
•

TRAINING MATERIALS FOR IT PROFESSIONALS EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Rev. 4.8.5 Copyright ©2019 Object Innovations Enterprises, LLC ii
 All Rights Reserved

Test-Driven Development Using Visual Studio and C#
Rev. 4.8.5

Student Guide

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of
their respective owners.

™ is a trademark of Object Innovations.

Author: Robert J. Oberg

Copyright ©2019 Object Innovations Enterprises, LLC All rights reserved.

Object Innovations
877-558-7246
www.objectinnovations.net

Printed in the United States of America.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Rev. 4.8.5 Copyright ©2019 Object Innovations Enterprises, LLC iii
 All Rights Reserved

Table of Contents (Overview)

Chapter 1 Test-Driven Development

Chapter 2 Visual Studio Unit Testing Fundamentals

Chapter 3 More about Unit Testing Framework

Appendix A Learning Resources

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Rev. 4.8.5 Copyright ©2019 Object Innovations Enterprises, LLC iv
 All Rights Reserved

Directory Structure

 The course software installs to the root directory
C:\OIC\UnitCs.

 Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and
so on.

 A cumulative case study is provided in the directory
CaseStudy.

 The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter or case
study directories.

 The Demos directory is provided for in-class demonstrations
led by the instructor.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Rev. 4.8.5 Copyright ©2019 Object Innovations Enterprises, LLC v
 All Rights Reserved

Table of Contents (Detailed)

Chapter 1 Test-Driven Development... 1
Test-Driven Development... 3
Functional Tests .. 4
Unit Tests .. 5
Test Automation.. 6
Rules for TDD... 7
Implications of TDD... 8
Simple Design... 9
Refactoring.. 10
Regression Testing.. 11
Test List .. 12
Red/Green/Refactor .. 13
Using the Unit Testing Framework .. 14
Testing with Unit Testing Framework.. 15
Unit Testing Framework Test Drive ... 16
IQueue Interface and Stub Class... 17
Test List for Queue ... 18
Demo: Testing QueueLib.. 19
A Second Test ... 22
More Queue Functionality .. 23
TDD with Legacy Code .. 24
Acme Travel Agency Case Study ... 25
Acme Example Program... 26
Lab 1 ... 27
Summary ... 28

Chapter 2 Visual Studio Unit Testing Fundamentals.. 33
Structure of Unit Tests .. 35
Assertions.. 36
Assert Example ... 37
Unit Testing Framework ... 39
Lab 2A .. 40
Unit Testing Framework Namespace.. 41
Assert Class... 42
Assert.AreEqual() ... 43
More Assert Methods.. 44
CollectionAssert Class.. 45
StringAssert Class... 46
Test Case... 47
Test Methods... 48
Test Class .. 49
Test Runner... 50

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Rev. 4.8.5 Copyright ©2019 Object Innovations Enterprises, LLC vi
 All Rights Reserved

Command Line Test Runner... 51
Ignoring Tests ... 52
Demo: Multiple Test Classes .. 53
Using the Ignore Attribute .. 55
Test Initialization and Cleanup ... 56
Test Initialization Example... 57
Class Initialization and Cleanup ... 58
Running Test Initialization Example .. 59
Lab 2B... 60
Summary ... 61

Chapter 3 More about Unit Testing Framework... 71
Expected Exceptions... 73
Queue Example Program .. 74
Enqueue and Dequeue... 75
Tests for Enqueue and Dequeue ... 76
ToArray() .. 77
Test of ToArray().. 78
Exception Settings .. 79
Lab 3A .. 80
Custom Asserts ... 81
Custom Assert Example.. 82
Implementing a Custom Assert... 84
Running Custom Assert Example... 85
Playlists ... 86
Debugging Unit Tests ... 88
Running Selected Tests... 89
Running Tests at the Command Line.. 90
MSTest.exe Command Line Options.. 91
Refactoring.. 92
Collection Class Implementation.. 93
Testing the New Version .. 95
Lab 3B... 96
Summary ... 97

Appendix A Learning Resources .. 107

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 1
 All Rights Reserved

Chapter 1

Test-Driven Development

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 2
 All Rights Reserved

Test-Driven Development

Objectives

 After completing this unit you will be able to:

 Explain the principles of test-driven development or
TDD.

 Describe the main types of tests pertaining to TDD:

 Functional tests, also known as customer tests

 Unit tests, also known as programmer tests

 Discuss the role of test automation in the development
process.

 Outline the principles of simple design.

 Describe the use of refactoring in improving software
systems and the role of test automation in support of
refactoring.

 Describe the Unit Testing Framework in Visual
Studio.

 Explain the use of TDD in working with legacy code.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 3
 All Rights Reserved

Test-Driven Development

 Test-driven development (TDD) calls for writing test
cases before functional code.

 You write no functional code until there is a test that fails
because the function is not present.

 The test cases embody the requirements that the code
must satisfy.

 When all test cases pass, the requirements are met.

 Both the test cases and the functional code are
incrementally enhanced, until all the requirements
are specified in tests that the functional code passes.

 Functional code is enhanced for two reasons:

 To satisfy additional requirements

 To improve the quality and maintainability of the code, a
process known as refactoring.

 Passing the suite of tests ensures that refactoring has
not caused regression.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 4
 All Rights Reserved

Functional Tests

 The best known type of tests is functional tests, which
verify that functional requirements of the end system
are satisfied.

 Such tests are also called customer tests or acceptance tests.

 They are customer-facing tests.

 Functional tests are run against the actual user
interface of the running system.

 Functional tests may either be run manually by
human testers, or they may be automated.

 Typical automation is to capture keystrokes and
mouse movements, which can then be replayed.

 Various commercial test automation tools exist.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 5
 All Rights Reserved

Unit Tests

 Unit tests are tests of specific program components.

 They are programmer-facing and are also called
programmer tests.

 Because there is no specific user interface for
program components, testing requires some kind of
test harness.

 This test harness must either be written specifically for the
program, or a general purpose test harness may be used.

 Besides the test harness, specific test cases must be
written.

 Because these tests are programmer-facing, it is
desirable if the tests can be specified in a familiar
programming language.

 It is especially desirable if the test cases can be written in the
same programming language as the functional code.

 In this course we will write both functional code and
test code in C#.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 6
 All Rights Reserved

Test Automation

 A key success factor in using TDD is a system for test
automation.

 Tests must be run frequently after each incremental
change to the program, and the only way this is
feasible is for the tests to be automated.

 There are many commercial and open source test
automation tools available.

 A particular effective family of test automation tools
are the unit test frameworks patterned after the
original JUnit for Java:

JUnit Java

NUnit
Visual Studio Unit Testing Framework

.NET

cppUnit C++

PHPUnit PHP

PyUnit Python

Test::Unit Ruby

JsUnit JavaScript

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 7
 All Rights Reserved

Rules for TDD

 Kent Beck, the father of eXtreme Programming (XP),
suggested two cardinal rules for TDD:

 Never write any code for which you do not have a failing
automated test.

 Avoid all duplicate code.

 The first rule ensures that you do not write code that
is not tested.

 And if you provide tests for all your requirements, the rule
ensures that you do not write code for something which is not
a requirement.

 The second rule is a cardinal principle of good
software design.

 Duplicate code leads to inconsistent behavior over a period of
time, as code is changed in one place but not in a duplicated
place.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 8
 All Rights Reserved

Implications of TDD

 TDD has implications for the development process.

 You design in an organic manner, and the running code
provides feedback for your design decisions.

 As a programmer you write your own tests, because you
can’t wait for someone in another group to write frequent
small tests for you.

 You need rapid response from your development
environment, in particular a fast compiler and a regression
test suite.

 Your design should satisfy the classical desiderata of highly
cohesive and loosely-coupled components in order to make
testing easier. Such a design is also easier to maintain.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 9
 All Rights Reserved

Simple Design

 Your program should both do no less and no more
than the requirements demand.

 No less, because otherwise the program will not meet the
functional requirements.

 No more, because extra code imposes both a development
and a maintenance burden.

 You may find the following guidelines1 useful:

 Your code is appropriate for its intended audience.

 Your code passes all its tests.

 Your code communicates everything it needs to.

 Your code has the minimum number of classes that it needs.

 Your code has the minimum number of methods that it needs.

1 Test-Driven Development in Microsoft .NET by James V. Newkirk and Alexei A. Vorontsov.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 10
 All Rights Reserved

Refactoring

 The traditional waterfall approach to software
development puts a great deal of emphasis on upfront
design.

 Sound design is important in any effective methodology, but
the agile approach emphasizes being responsive to change.

 The no more principle suggests that you do not make
your program more general than dictated by its
current requirements.

 Future requirements may or may not come along the lines
you anticipate.

 The pitfall of incremental changes is that, if not
skillfully done, the structure of the program may
gradually fall apart.

 The remedy is to not only make functional changes,
but when appropriate to refactor your program.

 This means to improve the program without changing its
functionality.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 11
 All Rights Reserved

Regression Testing

 A pitfall of refactoring is that you may break
something.

 A natural inclination is to follow the adage, “if it’s not
broken, don’t fix it.”

 But as we said, incremental changes to a program
may lead to a deterioration of the program’s quality.

 So do go ahead and make refactoring improvements
to your program, but be sure to test thoroughly after
each change.

 Run the complete test suite to ensure that there has
been no regression.

 As part of program maintenance, whenever you fix a
bug, add a test to the test suite to test for this bug.

 Thus your test suite becomes gradually more and more
robust, and you can have increased confidence that indeed
your refactoring improvements will not break anything.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 12
 All Rights Reserved

Test List

 TDD begins with a test list.

 A test list is simply a list of tests for a program component or
feature, expressed in ordinary English.

 The test list describes the program component’s
requirements unambiguously.

 The test list provides a precise definition of the
completion criteria.

 The requirements are met when all the tests in the test list
pass.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 13
 All Rights Reserved

Red/Green/Refactor

 You implement the tests in the test list by a process
that is sometimes called Red/Green/Refactor.

 You work in small, verifiable steps that provide immediate
feedback2.

1. Write the test code.

2. Compile the test code. It should fail, because there is not yet any
corresponding functional code.

3. Implement enough functional code for the test code to compile.

4. Run the test and see it fail (red).

5. Implement enough functional code for the test code to pass.

6. Run the test and see it pass (green).

7. Refactor for clarity and to eliminate duplication.

8. Repeat from the top.

 Working in small steps enables you to immediately
detect mistakes, and to see where the mistake
occurred.

 You will rarely need the debugger!

2 William Wake, Extreme Programming Explored.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 14
 All Rights Reserved

Using the Unit Testing Framework

 The Unit Testing Framework in Visual Studio
provides an automated unit test facility for .NET
languages such as C#.

 The framework comes with Visual Studio, including the free
Visual Studio Community 2019.

 It uses red (X) and green (check mark) to indicate
failing and passing tests.

 The example shows the results of running a test suite for a
Queue component, with Dequeue method not implemented.

 The example is in Chap01\MyQueue\NoDequeue3.

3 Open the Test Explorer window from the menu Test | Windows | Test Explorer. Run all the tests.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 15
 All Rights Reserved

Testing with Unit Testing Framework

 The diagram4 illustrates how programmers doing
TDD typically work using the Visual Studio Unit
Testing Framework.

1. Write a test case that will fail because functional code is not yet
implemented (test first).

2. Run, and you will get red.

3. Fix the functional code and run again until you get green.

4. Keep writing test cases that will fail, implement the functional
code, and get green.

5. At any point you may refactor for code improvements, and you
need to make sure that you still get green.

6. When you can’t think of any more tests, you are done!

4 This diagram is reproduced by permission of the author, Scott Ambler. See
http://www.agiledata.org/essays/tdd.html.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 16
 All Rights Reserved

Unit Testing Framework Test Drive

 Let’s illustrate TDD by a simple example.

 Don’t worry about the details of using the Unit Testing
Framework but focus on the conceptual process of TDD.

 Our program component is a FIFO (first-in, first-out)
queue.

 The Count property returns number of elements in queue.

 New items are inserted at the rear of the queue by the
Enqueue() method.

 Items are removed from the front of the queue by the
Dequeue() method.

 A method ToArray() returns all the items in the queue, with
the front item at index 0.

 We’ll go through the following steps:

1. Specify a .NET interface and provide a class with a stub
implementation of the interface.

2. Create our test list, which is the specification of requirements.

3. Implement our first test and see it fail.

4. Implement the test code required to make the first test pass.

5. Implement the second test and see it fail.

6. Implement the test code to make the second test pass.

7. Repeat until all the tests pass.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 17
 All Rights Reserved

IQueue Interface and Stub Class

 See the QueueLib class library project in the solution
Demos\MyQueue, backed up in Chap01\MyQueue\Step0.

namespace QueueLib
{
 interface IQueue
 {
 int Count { get;}
 void Enqueue(int x);
 int Dequeue();
 int[] ToArray();
 }
 public class MyQueue : IQueue
 {
 public MyQueue(int size)
 {
 }
 public int Count
 {
 get
 {
 return -1;
 }
 }
 public void Enqueue(int x)
 {
 }
 public int Dequeue()
 {
 return 0;
 }
 public int[] ToArray()
 {
 return null;
 }
 }
}

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 18
 All Rights Reserved

Test List for Queue

1. Create a queue of capacity 3 and verify Count is 0. (All
subsequent tests will also create a queue of capacity 3.)

2. Enqueue a number and verify that Count is 1.

3. Enqueue a number, dequeue it, and verify that Count is 0.

4. Enqueue a number, remember it, dequeue a number and verify
that the two numbers are equal.

5. Enqueue three numbers, remember them, dequeue them, and
verify that they are correct.

6. Dequeue an empty queue and verify you get an underflow
exception.

7. Enqueue four numbers and verify you get an overflow
exception.

8. Enqueue three numbers, get an array of numbers in queue and
verify it is correct.

9. Enqueue two numbers, dequeue them. Enqueue three numbers,
get an array of numbers in queue and verify it is correct.

10. Enqueue two numbers, dequeue them. Enqueue three
numbers, remember them, dequeue them, and verify that they
are correct.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 19
 All Rights Reserved

Demo: Testing QueueLib

1. Open the MyQueue solution in Demos\MyQueue. Build the
solution, which at this point consists only of a class library.

2. Find the template for Unit Test Project (.NET Framework).
Click Next.

3. Assign name QueueTest to the new project. Click Create.

4. Change the name of the file UnitTest1.cs in the new project to
QueueTests.cs.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 20
 All Rights Reserved

Demo: Testing QueueLib (Cont’d)

5. Edit the supplied stub test method.

[TestMethod]
public void T01_Empty()
{
 MyQueue que = new MyQueue(3);
 Assert.AreEqual(0, que.Count);
}

6. Build the solution. You will get a compile error, because the

MyQueue class cannot be found by the test project.

7. In the QueueTest project add a reference to the QueueLib
project.

8. In QueueTests.cs add a using statement to import the
QueueLib namespace.

using QueueLib;

9. Build the solution. Bring up the Test Explorer window from the

menu Test | Windows | Test Explorer. The blue icon shows that
the test has not been run.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 21
 All Rights Reserved

Demo: Testing QueueLib (Cont’d)

10. Click Run All. The test fails! Select the failed test in Text
Explorer, and you will see details at the bottom of the window.

11. The failure was expected, because we only have stub code for
the implementation of the Queue.

12. Add code to MyQueue.cs to implement the Count property.

 public class MyQueue : IQueue
 {
 private int count;
 public MyQueue(int size)
 {
 count = 0;
 }
 public int Count
 {
 get
 {
 return count;
 }
 }
 ...

13. Rebuild the solution and run the test again. Now the test

passes, showing green.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 22
 All Rights Reserved

A Second Test

14. Add a second test to QueueTests.cs.

 [TestMethod]
 public void T02_EnqueueOne()
 {
 MyQueue que = new MyQueue(3);
 que.Enqueue(17);
 Assert.AreEqual(1, que.Count);
 }

15. Build the solution. Run all the tests. The first test passes

(green), but the second test fails.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 23
 All Rights Reserved

More Queue Functionality

16. Add the following code to your MyQueue class.

 public class MyQueue : IQueue
 {
 private int count;
 private int[] data;
 private int front;
 private int rear;
 public MyQueue(int size)
 {
 count = 0;
 data = new int[size];
 front = 0;
 rear = -1;
 }
 public int Count
 {
 get
 {
 return count;
 }
 }
 public void Enqueue(int x)
 {
 rear += 1;
 data[rear] = x;
 count += 1;
 }
 ...

17. Run the tests again. Now both tests will pass (Step 1).

18. You could continue adding tests and functionality until the
Queue is fully implemented and tested. We’ll do that later. At
this point we just want you to have a general idea of how unit
testing in Visual Studio works.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 24
 All Rights Reserved

TDD with Legacy Code

 Our Queue example illustrates test-driven
development with a brand new project, with tests
developed before the code.

 But often, you may have existing legacy code and may
wish to start employing TDD going forward.

 In this case you have a fully operational system, and you will
begin by writing a test suite for the existing system.

 Then as new features are to be added, you will first add
appropriate tests to the test suite.

 As bugs are discovered, you will also add test cases to the
test suite to reproduce the failure.

 As code is refactored, you will run the entire test suite to
ensure that there is no regression.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 25
 All Rights Reserved

Acme Travel Agency Case Study

 The Acme Travel Agency has a simple customer
management system to keep track of customers who
register for its services.

 Customers supply their first and last name and email
address. The system supplies a customer ID.

 The following features are supported:

 Register a customer, returning a customer id.

 Unregister a customer.

 Obtain customer information, either for a single customer or
for all customers (pass the customer id, and for customer id
of –1 return all customers).

 Change customer’s email address.

public interface ICustomer
{
 int RegisterCustomer(string firstName,
 string lastName, string emailAddress);
 void UnregisterCustomer(int id);
 Customer[] GetCustomer(int id);
 void ChangeEmailAddress(int id,
 string emailAddress);
}

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 26
 All Rights Reserved

Acme Example Program

 The Acme Customer Management System comes as a
solution with two projects.

 See CaseStudy\Acme\Step0.

 The solution contains a class library project AcmeLib and a
Windows Forms client program AcmeClient.

 To create unit tests, we will add a third project,
AcmeTest, so as not to perturb the released class
library, AcmeLib.

 See CaseStudy\Acme\Step1.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 27
 All Rights Reserved

Lab 1

Testing the Customer Class

In this lab, you will begin the Acme Travel Agency case study by
implementing simple tests for the Customer class. You are
provided with starter code that provides implementation of classes
Customer and Customers in a class library. You are also provided
with a GUI client program. Your job is to create a third project for
testing the Customer class with the Unit Testing Framework and
to provide simple tests. You will exercise your tests using Visual
Studio.

Detailed instructions are contained in the Lab 1 write-up at the end
of the chapter.

Suggested time: 45 minutes

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 28
 All Rights Reserved

Summary

 Test-driven development (TDD) calls for writing test
cases before functional code.

 The test cases embody the requirements that the code
must satisfy.

 There are two main types of tests pertaining to TDD:

 Functional tests, also known as customer tests

 Unit tests, also known as programmer tests

 Test automation is essential in TDD because many
tests have to be frequently run.

 Simple design dictates that your program should both
do no less and no more than the requirements
demand.

 Refactoring provides continuous improvements in a
software system, and automated tests ensure that no
regression occurs.

 The Unit Testing Framework in Visual Studio 2019
simplifies writing and running tests in a .NET
environment.

 TDD can drive a new project from start to finish, and
it can also be used with legacy projects.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 29
 All Rights Reserved

Lab 1

Testing the Customer Class

Introduction

In this lab, you will begin the Acme Travel Agency case study by implementing simple
tests for the Customer class. You are provided with starter code that provides
implementation of classes Customer and Customers in a class library. You are also
provided with a GUI client program. Your job is to create a third project for testing the
Customer class with the Unit Testing Framework and to provide simple tests. You will
exercise your tests using Visual Studio.

Suggested Time: 45 minutes

Root Directory: OIC\UnitCs

Directories: Labs\Lab1 (Do your work here)
 CaseStudy\Acme\Step0 (Backup of starter files)
 CaseStudy\Acme\Step1 (Answer)

Instructions

1. Build the starter solution. This will build a class library AcmeLib.dll and a client

Windows program AcmeClient.exe.

2. Exercise the client program by registering and unregistering a few customers, and
changing the email addresses of some customers. Note that the ID of a new customer
is automatically generated.

3. Examine the code of the class library project. Make sure you understand both the
Customer class and the Customers class. Note the simple array implementation in
this version of Customers.

4. Add a new Test Project AcmeTest to your solution. You can do this by right-clicking
over the solution in Solution Explorer and choosing Add | New Project from the
context menu. The project should have template Unit Test Project in the Test project
type.

5. Examine the generated file UnitTest1.cs in the test project. Change the name of the
supplied test method to OneCustomer(). This method should instantiate a customer
object and make assertions that the three fields of the new object have the proper data.

[TestMethod]
public void OneCustomer()
{
 Customer cust = new Customer("Joe", "Blow", "foo@bar.com");

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 30
 All Rights Reserved

 Assert.AreEqual("Joe", cust.FirstName);
 Assert.AreEqual("Blow", cust.LastName);
 Assert.AreEqual("foo@bar.com", cust.EmailAddress);
}

6. Build the solution. The build fails, because the test project cannot find the Customer

class.

7. In the AcmeTest project, add a project references to AcmeLib project. Now the build
should be successful.

8. You should see the new test show up in Test Explorer with blue icon showing it has
not run.

9. Click Run All. The test should succeed!

10. Examine the documentation of the Assert class, and notice the various overloads of
the static AreEqual() method. Provide a second test method
OneCustomerMessage() that performs the same test as the first test method but in
addition displays a designated error message, which you can use to specify which
field failed. In the assertion for the first name, test against the first name with all
upper case characters.

[TestMethod]
public void OneCustomerMessage()
{
 Customer cust = new Customer("Joe", "Blow", "foo@bar.com");
 Assert.AreEqual("JOE", cust.FirstName, "FirstName not equal");
 Assert.AreEqual("Blow", cust.LastName, "LastName not equal");
 Assert.AreEqual("foo@bar.com", cust.EmailAddress,
 "EmailAddress not equal");
}

11. Build the solution. You will now see the second test in Test Explorer.

12. You could select Run All Tests again. But it will be more efficient to just Run Not
Run Tests, because nothing has changed to make the Passed Test fail this time.

13. The new test fails.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 31
 All Rights Reserved

14. Click on the failed test to see the details at the bottom of the window. You will see
the error message that you supplied.

15. Provide a third variation of the one customer test in which you specify that case
should be ignored when doing a comparison.

[TestMethod]
public void OneCustomerIgnoreCase()
{
 Customer cust = new Customer("Joe", "Blow", "foo@bar.com");
 Assert.AreEqual("JOE", cust.FirstName, true);
 Assert.AreEqual("Blow", cust.LastName, true);
 Assert.AreEqual("foo@bar.com", cust.EmailAddress, true);
}

16. Build the solution and run all the tests. Now the first and third tests should succeed

while the second test continues to fail.

17. Provide a fourth test that will create two customers and verify that the generated
CustomerIds are not equal.

[TestMethod]
public void TwoCustomers()
{
 Customer cust1 = new Customer("Joe", "Blow", "foo@bar.com");
 Customer cust2 = new Customer("Amy", "Smith", "amy@foo.com");
 Assert.AreNotEqual(cust1.CustomerId, cust2.CustomerId);
}

18. Run all the tests. All tests should pass except one. You are now at Step 1.

19. If you have time, provide some tests for the Customers class.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 1

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 32
 All Rights Reserved

 EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 33
 All Rights Reserved

Chapter 2

Visual Studio Unit
Testing Fundamentals

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 34
 All Rights Reserved

Visual Studio Unit Testing Fundamentals

Objectives

 After completing this unit you will be able to:

 Describe the general structure of unit tests.

 Outline the features of the Unit Testing Framework
in Visual Studio that support TDD.

 Assertions

 Test Cases

 Test Classes

 Test Runners

 Provide for initialization and cleanup of tests.

 Use Visual Studio as an integrated environment for
creating and running unit tests.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 35
 All Rights Reserved

Structure of Unit Tests

 As we saw in Chapter 1, unit tests are tests of specific
program components.

 Test code is for internal use only and is separate from
the production code being tested.

 Test code is responsible for doing several things:

1. Set up resources needed for the test.

2. Call the function or method to be tested.

3. Verify that the called function behaved as expected.

4. Clean up after itself.

 For simple tests, no special setup or cleanup may be required,
but steps 2 and 3 are always performed.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 36
 All Rights Reserved

Assertions

 A central requirement of unit tests is that they must
be self-verifying.

 It would be very inefficient to require a separate process or
human intervention to examine the output of the tests to
determine whether or not they passed.

 We need a mechanism to support self-verification.

 This mechanism is called an assertion.

 An assertion is a statement that some condition is true, and a
report will be made if the condition is not true.

 The notion of assertion is common in many
programming languages and frameworks.

 The ANSI C runtime library has an assert() method
that can be used in the C language.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 37
 All Rights Reserved

Assert Example

 A simple example illustrates the C assert() function.

 See Chap02\CMax\Step11.

 This example provides unit tests for a findmax() function
that finds the maximum of three integers.

// CMax.c

#include <stdio.h>
#include <assert.h>

int findmax(int x, int y, int z)
{
 int max = x;
 if (y > x)
 max = y;
 if (z > x)
 max = z;
 return max;
}

int main()
{
 assert(findmax(4, 3, 2) == 4);
 printf("Test 1 passed\n");
 assert(findmax(3, 4, 2) == 4);
 printf("Test 2 passed\n");
 assert(findmax(3, 2, 4) == 4);
 printf("Test 3 passed\n");
 assert(findmax(2, 4, 3) == 4);
 printf("Test 4 passed\n");
}

1 You will need to install the Desktop development for C++ workload. Visual Studio
provides a link to conveniently do the installation and then restart Visual Studio.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 38
 All Rights Reserved

Assert Example (Cont’d)

 The findmax() function has a bug. The first three tests
pass, but the fourth one fails.

Test 1 passed
Test 2 passed
Test 3 passed
Assertion failed: findmax(2, 4, 3) == 4, file
c:\oic\unitcs\chap02\cmax\step1\cmax.c, line 24

 Step 2 fixes the bug.

int findmax(int x, int y, int z)
{
 int max = x;
 if (y > max)
 max = y;
 if (z > max)
 max = z;
 return max;
}

 Here is the output:

Test 1 passed
Test 2 passed
Test 3 passed
Test 4 passed

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 39
 All Rights Reserved

Unit Testing Framework

 Although completely hand-written unit tests using
only primitive library features are feasible, it is not
efficient.

 Visual Studio’s Unit Testing Framework that we
introduced in Chapter 1 provides many features to
simplify writing and running unit tests:

 An Assert class with a variety of methods for testing
assertion conditions.

 A custom attribute [TestMethod] to designate a method as a
test case.

 A custom attribute [TestClass] to designate a class that
encapsulates a group of test methods sharing a common set
of run-time resources. Such a class is sometimes called a
“test fixture.”

 A test runner that automates the running of all the tests.

 Some additional infrastructure that is transparent to the
programmer but enables Visual Studio to seamlessly run the
tests.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 40
 All Rights Reserved

Lab 2A

Visual Studio Unit Tests of Maximum Method

In this lab, you will develop a C# version of the function to find
the maximum of three integers. You will then review use of the
Visual Studio Unit Testing Framework by developing and running
test cases.

Detailed instructions are contained in the Lab 2A write-up at the
end of the chapter.

Suggested time: 30 minutes

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 41
 All Rights Reserved

Unit Testing Framework Namespace

 The classes supporting unit testing are in the
Microsoft.VisualStudio.TestTools.UnitTesting
namespace.

 MSDN provides documentation.

 You can navigate to appropriate help pages from Visual
Studio by using context-sensitive help: place the cursor over
an appropriate keyword such as TestMethod and hit the F1
key.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 42
 All Rights Reserved

Assert Class

 The Assert class in this namespace has a number of
static methods.

 These methods can help you determine whether the test
passed or failed.

 They record failures (when an assertion is false) and errors
(when an unexpected exception occurs).

 Failures and errors are reported through Visual
Studio.

 You won’t see a system-generated exception message as in a
failure of the assert() method of the C runtime library.

 In Visual Studio you will see a red X displayed, plus
explanatory text.

 When a failure or error occurs, the current test
method is aborted, and execution continues with the
next method in the test class.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 43
 All Rights Reserved

Assert.AreEqual()

 There are many overloaded versions of the
AreEqual() method, such as:

Assert.AreEqual(expected, actual)
Assert.AreEqual(expected, actual, message)

 Typically expected is a hard coded value representing the
value you expect to see.

 actual is the value actually produced by the code that you are
testing.

 The optional parameter message is a string which will be
displayed by Visual Studio upon failure.

 Any object may be tested for equality.

 The Equals() method of the Object class will be used for
comparison.

 There are special overloads for the built-in data types of int,
uint, decimal, float, and double.

 For float and decimal there is an overload available that
takes a parameter delta that may be used as a tolerance,
specifying how close to equals the result should be.

Assert.AreEqual(expected, actual, delta)

 In Visual Studio you can use Intellisense to see all the
possible overloaded methods.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 44
 All Rights Reserved

More Assert Methods

 There are many other Assert methods, which can be
viewed via Intellisense.

 Many come in pairs with a Not variant, and there is always
an optional string message parameter.

AreNotEqual expected does not equal actual

IsNull
IsNotNull

Given object is null (or is not null)

AreSame
AreNotSame

expected and actual refer (or do not
refer) to the same object

IsTrue Given Boolean condition is true

IsFalse Given Boolean condition is false

Fail Fail the test immediately

IsInstanceOfType
IsNotInstanceOfType

actual object is (or is not) of
expected type

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 45
 All Rights Reserved

CollectionAssert Class

 The CollectionAssert class can be used to compare
collections of objects and to verify the state of one or
more collections.

 As with Assert, many methods come in pairs with a Not
variant, and there is always an optional string message
parameter.

AreEqual
AreNotEqual

Collections are (or are not) equal in
having the same elements in the
same order

AreEquivalent
AreNotEquivalent

Collections are (or are not) equal in
having the same elements in any
order

AllItemsAreInstancesOfType All items in a collection are
instances of a particular type

AllItemsAreNotNull All items in a collection are not
null

AllItemsAreUnique All items in a collection are unique

IsSubsetOf
IsNotSubsetOf

One collection is (or is not) a subset
of another collection

Contains
DoesNotContain

Collection contains (or does not
contain) a specified element

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 46
 All Rights Reserved

StringAssert Class

 The StringAssert class can be used to compare strings.

Matches String matches a regular expression

DoesNotMatch String does not match a regular
expression

EndsWith String ends with a specified
substring

StartsWith String starts with a specified
substring

Contains

String contains a specified
substring

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 47
 All Rights Reserved

Test Case

 The fundamental unit of testing with the Visual
Studio Testing Framework is a test case.

 A test case is a programmer test, which is a low-level test
intended to verify behavior at the method or class level.

 A test case is self-validating, having a built-in mechanism to
report success or failure.

 A test case can be automatically discovered by a test runner.

 A test case can be automatically executed by a test runner.

 A test case executes independently of other test cases; one
test case should not produce any side effects that could
change the results from other test cases.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 48
 All Rights Reserved

Test Methods

 In Visual Studio, test cases are specified by test
methods, which are methods of a test class.

 A test method is marked by the [TestMethod]
attribute.

[TestMethod]
public void BiggestFirst()
{
 Assert.AreEqual(4, Find.Max(4, 3, 2));
}

 A test method must have the following features:

 It is declared as public.

 It is an instance method (not static).

 It returns void.

 It takes no parameters.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 49
 All Rights Reserved

Test Class

 In Visual Studio, test methods are encapsulated in a
test class.

 In the similar NUnit unit test framework, a test class is called
a test fixture.

 The test methods in a test class share a common set of
resources.

 The test class is marked with the [TestClass]
attribute.

[TestClass]
public class MaxTests
{
 ...
 [TestMethod]
 void BiggestFirst()
 {
 Assert.AreEqual(4, Find.Max(4, 3, 2);
 }
 ...
 }

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 50
 All Rights Reserved

Test Runner

 An essential component of an effective unit testing
system is a facility to automatically run the tests.

 A test runner is a program that automatically
discovers test cases, runs them, and reports on the
results.

 An example of a test runner is Visual Studio.

 A test runner may use .NET reflection to dynamically
discover and execute test methods.

 The Visual Studio test runner shows test methods in a
Test Explorer Window.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 51
 All Rights Reserved

Command Line Test Runner

 You can also run tests at the command line using the
tool MSTest.exe.

mstest /testcontainer:<path to test DLL>

 For an example, do the following:

1. Build the CSharpMax\Step3 example.

2. Run the Developer Command Prompt for Visual Studio 2019.

3. Navigate to the directory
C:\OIC\UnitCs\Chap02\CSharpMax\Step3.

4. Enter the following command (which has also been provided in
the batch file RunMSTest.bat):

mstest /testcontainer:MaxTest\bin\debug\maxtest.dll

5. You will obtain this output:

Loading MaxTest\bin\debug\maxtest.dll...
Starting execution...
Warning: The disabled test 'BiggestMiddle' was removed from
the test run.

Results Top Level Tests
------- ---------------
Passed MaxTest.DivTests.SimpleDivide
Passed MaxTest.MaxTests.BiggestFirst
Passed MaxTest.MaxTests.BiggestLast
Passed MaxTest.MaxTests.BiggestMiddleBigLast
4/4 test(s) Passed

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 52
 All Rights Reserved

Ignoring Tests

 A test case can be made non-runnable by marking it
with the [Ignore] attribute.

[Ignore]
[TestMethod]
public void BiggestMiddle()
{
 Assert.AreEqual(4, Find.Max(3, 4, 2));
}

 This feature may be useful during development to
temporarily disable running certain tests which will
be known to fail.

 The system being tested may have a known bug or have not
yet implemented certain functionality.

 It may also be useful to temporarily disable certain
long-running tests that are known to succeed.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 53
 All Rights Reserved

Demo: Multiple Test Classes

 Let’s illustrate a scenario in which there are two test
classes.

 We’ll start with an extension of the CSharpMax program
you worked with in the lab. We’ll add a stub second method
Div() but no test code yet.

 In accord with test-driven development, we will provide the
test before the implementation code.

 See Demos\CSharpMax, which is backed up in the directory
Chap02\CSharpMax\Step2.

1. Examine the code in Find.cs. In the Find class add a stub
method Div().

public static int Div(int x, int y)
{
 return 0;
}

2. To add a second test class, right-click the MaxTest project and

choose Add | Unit Test from the context menu.

3. Change the file name of the new test class to DivTests.cs.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 54
 All Rights Reserved

Demo: Multiple Test Classes (Cont’d)

4. Provide the following test method. Import MaxLib.

using MaxLib;
...
 [TestClass]
 public class DivTests
 {
 [TestMethod]
 public void SimpleDivide()
 {
 Assert.AreEqual(5, Find.Div(10, 2));
 }
 }

5. Run the tests. As expected, the SimpleDivide test fails.

6. Implement the Div() method.

public static int Div(int x, int y)
{
 return x / y;
}

7. Now all the tests pass.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 55
 All Rights Reserved

Using the Ignore Attribute

8. In MaxTests.cs try placing the [Ignore] attribute in front of the
BiggestMiddle() test method.

[Ignore]
[TestMethod]
public void BiggestMiddle()
{
 Assert.AreEqual(4, Find.Max(3, 4, 2));
}

9. Run the tests again. Now the ignored test method is skipped and

shown with a yellow icon.

10. The program at this point is saved in
Chap02\CSharpMax\Step3.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 56
 All Rights Reserved

Test Initialization and Cleanup

 The Visual Studio Unit Testing Framework provides
attributes that you can use to set up and tear down
tests.

 You can ensure that all tests are initialized in the
same manner by means of the [TestInitialize]
attribute.

 Place this attribute before a method, which will then be called
prior to the execution of each test in the test class.

 You can ensure that all tests are cleaned up in the
same manner by means of the [TestCleanup]
attribute.

 Place this attribute before a method, which will then be called
immediately after the execution of each test in the test class.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 57
 All Rights Reserved

Test Initialization Example

 A version of the tests for our queue class illustrates
test initialization and cleanup.

 See Chap02\QueueInit.

[TestClass]
public class QueueTests
{
 ...
 private MyQueue que;
 private static int SizeQueue;

 [TestInitialize]
 public void InitQueue()
 {
 que = new MyQueue(SizeQueue);
 Debug.WriteLine("Initialize queue of size " +
 SizeQueue);
 }
 [TestCleanup]
 public void CleanupQueue()
 {
 Debug.WriteLine("Cleanup queue");
 }
 ...

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 58
 All Rights Reserved

Class Initialization and Cleanup

 The Visual Studio Unit Testing Framework also
provides attributes that you can use to initialize and
cleanup test classes.

 While test initialization and cleanup are done on a per-
method basis, class initialization and cleanup are performed
on a per-class basis.

 A static method marked with the [ClassInitialization]
attribute is called once for the entire test class, before any of
the test cases are executed.

 A static method marked with the [ClassCleanup] attribute is
called once for the entire test class, after all of the test cases
are executed.

[TestClass]
public class QueueTests
{
 ...
 [ClassInitialize]
 public static void InitTestClass(
 TestContext testContext)
 {
 SizeQueue = 3;
 Debug.WriteLine("Initialize test class");
 }
 [ClassCleanup]
 public static void CleanupTestClass()
 {
 Debug.WriteLine("Cleanup test class");
 }
 ...

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 59
 All Rights Reserved

Running Test Initialization Example

 Here is the result of running these tests in Visual
Studio.

 You can examine the debug output from the
initialization and cleanup methods by running under
the debugger and examining the Output window.

 From the Test menu select Debug. You can also right-click in
the code window for the tests and select Debug Tests from
the context menu.

Initialize test class
...
Initialize queue of size 3
Cleanup queue
Initialize queue of size 3
Cleanup queue
Cleanup test class

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 60
 All Rights Reserved

Lab 2B

Testing the Customers Class

In this lab, you will create a list of test cases for the Customers
class. You will then implement these test cases using the Unit
Testing Framework and run them using Visual Studio.

Detailed instructions are contained in the Lab 2B write-up at the
end of the chapter.

Suggested time: 90 minutes

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 61
 All Rights Reserved

Summary

 Unit tests have a basic structure to set up needed
resources, call the test method, verify the result, and
then clean up.

 The Unit Testing Framework provides these facilities:

 Assertions

 Test Methods

 Test Classes

 Test Runners

 You can mark methods with attributes to initialize
and cleanup tests.

 Unit tests can be run both from within Visual Studio
and at the command line.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 62
 All Rights Reserved

Lab 2A

Visual Studio Unit Tests of Maximum Method

Introduction

In this lab, you will develop a C# version of the function to find the maximum of three
integers. You will then review use of the Visual Studio Unit Testing Framework by
developing and running test cases..

Suggested Time: 30 minutes

Root Directory: OIC\UnitCs

Directories: Labs\Lab2A (Do your work here)
 Chap02\CSharpMax\Step1 (Answer to Part 1)
 Chap02\CSharpMax\Step2 (Answer to Part 2)

Part 1

1. Use Visual Studio to create a new empty solution CSharpMax in the working

directory.

2. Right-click over the solution to add a new class library project MaxLib to the
solution.

3. Change the name of the file Class1.cs to Find.cs. This will also change the name of
the class to Find.

4. Add a public static method Max() to the Find class that attempts to find the
maximum of three integers using this code:

public static int Max(int x, int y, int z)
{
 int max = x;
 if (y > x)
 max = y;
 if (z > x)
 max = z;
 return max;
}

5. Right-click over the solution to add a new Unit Test Project MaxTest to the solution.

In this project add a reference to the MaxLib project.

6. In The standard output types of projects in Visual Studio are Console Application,
Windows Application and Class Library. What is the output type of the new MaxTest
project? How can you find out?

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 63
 All Rights Reserved

7. You can right-click over the project and choose Properties from the context menu.
The Application tab will show the Assembly name, the Output type, and so on. The
Output type is Class Library. Building the project will generate a DLL.

8. Change the name of the file UnitTest1.cs to MaxTests.cs. This will also change the
name of the test class to MaxTests.

9. Add a reference to the MaxLib project and provide a using statement to import the
MaxLib namespace.

10. Examine the code for the MaxTests class. The key features are:

a. The namespace Microsoft.VisualStudio.TestTools.UnitTesting.

b. The attribute [TestClass] in front of the class.

c. The attribute [TestMethod] in front of each test method.

using Microsoft.VisualStudio.TestTools.UnitTesting;
using MaxLib;

namespace MaxTest
{
 [TestClass]
 public class MaxTests
 {
 [TestMethod]
 public void TestMethod1()
 {
 }
 }
}

11. Add a test method to the MaxTests class corresponding to the first assertion in the C

language test program. Be sure to provide the [TestMethod] attribute in front of the
test method.

 [TestClass]
 public class MaxTests
 {
 ...
 [TestMethod]
 void BiggestFirst()
 {
 Assert.AreEqual(4, Find.Max(4, 3, 2);
 }

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 64
 All Rights Reserved

 }

12. Examine Test Explorer2. You will see the stub test method TestMethod1() but not

your own test method. Why?

13. The BiggestFirst() test method was not public. Make it public.

 [TestMethod]
 public void BiggestFirst()
 {
 Assert.AreEqual(4, Find.Max(4, 3, 2));
 }

14. Rebuild the solution. Now the new test shows up in Test Explorer in the Not Run

Tests. Run all the tests. Both tests pass.

15. Implement the remaining test methods corresponding to the assertions in the C
version of the program. Also, delete the stub TestMethod1() test method.

[TestMethod]
public void BiggestMiddle()
{
 Assert.AreEqual(4, Find.Max(3, 4, 2));
}
[TestMethod]
public void BiggestLast()
{
 Assert.AreEqual(4, Find.Max(3, 2, 4));
}
[TestMethod]
public void BiggestMiddleBigLast()
{
 Assert.AreEqual(4, Find.Max(2, 4, 3));
}

16. Rebuild the solution and run the tests. The first three tests pass, but the last test fails.

The project is now at Step 1.

2 If the Test Explorer window is closed, you can get it back by running tests from the menu Test | Run.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 65
 All Rights Reserved

Part 2

1. Fix the bug in the Find.Max() method.

2. Rebuild the solution and run the tests. Now all the tests should pass. The project is
now at Step 2.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 66
 All Rights Reserved

Lab 2B

Testing the Customers Class

Introduction

In this lab, you will create a list of test cases for the Customers class. You will then
implement these test cases using the Unit Testing Framework and run them using Visual
Studio.

Suggested Time: 90 minutes

Root Directory: OIC\UnitCs

Directories: Labs\Lab2B\Acme (Do your work here)
 CaseStudy\Acme\Step1 (Backup of starter files)
 CaseStudy\Acme\Step2 (Answer)

Part 1. Create Test List

In this part you will review the Acme Customer Management System case study, and you
will create a list of test cases for testing the Customers class.

1. If you prefer, replace the supplied starter code with your own code from Lab 1.

2. Build and run the starter project, and review the code.

3. Create a list of test cases that you feel will adequately test the Customers class.

4. When you are done, compare your list with the list on the next page.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 67
 All Rights Reserved

Part 1 Answer. Test cases for the Customers class.

1. Register one customer, note id, obtain info for this customer and verify.

2. Register two customers, obtain info for all customers and verify.

3. Register one customer, change email, and verify.

4. Verify that customers list is initially empty (null).

5. Register one customer, unregister, and verify list is empty.

6. Register three customers, unregister first customer, and verify remaining two
customers are what expected.

7. Register three customers, unregister last customer, and verify remaining two
customers are what expected.

8. Register 100 customers and verify that count of registered customers is 100.

9. Register 100 customers, unregister all of them, and verify that customer list is
empty.

Part 2. Implement Test Cases for the Customers Class

In this part you will write test methods for all of your test cases and run them using
Visual Studio. You should at least implement the test cases shown above.

1. Build the solution and run it using Ctrl + F5. This will run the four tests for the

Customer class. Verify that three of them succeed.

2. Delete the test methods OneCustomerMessage() and OneCustomerIgnoreCase().
These were only present to demonstrate additional Assert.AreEqual() overloads and
have no bearing on testing the functionality of the Customer class.

3. Change the name of the file UnitTest1.cs to CustomerTests.cs. This will also change
the name of the test class.

4. Build and run the tests. There should now be two tests, and both succeed.

5. Add a new test: right-click over the AcmeTest project and choose Add | New Test
from the context menu. In the Add New Test dialog, select the Basic Unit Test
template, and assign Test Name CustomersTests.cs. This will create a new test class
CustomersTests. (In Visual Studio Community there is only one kind of test, and
from the context menu you will choose Add | Unit Test.)

6. Provide code to do the following;

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 68
 All Rights Reserved

a. Import the System.Diagnostics namespace.

b. Provide a private data member custs of type Customers.

c. Provide a helper method ShowCustomerArray(Customer[] arr) to
display an array of Customer objects at the debug Output window..

...
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Diagnostics;

namespace AcmeTest
{
 [TestClass]
 public class CustomersTest
 {
 private Customers custs;

 private void ShowCustomerArray(Customer[] arr)
 {
 if (custs == null)
 {
 Debug.WriteLine("<null>");
 return;
 }
 for (int i = 0; i < arr.Length; i++)
 {
 string id = arr[i].CustomerId.ToString();
 string first = arr[i].FirstName.PadRight(12);
 string last = arr[i].LastName.PadRight(12);
 string email = arr[i].EmailAddress.PadRight(20);
 string str = id + " " + first + " " + last + " "
 + email;
 Debug.WriteLine(str);
 }
 }

7. Build the solution to make sure that you get a clean compile.

8. Run the tests. You should see the two Customer tests run successfully and there is
the stub test TestMethod1 in the Customers test class.

9. Implement the first test method to register one customer, note id, obtain info for this
customer and verify. You may call it OneCustomer(). Note that it is perfectly legal
for test methods under different test fixtures to have the same name. This will replace
the stub test.

[TestMethod]
public void OneCustomer() //1
{
 int id = custs.RegisterCustomer("Joe", "Blow", "foo@bar.com");
 Customer[] arr = custs.GetCustomer(id);
 ShowCustomerArray(arr);
 Assert.AreEqual(arr[0].FirstName, "Joe");

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 69
 All Rights Reserved

 Assert.AreEqual(arr[0].LastName, "Blow");
 Assert.AreEqual(arr[0].EmailAddress, "foo@bar.com");
}

10. Build and run all tests from Test Explorer.

11. The OneCustomer test in CustomersTests.cs fails, because the custs object has not
been initialized.

12. Provide an initialization method to initialize the Customers object custs.

[TestInitialize]
public void InitCustomers()
{
 custs = new Customers();
 Debug.WriteLine("Customers instance created");
}

13. All tests should succeed.

14. Although it is legal to use the same name OneCustomer for the test of the
Customers class, the output in Test Explorer is confusing. Let’s adapt a naming
convention in which we will put Customers at the beginning of the names of the test
methods of the Customers class. The test method is now CustomersOneCustomer.

15. Debug the Customers tests. (Right-click over the CustomersTests.cs window and
choose Debug Tests from the context menu.)

16. Look at the Output window to see the debug output that you’ve generated in your test
code.

17. Implement the remaining tests. Follow the naming convention by beginning the name
of each test method with Customers. If you have questions about any of the test
method implementations, don’t hesitate to consult the supplied answer.

18. Run all your tests. They should all succeed except for the two tests in which you
register 100 customers. (We’ll fix our class in the next chapter!)

19. Since you expect those two tests to fail at this point, due to the implementation of the
list of customers by an array of limited size, mark these two tests with the [Ignore]
attribute.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

UnitCs Chapter 2

Rev. 4.8.5 Copyright © 2019 Object Innovations Enterprises, LLC 70
 All Rights Reserved

20. Run the tests again. The two tests that previously failed now are skipped.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

7400 E. Orchard Road, Suite 1450 N
Greenwood Village, Colorado 80111

Ph: 303-302-5280
www.ITCourseware.com

9-08-00401-000-06-18-19

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

	Blank Page

	Title: Test-Driven Development Using Visual Studio and C#

