance and other details about classes in
the next.chapter.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 55
All Rights Reserved

CsEss Chapter 2

object

e The object class type is the ultimate base type for all
types in C#.

— Every C# type derives directly or indirectly from object.

e The object'’keyword in C# is an alias for the
predefined System.Object class.

e System.Object has methods such as ToString(),
Equals()-and Finalize(), which we will study later.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 56
All Rights Reserved

CsEss Chapter 2

string

e The string class encapsulates a Unicode character
string.

e The string keyword is an alias for the pre-defined
System.String class.

e ‘The string typeis a sealed class.

— A sealed class is‘one that cannot be used as the base class for
any other classes.

e The stringclass inherits directly from the root object
class.

e String literals are defined using double quotes.

e There are useful built-in.methods for string.

— For now, note that the Equals(), method can be.used to test
for equality of strings.

string a = "hello";
1T (a.Equals('hello™))
Console_WriteLine("equal');
else
Console_WriteLine(''not equal™);

e There are also overloaded operators:
1T (a == "hello™)

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 57
All Rights Reserved

CsEss Chapter 2

Copying Strings

Recall that C# has value types and reference types.
= A value type contains all of its own data.

— Adreference type refers to data stored somewhere else.

As a class, string is a reference type.

If a reference variable gets copied to another
reference variable, both will refer to the same object.

If the object referenced by the second variable is
changed, thedfirst variable will also reflect the new
value.

"hello'';
sl; // s2 also refers to "hello”

string sl
string s2

e To provide more predictable program behavior,
strings in C# are immutable.

— Once assigned a value, the object a string refers'to-.cannot be
changed.

— What you may think of as changing the value of a string'is
really giving a new reference.

string s = "bat";

s = s + "man"; // a new object iIs created and
// s is assigned to refer to this
// new object

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 58
All Rights Reserved

CsEss Chapter 2

StringBuilder Class

e As we have just discussed, instances of the string class
are immutable.

— As aresult, when you manipulate instances of string, you are
frequently obtaining new string instances.

— Depending on your applications, creating all of these
instances may be expensive.

— Thel,NET library provides a special class, StringBuilder
(located in the System.Text namespace), in which you may
directly manipulate the underlying string without creating a
new instance.

— When you are done; you can create a string instance out of
an instance of StringBuilder by using the ToString()
method.

e A StringBuilder instance has a capacity and a
maximum capacity.

— These capacities can be specified in‘a-constructor whenthe
instance is created.

— By default, an empty StringBuilder instance starts outwith
a capacity of 16.

— As the stored string expands, the capacity will be increased
automatically.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 59
All Rights Reserved

CsEss Chapter 2

StringBuilderDemo

e The program StringBuilderDemo provides a simple
demonstration of using the StringBuilder class.

— It shows the starting capacity and the capacity after strings
are appended. At the end, a string is returned.

// StringBuilderDemo.cs

using-System;
using System.Text;

public class StringBuilderDemo

{
public static void Main(string[] args)
{
StringBuilder ‘build = new StringBuilder();
Console._WritelLine(capacity = {0}",
build.Capacity);
buir Id.Append(
"This 1s the fTirst sentence.\n");
Console._WriteLine(*'capacity = {0},
build.Capacity);
buirld.Append(
"This 1s the second sentence.\n");
Console._WriteLine(capacity = {0}",
build.Capacity);
build.Append(*'This 1s the last sentence.\n");
Console._WriteLine(capacity = {0},
build.Capacity);
string str = build.ToString();
Console._Write(str);

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 60
All Rights Reserved

CsEss Chapter 2

Classes and Structs

e While in C++ the concept of class and struct is very
close, there is more of a fundamental difference
between them in C#.

— In C++, a class has default visibility of private and a struct
has default visibility of public, and that is the only difference.

e In.C#, the key difference between a class and a struct
Is that-a class is-a reference type and a struct is a
value type.

e A class must be instantiated explicitly, using new.

— The new instance'is created onthe heap, and memory is
managed by the system through a garbage collection process.

e A struct instance may simply bedeclared, or you may
use new.

— For a struct, the new instance is created on the stack, and the
instance will be deallocated when it‘goes out.of scope.

e There are different semantics for assignment,
whether done explicitly or via call-by-value
mechanism in a method call.

— For aclass, you will get a second object reference and both
object references refer to the same data.

— For a struct, you will get a completely independent copy of
the data in the struct.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 61
All Rights Reserved

CsEss Chapter 2

Static and Instance Methods

e We have seen that classes can have different kinds of
members, including fields, constants, and methods.

— A method implements behavior that can be performed by an
object or aclass.

~_Ordinary methods, sometimes called instance methods, are
invoked through an object instance.

Account acc = new Account();
acc.Deposit(25);

— Static methods are invoked through a class and do not depend
upon the existence of any instances.

int sum = SimpleMath.Add(5, 7);

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 62
All Rights Reserved

CsEss Chapter 2

Method Parameters

e Methods have a list of parameters, which may be
empty.

— Methods either return a value or have a void return.

— Multiple methods may have the same name, so long as they
have different signatures (a feature known as method
overloading).

— Methods have-the same signature if they have the same
number of parameters and.these parameters have the same
types and modifiers (such as ref or out).

e The return type-does not contribute to defining the
signature of a method. By default, parameters are
value parameters, meaning copies.are made of the
parameters.

— The keyword ref designates a reference parameter, in which
case, the parameter inside the method and the corresponding
actual argument refer to the same object.

— The keyword out refers to an output parameter, which is the
same as a reference parameter, except that'on-the calling side,
the parameter need not be assigned prior to the-call.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 63
All Rights Reserved

CsEss Chapter 2

No “Freestanding” Functions in C#

e In.C#, all functions are methods and, therefore,
associated with a class.

— There-is no such thing as a freestanding function, as in C and
C++.

~ “All'functions are methods” is rather similar to “everything is
an object” and reflects the fact that C# is a pure object-
oriented language.

— The advantage of all functions being methods is that classes
become anatural organizing principle. Methods are nicely
grouped together.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 64
All Rights Reserved

CsEss Chapter 2

Classes with All Static Methods

e Sometimes part of the functionality of your system
may not be tied to any data, but may be purely
functional in nature.

e In"C#, you would organize such functions into classes
that have all static methods and no fields.

e Theprogram TestSimpleMath provides an elementary
example.

// SimpleMath.cs

public class SimpleMath

{
public static it Add(int x, Int y)
{
return x + y;
}

public static int Multiply(int X, Int y)
{

}
}

return x * y;

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 65
All Rights Reserved

CsEss Chapter 2

Parameter Passing

e Programming languages have different mechanisms
for passing parameters.

¢ In the C family of languages, the standard is “call-by-
value.”

— This means that the actual data values themselves are passed
to-the method.

— Typically, these values are pushed onto the stack and the
called function obtains its‘ewn independent copy of the
values.

— Any changes made to these values.will not be propagated
back to the calling program. C# provides this mechanism of
parameter passing asthe default, but C# also supports
reference parameters and output parameters.

— In this section, we will examine, all three of these
mechanisms, and we will look at the ramifications of passing
class and struct data types.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 66
All Rights Reserved

CsEss Chapter 2

Parameter Terminology

e Storage is allocated on the stack for method
parameters.

— This storage area is known as the activation record.
— It is popped when the method is no longer active.

~ The formal parameters of a method are the parameters as
seen within the method.

— They are)provided storage in the activation record.

— The arguments of a method are the expressions between
commas in the parameter list of the method call.

int sum = SimpleMath:Add(5, 7);
// arguments are
// 5 and 7

public static int Add(int x; int y)

{ // formal parameters are
// x and. y
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 67

All Rights Reserved

CsEss Chapter 2

Value Parameters

e Parameter passing is the process of initializing the
storage of the formal parameters by the actual
parameters.

e The default- method of parameter passing in C# is
call-by-value, in which the values of the actual
parameters are copied into the storage of the formal
parameters.

— Call-by-value is'safe, because the method never directly
accesses the actual parameters, only its own local copies.

e But there are drawbacks to call-by-value:

— There is no direct way to modify the value of an argument.
You may use the return type of the method, but that only
allows you to pass one value back to the calling program.

— There is overhead in copying alarge object.

e The overhead in copying a large:objectis borne-when
you pass a struct instance.

— If you pass a class instance, or an instance of-any other
reference type, you are passing only a reference‘and not the
actual data itself.

— This may sound like call-by-reference, but what you are
actually doing is passing a reference by value.

— Later in this section, we will discuss the ramifications of
passing struct and class instances.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 68
All Rights Reserved

CsEss Chapter 2

Reference Parameters

e Consider a situation in which you want to pass more
than one value back to the calling program.

e C# provides a clean solution through reference
parameters.

—You declare areference parameter with the ref keyword,
which is placed before both the formal parameter and the
actual parameter.

— A reference parameter does not result in any copying of a
value.

— Instead, the formal parameter and-the actual parameter refer
to the same storage location.

— Thus, changing the formal parameter will result in the actual
parameter changing, as both.are referringto exactly the same
storage location.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 69
All Rights Reserved

CsEss Chapter 2

Reference Parameters Example

e The program RefOutMath illustrates using ref
parameters.

— A single method Calculate passes back two values as
reference parameters.

static void Main(string[] args)

{

// refF keyword i1s used 1In front of the arguments
// Varwvables must be initialized before used as
// ref arguments
int sum = 0, product = 0;
Calculate(5, 7, ref sum, ref product);
Console._WriteLine('sum = {0}, sum);
Console._Writekine(product-= {0}, product);

static void Calculate(int x, ‘int.y, ref int sum,
ref int prod)

sum = X + y;
prod = X * y;
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 70

All Rights Reserved

CsEss Chapter 2

Output Parameters

e A reference parameter is used for two-way
communication between the calling program and the
called program, both passing data in and getting data
out.

e Thus,reference parameters must be initialized before
use,

— Intheprevious example, we are only obtaining output, so
initializing the variables only to assign new values is rather
pointless:.

— C# provides far'this case with'output parameters.

— Use the keyword out-wherever you would use the keyword
ref.

— Then you do not have to initialize the variable before use.

— Naturally, you could not use an-out parameter inside the
method; you can only assign it.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 71
All Rights Reserved

CsEss Chapter 2

Output Parameters Example

e The program RefOutMath also illustrates using out
parameters.

— A second method Calculate2 passes back two values as
output parameters.

static void Main(string[] args)

{

// out-keyword is used in front of the arguments
// Variables need not be initialized before used as
// out arguments
int sum2; -product?2;
Calculate2(15, 7, out sum2, out product2);
Console._Writekine('sum.= {0}, sum2);
Console._WriteLine("product = {0}, product2);

// You cannot define overloaded methods that differ
// only on ref and out

static void Calculate2(int X, int y, out ¥Int sum,
out Int prod)

sum = X + Vy;
prod = x * vy;
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 72

All Rights Reserved

CsEss Chapter 2

Structure Parameters

e A struct is a value type, so that if you pass a struct as
a'value parameter, the struct instance in the called
method will be an independent copy of the struct in
the calling method.

e _The program HotelStruct illustrates passing an
instance of a Hotel struct by value.

e The object hotel in the RaisePrice() method is an
independent copy of the«object ritz in the Main()
method.

— This figure shows the values in both structures after the price
has been raised for hotel.

— Thus, the change in price-does not propagate back to Main().

Main ritz Boston
Ritz
100

$200.00

RaisePrice hotel Boston
Ritz
100

$250.00

— The program HotelStructRef has the same struct definition,
but the test program passes the Hotel instance by reference.

— Now the change does propagate, as you would expect.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 73
All Rights Reserved

CsEss Chapter 2

Class Parameters

e A class is a reference type, so that if you pass a class
instance as a value parameter, the class instance in
thecalled method will refer to the same object as the
reference in the calling method.

e _The program HotelClass illustrates passing an
instance of a Hotel class by value.

— Thisfigure illustrates how the hotel reference in the

RaisePrice() method refers to the same object as the ritz
reference in Main().

Main ritz Boston
Ritz
100
$250.00
RaisePrice hotel

— Thus, when you change the price in‘the RaisePrice() method,

the object in Main() is the same object.and shows the new
price.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 74
All Rights Reserved

CsEss

Method Overloading

Chapter 2

e In a traditional programming language, such as C,
you need to create unique names for all of your
methods.

If methods basically do the same thing, but only
apply todifferent data types, it becomes tedious to
create unique‘names.

— For example, suppose-you have a FindMax() method that
can find-the maximum of two int, two long, or two string.

— If we needta-.come up with a unigue name for each method,
we would have to create method names, such as
FindMaxInt(), FindMaxlkong(), and FindMaxString().

In C#, as in other object-oriented languages such as
C++ and Java, you may-overload method names.

— That is, different methods canthave the same name, if they
have different signatures.

— Two methods have the same signature’if they have the same
number of parameters, the parameters have the same data

types, and the parameters have the same modifiers (none, ref,

or out).

— The return type does not contribute to defining the signature
of a method.

— So, in order to have two functions with the same name, there

must be a difference in the number and/or types and/or
modifiers of the parameters.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC

All Rights Reserved

75

CsEss Chapter 2

Method Overloading (Cont’d)

e At runtime, the compiler will resolve a given
invocation of the method by trying to match up the
actual parameters with formal parameters.

— ‘A match occurs if the parameters match exactly or if they can
match through an implicit conversion.

— “For the exact matching rules, consult the C# Language
Specification.

e The program OverloadDemo illustrates method
overloading.

— The method FindMax() is overloaded to take either long or
string parameters.

— The method is invoked three times, for int, long, and string
parameters.

— There is an exact match for the case of long.and string.

— The call with int actual parameters can resolve to the long
version, because there is an implicit conversion of int into
long.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 76
All Rights Reserved

CsEss Chapter 2

Variable Length Parameter Lists

e Our FindMax() methods in the previous section were
very specific with respect to the number of
parameters—there were always exactly two
parameters.

e _Sometimes you may want to be able to work with a
variable.-number of parameters, for example, to find
the-maximum of two, three, four, or more numbers.

e C# provides the params.keyword, which you can use
to indicatethat an array of parameters is provided.

— Sometimes you may want to provide both a general version
of your method that takes a variable number of parameters
and also one or more-special versions that take an exact
number of parameters.

— The special version will be called in preference, if there is an
exact match. The special versions-are more efficient.

e The program VariableMax illustrates a general
FindMax() method that takes a variable number of
parameters.

— There is also a special version that takes two parameters.

— Each method prints out a line identifying itself, so you-can
see which method takes precedence.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 77
All Rights Reserved

CsEss Chapter 2

Arrays

e An array is a collection of elements with the following
characteristics:

— All array elements must be of the same type. The element
type of an array can be any type, including an array type. An
array of arrays is often referred to as a jagged array.

—~An array. may have one or more dimensions. For example, a
two-dimensional-array can be visualized as a table of values.
The number of dimensions is known as the array’s rank.

— Array elements are accessed using one or more computed
integer values, each of which is'’known as an index. A one-
dimensional array has one index.

— In C#, an array index starts at 0, as in other C family
languages.

— The elements of an array are-created when the array object is
created. The elements are automatically destroyed when there
are no longer any references to the array object.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 78
All Rights Reserved

CsEss Chapter 2

One-Dimensional Arrays

e An array is declared using square brackets [] after
the type, not after the variable.

int [] a; // declares an array of iInt

— Note that the size of the array is not part of its type.

—~ The variable declared is a reference to the array.

e You create the array-elements and establish the size
of the array using the new operator.

a = new Int[10]; // creates 10 array elements

— The new array elements start out with the appropriate default
values for the type (0 for int).

e You may both declare and initialize array elements
using curly brackets, as in. C/C++,.

int [] a=4{2, 3, 5, 7, 11};

e You can indicate you are done with the array
elements by assigning the array reference to null.

a = null;

— The garbage collector is now free to deallocate the elements.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 79
All Rights Reserved

CsEss Chapter 2

System.Array

e Arrays are objects.
= System.Array is the abstract base class for all array types.

e Accordingly, you can use the properties and methods
of System.Array for any array.

Array.Sort(a); // sorts the array

for (ant 1 = 0; 1 < a.Length; 1++)
Console Write("'{0} ", a[1]);

Console._WriteLine();

e For a samplearray program, see ArrayDemao.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 80
All Rights Reserved

CsEss Chapter 2

Jagged Arrays

e You can declare an array of arrays, or a “jagged”
array.

— Each.row can have a different number of elements.

int [][] binomial;

e You then create the array of rows, specifying how
many, rows there-are (each row is itself an array):

binomial =.new int [rows][];

e Next you create the individual rows:

binomial[1] = newant [1+1];
e Finally, you can assign individual array elements:

binomial[0][O0] = 1;

e The example program creates.and prints Pascal’s
triangle.

— See Pascal.

RPRRRR
DWN PR
o wR

1

4 1

e Higher-dimensional jagged arrays can be created
following the same principles.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 81
All Rights Reserved

CsEss Chapter 2

Rectangular Arrays

e C# also permits you to define rectangular arrays.

~ Allrows have the same number of elements.

e Firstyou declare the array:
int [,] MultTable;

e Then you create all of the array elements, specifying
the number of rows.and columns:

MultTable = new int[rows, columns];

e Finally, you can‘assign individual array elements:
MultTable[i,j] = i * j;

e The RectangularArray program creates and prints out
a multiplication table.

O O O O O
0 1 2 3 4
0 2 4 6 8
0] 3 6 9 12
O 4 8 12 16

e Higher dimensional rectangular arrays can be
created following the same principles.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 82
All Rights Reserved

CsEss Chapter 2

foreach for Arrays

e C# provides a foreach loop that can be used to iterate
through the elements of an array.

e The sample code used nested foreach loops to print all
of the.elements of a jagged array on the same line.

— See Pascal.
foreach. (int[] row 1n binomial)
{ foreach (int-x .In row)
{ Console Write(''{0} ', X);
gonsole.WriteLine();
+
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 83

All Rights Reserved

CsEss Chapter 2

Boxing and Unboxing

e One of the strong features of C# is that it has a
unified type system.

e Every type, including the simple built-in types, such
as int, derive from System.ODbject.

— In C#; everything is an object.

e A language'such-as Smalltalk also has such a feature,
but pays:the priceof inefficiency for simple types.

e Languagessuch as/C++and Java (before Java 5.0)
treat simple built-in types differently than objects,
thus obtaining efficiency, but at the loss of a unified
type system.

e C# enjoys the best of both worlds through a process
known as “boxing.”

— “Boxing” converts a value type, such as an int or a struct, to
an object and does so implicitly.

— “Unboxing” converts a boxed value type (stored on.the heap)
back to an unboxed, simple value (stored on-the stack).
Unboxing is done through a type cast.

Int X = 5;
object o = x; // boxing
x = (Int) o; // unboxing

e But there is a performance penalty from boxing and
unboxing.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 84
All Rights Reserved

CsEss Chapter 2

Implicitly Typed Variables

e The var keyword lets you declare and initialize a
variable without explicitly specifying a type.

— But the variable still has a type, inferred from the expression
on the right-hand side.

var num = 55;
// type is Int32

var-word = ''Hello!";
// type is String

— The C# var-is not a*“variant” data type, such as var in
JavaScript.

e The var keyword can also be used to declare and
initialize an array.

var primes = new[] { 2, 3,5, 7, 11};
// type i1s Int32[]

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 85
All Rights Reserved

CsEss Chapter 2

Implicitly Typed Variables — Example

e See ImplicitType.

static void Main(string[] args)
{
var.-num = 55;
ShowObject(num) ;
ShowTypelnfo(num) ;

var_word. = "Hello!";
ShowOb ject(word) ;
ShowTypelnfo(word);

var primes, = new[] { 2,.3, 5, 7, 11 };
ShowArray(primes);
ShowTypelnfo(primes);

var words = new ‘[[} {"one', "two', 'three'};
ShowArray(words) ;
ShowTypelnfo(words) ;

}

e Here is the output:

55

Type = Int32

Base class = System.ValueType
Hello!

Type = String

Base class = System.Object
235711

Type = Int32[]

Base class = System.Array
one two three

Type = String[]

Base class = System.Array

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 86
All Rights Reserved

CsEss Chapter 2

Output in C#

e Simple output (e.g. for debugging) for various data
types can be done using Console.WriteLine() method
applied to a string.

— The ToString() method of System.Object will provide a
string representation for any data type.

— “For custom data types, you should override ToString().

— You-can use the + concatenation operator for strings to build
up an output string (a technique that can also be applied in
other contexts, such/as building a SQL query string).

Int x = 24;

int y = 26;

Console._WriteLine("Product of " + x + "™ and "
+y + " ias "+ x*y);

e Alternatively, you can use {0}, {1}, etc. as
placeholders.

Console._WriteLine("Product of {0} and {1} is {2}",
X, Y, X*Y);

Output:
Product of 24 and 26 i1s 624

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 87
All Rights Reserved

CsEss Chapter 2

Formatting

e C# has extensive formatting capabilities, which you
can control through the placeholders.

— Simplest: {n}, wherenisO0, 1, 2, ...

— Control width: {n,w}, where w is width (positive for right-
justified and negative for left-justified)

— Format string: {n:S}, where S is a format string

— Width-and format'string: {n,w:S}

e A format string consists of a format character
followed (optionally) by a precision specifier.

Format Character Meaning
C Currency (locale specific)
D Decimal, integer
E Exponential (scientific)
F Fixed-point
G General (E or F)
N Number with embedded commas
X Hexadecimal
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 88

All Rights Reserved

CsEss Chapter 2

Formatting Example

double p1 = Math.PI;
decimal cost = 70.45m;
Console_WriteLine(''{0,30}", pi1);

// width 30
Console-WriteLine(''{0,-30}", pi1);

// left justified
Console WriteLine(''{0,30:F}", pi);

// Tixed point
Console . Writekine(''{0,30:F4}", pi);

// precision 4
ConsoleWriteLine(''{0,30:C}", cost);

// currency

Output:

3.1415926535897931
3.1415926535897931

3.14
3.1416
$70:45
— See FormatDemo
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 89

All Rights Reserved

CsEss Chapter 2

Exceptions

e C# provides an exception mechanism similar in
concept to exceptions in C++ and Java.

e EXceptions are implemented by the Common
Language Runtime, so exceptions can be thrown in
one .NET language and caught in another.

e Theexception mechanism involves the following
elements:

— Code that’'might encounter an exception should be enclosed
in a try block.

— Exceptions are caught in a.catch block.

— An Exception objectis passed.as a‘parameter to catch. The
data type is either System.Exception or a derived type.

— You may have multiple catch-blocks. A match.is made
based on the data type of the Exception object.

— An optional finally clause contains code that will be executed
whether or not an exception is encountered.

— Inthe called program, an exception is raisedthrough a.throw
statement.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 90
All Rights Reserved

CsEss

Chapter 2

Exception Example

e See ExceptionDemo\Stepl.

using System;

public class ExceptionDemo

{
public static int Main(string[] args)
{
int prod;
long lprod;
try
{
prod = CheckedMultiply(56666, 57777L);
Console _WriteLine('product = {0}, prod);
catch (OverflowException e)
{
Console._WriteLine(
"Overflow Exception: {0}, e.Message);
Console._WriteLine(
"Overflow Exception: {0}, e);
+
catch (Exception e)
{
Console._WriteLine(
"Exception: {0}, e.Message);
Console._WriteLine("Exception: {0}, e);
+
Console_WriteLine("count = {0}'", count);
return O;
+
+
Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 91

All Rights Reserved

CsEss Chapter 2

Checked Integer Arithmetic

e By default in C#, integer overflow does not raise an
exception.

— Instead, the result is truncated.

— The checked operator will cause the integer calculation to
check for overflow and throw an exception if an overflow
condition arises.

— You.can cause-all integer arithmetic to be checked via the
/checked compiler command line switch.

— You can turn-off checking by the unchecked operator.

— Unchecked arithmetic is faster; but less safe.
e The following method can throw two different kinds
of exceptions:

private static Int CheckedMultiply(
object a, object b)

{
int product = checked((int) a * (int) b);
count++;
return product;

by

— The type casts can fail, resulting in InvalidCastException.

— The multiplication can overflow, resulting in
OverflowException.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 92
All Rights Reserved

CsEss

Throwing New Exceptions

Chapter 2

e In.general, it is wise to handle exceptions, at least at

some level, near their source.
— You have the most information available.

— See ExceptionDemo\Step2.

e Accommon pattern is to create a new exception object
that captures more detailed information and throw

this on'to-the calling program.
private static iInt CheckedMultiply(

object a, object b)

{

int First, second;
try
{

}

catch (InvalidCastException e)

{

first = (int) a;

count++;
throw new Exception(

"First operand 1s not an-int", e);

+
try

{
}

catch (InvalidCastException e)

{

second = (int) b;

count++;
throw new Exception(

""Second operand i1s not an int", e);

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC

All Rights Reserved

93

CsEss Chapter 2

finally

try
{

int product = checked(first * second);
return product;

¥

catch (OverflowException e)

{

throw new Exception(
"Integer overflow", e);

inally

count++;

N e b a

}

e A finally block is always executed when control leaves
a try block.

— In the example above, the counter is always incremented,
whether or not an exception occurs.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 94
All Rights Reserved

CsEss Chapter 2

System.Exception

e The System.Exception class provides a number of
useful methods and properties for obtaining
information about an exception.

e Message returns a text string providing information
about/the exception.

— This message is set'when the exception object is constructed.

— If no'message is specified, a generic message will be
provided-indicating the type of the exception.

— The message-property is read-only. (Hence, if you want to
specify your own message, you-must construct a new
exception object, as-done in the example above.)

e StackTrace returns a text string providing a stack
trace at the place where the exception arose.

e InnerException holds a reference to another
exception.

— When you throw a new exception, it is desirable not to lose
the information about the original exception.

— The original exception can be passed as a parameter when
constructing the new exception.

— The original exception object is then available through the
InnerException property of the new exception.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 95
All Rights Reserved

CsEss Chapter 2

Lab 2

Implementing a Customers Class

In this-lab, you will begin the Acme Travel Agency case study by
implementing a simple Customers class in C#. You are provided
with starter code that defines a class for an individual customer and
a‘test program. You are to implement a class that can be used by
Acme- to keep track of customers who register for its services.
Customers supply their first and last name, and email address. The
system assigns a customer.id. The following features are
supported:

e Register a customer, returning.a customer id

e Unregister a customer

e Obtain customer information; either for a single customer or
for all customers (pass the customer id; and for customer id
of —1 return all customers)

e Change customer’s email address

Detailed instructions are contained in the Lab 2 write-up at the end
of the chapter.

Suggested time: 60 minutes

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 96
All Rights Reserved

CsEss Chapter 2

Summary

e Every C# application has a class with a method Main,
which is the entry point into the application.

e The System class includes methods for doing input
and output; such as ReadLine() and WriteLine().

e The .NET Framework has a large class library that is
partitioned into namespaces.

e C# has control structures and operators similar to
those in Cand C++.

e C# has value, reference, and pointer data types.

e Through boxing and, unboxing, C# achieves a unified
type system, with all types acting as if they are
derived from object.

e Built-in numeric types, bool, and struct are value
types.

e Examples of reference types are object, string, and
arrays.

e C# has a flexible parameter passing mechanism that
can be controlled through ref and out keywords.

e C# has extensive formatting capabilities, which you
can control through the placeholders.

e EXxceptions in C# are implemented by the Common
Language Runtime.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 97
All Rights Reserved

CsEss Chapter 2

Lab 2

Implementing a Customers Class

Introduction

In this lab, you will begin the Acme Travel Agency case study by implementing a
simple Customers class in C#. You are provided with starter code that defines a class for
an individual customer and a test program. You are to implement a class that can be used
by Acme to keep track of customers who register for its services. Customers supply their
first and last name;and email address. The system assigns a customer id. The following
features are supported:

e Register a customer, returning a customer id

e Unregister a customer

e Obtain customer information, either for a single customer or for all customers
(pass the customer id, and for customer id of —1 return all customers)

e Change customer’s email address

Suggested Time: 60 minutes

Root Directory: OIC\CsEss

Directories: Labs\Lab2\Acme (Do your waork here)
CaseStudy\Acme\Step0 (Backup.of starter files)
CaseStudy\Acme\Stepl (Answer)

Files: Customer.cs
Test.cs

Instructions

1. Build the starter program. There is a complete implementation of.a Customer-class
and a stub implementation of a Customers class. There is also a test program.
Examine the starter code and run the program. Notice that the test program handles
exceptions. For example, the stub GetCustomer function returns a nullywhich is
checked for in the test program. Also, if you enter non-numeric data when prompted
for an id in the test program, an exception will be thrown.

2. Add to the Customers class declarations of the following private members: an array
customers of type Customer[] and a variable nextc of type int. We will use nextc as
the index of the next element to be added to the array, and it should be initialized to 0.

3. Add code to the Customers() constructor that will instantiate the customers array to
have 10 elements and register some sample customers.

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 98
All Rights Reserved

CsEss Chapter 2

10.

11.

Add code in RegisterCustomer to instantiate a new Customer with the specified
fields, store this customer in the array, increment nextc, and return the id of this new
customer. (Note that an id is automatically generated by the constructor of
Customer.)

Replace the stub code in GetCustomer by code that will assign count to be nextc
and return customers. (Temporarily, we are trying to always return the entire array.)
Build and test. No customers are being shown as returned. Why?

The parameter count is passed by value, and so its new value is not passed to the
calling program. To fix this, we need to make it either a ref or an out parameter.
Since it only does output, we make it an out parameter. Build. We get compiler
errors. Why?

We also need to use the out modifier in the calling program Test.cs. Change this in
the twoplaces where GetCustomer is called. Build and run. Now you should see
your sample data returned in response to the “customers” command. Also, the
“register” command should be working, so that you can register additional customers.

Now we want to-provide the full functionality of GetCustomer. If id of -1 is passed,
the entire array is passed back. Otherwise, an-array of 1 element is created, having
the customer information for the id that is provided. To implement this feature, first
provide code for the helper-method Findld. This method does a linear search for the
given id. If not found, it returns—1. Otherwise it returns the index at which the id was
found.

Now finish the implementation of GetCustomer. Build and test. Now you should be
able to query for a single customer by id;as well as obtain the complete list of
customers.

Implement UnregisterCustomer. If the customet-is not found, throw an exception.
Otherwise, delete the customer from the array. Move the elements after the deleted
element up in the array, to fill the deleted item. Build‘and. test.

Finally, implement ChangeEmailAddress. Build and test.”"Y our miniature customer
management system should now be completely working!

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 99

All Rights Reserved

Orchard R

Gréenwood Villag

h: 303-3C

9-08-00405-000-04-18-19

	Blank Page

