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Directory Structure

e. The course software installs to the root directory
C:\OIC\NetCs.

~"Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and so
on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied;.and answers are provided in the chapter directories.

— The Demos directory is provided for hand-on work during
lectures.

e Data files install to the directory C:\OIC\Data.

e The directory C:\OIC\Deploy isprovided to practice
deployment.
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NET Fundamentals

Objectives

After-completing this unit you will be able to:

e Understand the problems Microsoft .NET is designed
to solve.

e Understand the basic programming model of
Microsoft .NET.

e Understand the basic programming tools provided by
Microsoft .NET.

e Discuss .NET Native, .NET Core and cross-platform
development.
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What Is Microsoft .NET?

e Microsoft .NET was developed to solve three
fundamental problems.

e First, the Microsoft Windows programming model
must be unified to remove the widely varied
programming models and approaches that exist
among the various Microsoft development
technologies.

e Second, Microsoft based solutions must be capable of
interacting with the modern world of heterogeneous
computing environments.

e Third, Microsoft needs a development paradigm that
Is capable of being expanded.to-encompass future
development strategies; technologies, and customer
demands.
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Open Standards and Interoperability

e The modern computing environment contains a vast
variety of hardware and software systems.

— Computers range from mainframes and high-end servers, to
workstations and PCs, and to small mobile devices such as
PDAs and cell phones.

—“Operating systems include traditional mainframe systems,
many flavors of Unix including Android, Linux, Apple’s
10S,-several versions of Windows, real-time systems and
more.

— Many different languages, databases, application
development tools and middleware products are used.

e Applications need to be able to work in this
heterogeneous environment.

— Even shrink-wrapped applications deployed on.a single PC
may use the Internet for registration and updates.

e The key to interoperability among applications is the
use of standards, such as HTML, HTTP, XML,
SOAP, and TCP/IP.
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Windows Development Problems

e In.classic Windows development design and language
choice often clashed.

— Visual'Basic vs. C++ approach

— |IDispatch; Dual, or Vtable interfaces
~ VB vs.MFC

— ODBC or OLEDB or ADO

e Application deployment was hard.
— Critical entries-in Registry for-COM components
— No versioning strategy

— DLL Hell

o Security was difficult to implement:

— No way to control code or give cade rights to certain actions
and deny it the right to do other actions.

— Security model is difficult to understand.-Did you ever pass
anything but NULL to a LPSECURITY_ATTRIBUTES
argument?

e Too much time is spent in writing plumbing code that
the system should provide.

— MTS/COM+ was a step in the right direction.
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Common Language Runtime

e The first step in solving the three fundamental
problems is for Microsoft .NET to provide a set of
underlying services available to all languages.

e The runtime environment provided by .NET that
providesthese services is called the Common
Language Runtime or CLR.

— A runtime provides services to executing programs.

— Traditionally there are different runtimes for different
programming-environments. Examples of runtimes include
the standard Clibrary, MFC, the Visual Basic 6 runtime and
the Java Virtual Machine.

e These services are available to.all languages that
follow the rules of the CLR.

— C# and Visual Basic are examples of Microsoft languages
that are fully compliant with the CER requirements.

— Not all languages use all the features of the CLR.

e As a terminology note, beginning with .NET 2.0,
Microsoft has dropped the “.NET”” in the‘Visual
Basic language.

— The pre-.NET version of the language is now referred to as
Visual Basic 6 or VB6.
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CLR Serialization Example

e Let us use serialization to illustrate how the CLR
provides a set of services that unifies the Microsoft
development paradigm.

— ‘Every programmer has to do it.

—- It can.get complicated with nested objects, complicated data
structures, and a variety of data storages.

— The'programmer should also be able to override the system
service if-necessary.

o See the Serialize example in this chapter.
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Serialization Example (Cont’d)

e Ignore the language details covered in a later chapter.

[Serializable]

class Customer

{
public string name;
public long id;

+

class Test

{
static void Main(string[] args)

{
ArrayList list = new ArrayList();

Customer cust = ‘new Customer();
cust.name = *Charles Darwin';
cust.id = 10;

list.Add(cust);

cust = new Customer();
cust.name = ""lIsaac Newton';
cust.id = 20;
list.Add(cust);

foreach (Customer x In list)
Console._WriteLine(X.name + """ + x.id);

Console._WriteLine('Saving Customer List');
FileStream s = new FileStream(''cust txt",
FileMode.Create);
SoapFormatter f = new SoapFormatter();
SaveFile(s, T, list);
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Serialization Example (Cont’d)

Console._WriteLine("'Restoring to New List");
s = new FileStream(*'cust.txt",
FileMode.Open);
T = new SoapFormatter();
ArrayList list2 =
(ArrayList)RestoreFile(s, T);

foreach (Customer y in list2)
Console._WriteLine(y.-name + ": " + y.i1d);

}

public static-void SaveFile(Stream s,
IFormatter, ¥, IList list)
{
T.Serialize(s, list);
s.Close();
+

public static IList RestoreFile(Stream s,
IFormatter T)

IList list = (IList)f.Deserialize(s);
s.Close();
return list;
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Attribute-Based Programming

e We add two Customer objects to the collection, and
print them out. We save the collection to disk and
then restore it. The identical list is printed out.

Chardles Darwin: 10

Isaac Newton: 20

Saving Customer List
Restoring to New List
Charles. Darwin: 10

Isaac Newton: 20

Press enter to continue...

e \We wrote no.code to save or restore the list!

— We just annotated the class'we wanted to save with the
Serializable attribute.

— We specified the format'(SOAP) that the data was to be
saved.

— We specified the medium (disk)where the data was saved.

— This is typical class partitioning in the .NET Framework.

e Attribute-based programming is used-throughout
NET to describe how code and data should be
treated by the framework.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 10
All Rights Reserved



NetCs Chapter 1

Metadata

e The compiler adds the Serializable attribute to the
metadata of the Customer class.

e Metadata provides the Common Language Runtime
with information it needs to provide services to the
application.

— Version and localeinformation
— All the types
— Details about each type, including name, visibility, etc.

— Details about the members of each type, such as methods, the
signatures of methods, etc:.

— Attributes

e Metadata is stored with the application so that .NET
applications are self-describing. The registry.is not
used.

— The CLR can query the metadata at runtime. It can see if the
Serializable attribute is present. It can findout the structure
of the Customer object in order to save and restore it.
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Types

e Types are at the heart of the programming model for
the CLR.

— Most.of the metadata is organized by type.

e A type Is analogous to a class in most object-oriented
programming languages, providing an abstraction of
data and behavior; grouped together.

e A type inthe CLR contains:
— Fields (data members)
— Methods
— Properties

— Events (which are now full-fledged'members of the Microsoft
programming paradigm).
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NET Framework Class Library

e The SoapFormatter and FileStream classes are two of
the thousands of classes in the .NET Framework that
provide system services.

e The functionality provided includes:

Base Class Library (basic functionality such as strings, arrays
and formatting).

Networking
Security

Remoting
Diagnostics

1/0

Database

XML

Web Services
Web programming

Windows User Interface

e This framework is usable by all CLR compliant
languages.

Rev. 4.8
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Interface-Based Programming

Interfaces allow you to work with abstract types in a
way that allows for extensible programming.

The SaveFile and RestoreFile routines are written
usingthe IList and IFormatter interfaces.

These routines'will work with all the collection classes
that support the lList interface, and the formatters
that supportthe 1Formatter interface.

Implementation inheritance permits code reuse.

You can implement the ISerializable interface to
override the framework’s implementation.

— The metadata for the type tells the‘framework that the class
has implemented the interface.

Interface-based programming allows classes.to
provide implementations of standard functionality
that can be used by the framework.
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Everything is an Object

e Every type in .NET derives from System.Object.’

e Everytype, system or user defined, has metadata.

— In'the sample the framework can walk through the ArrayL.ist
of Customer objects and save each one as well as the array
itself.

e Allraccess to objects in .NET is through object
references.

 An exception is the pointer type, which is rarely used in C#.
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Common Type System

e The Common Type System (CTS) defines the rules
for the types and operations that the CLR will
support.

— The CTS limits .NET classes to single implementation
inheritance.

—“The CTS is.designed for a wide range of languages, not all
languages will support all features of the CTS.

e The CTS makes it possible to guarantee type safety.

— Access to objects can berestricted to object references (no
pointers), eachreference refers to-a defined memory. Access
to that layout is only through public methods and fields.

— By performing a local analysis of theclass, you can verify to
make sure that the code does-not perform-any inappropriate
memory access. You do not have to analyze the users of the
class.

e NET compilers emit Microsoft Intermediate
Language (MSIL or IL) not native code.

— MSIL is platform independent.

— Type-safe code can be restricted to a subset of verifiable
MSIL expressions.

— Once code is verified, it is verified for all platforms.
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ILDASM

e The Microsoft Intermediate Language Disassembler
(ILDASM) can display the metadata and MSIL
Instructions associated with .NET code.

It is.avery.useful tool both for debugging and increasing
your'understanding of the .NET infrastructure.

e You may wish to add ILDASM to your Tools menu in
Visual Studio 2017.

Rev. 4.8

Use the' command Tools | External Tools. Click the Add
button, enter ILDASM for the Title, and click the ... button to
navigate to the folder \Program Files (x86)\Microsoft
SDKs\Windows\v10.0A\bil\NETFX 4.6.1 Tools.

External Tools l ‘ ed A
Menu contents:
Create BGUID Add
Error LooSkup
o —— |
Mawe Lip |
Move Do |
Title: | 1LDASM
Command: I C:'Program Files (x36)\Microsoft SDKs\Windo E
Arguments: I J
Initial directory: I j
[T Use Qutput window ™ Prompt for arguments
™ | Tireak output as Unicode ¥ Close on exit
Ok | Cancel | Apply |
Copyright © 2017 Object Innovations Enterprises, LLC 17
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ILDASM (Cont'd)
e You can use ILDASM to examine the .NET
framework code.

— Here.is a fragment of the MSIL from the Serialize example.
=
Find. Find Mext

IL 6829 newobj instance void Customer::.ctor() -]

IL-BB2e: stlec.1

IL_882f: 1dloc.1

IL_8838:, ldstr "Isaac Hewton"

IL_8835: ~stfld string Customer::name

IL_883a: “l1ldloc.1

IL_@83b: 1ldc.ih.s 2a

IL_@83d: conuiis8

IL_@83e: stfld int64 Customer::id

IL_8843: 1dloc.@

IL_8e4y: 1l1dloc.1

IL_@845: calluirt instance int32 [mscorlib]System.Collections.ArraylList

IL_@84a: pop

IL_884b: nop

IL_884c: 1dloc.8

IL_@884d: calluirt instance /class [mscorlib]System.Collections.IEnumerat

IL 8852: stloc.s csicénonn

-try

{

IL_8854: br.s IL_8a84

IL_8856: 1dloc.s cs5550000

IL_8858: calluirt instance object [mscorlib]System.Collections.IEnume

IL_@85d: castclass Customer

IL_8862: stloc.2

IL_8863: 1dloc.2

IL_8844: 1dfld string Customer::name

IL_8869: 1ldstr =l

IL _8@6e: 1dloc.2

IL_@@6f: 1dfld int64 Customer::id

IL_8874: box [mscorlib]System.Intoh

IL_8879: call string [mscorlib]System.String::Concat{object,

object, -
4] | 2y
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.NET Framework SDK Tools

e Installing Visual Studio 2017 will also install the
NET Framework SDK, version 10.0A.

— Thesetools are located in folder \Program Files (x86)\
Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.6.1 Tools®.

n C:\Program Files (x86)\Microsoft SDKs\Windows\v10.04A’ - |EI|5|

‘(’()\,ﬂ . =bin ~NETFX ... ~ = [§23) | search NETFX 4.6.1 Tools !,“!]‘
Organize Open', Burn®  Mew folder =« i IZIEZI
. Microsoft SDKs Al [, MName = | Date modified -
. Azure 1 drver.exe 11/5/2015 7:36 PM
i ClickOné3 B CorFlags.exs 11/5/2015 7:35 PM
) ClickOnce Boatstrapper
Fa 18 dizco.exe 11/5/2015 7:36 PM
| Microsoft Azure 7 FusLOGVWhexe 11/5/2015 7:36 FM
| MuGetPackages B gacutil. exe 11/5/2015 7:36 PM
| Portable J ?'__'I gacutil. exe.config 11/5/2015 5:17 PM
. TypeScript 2 IDasm. chm 10/1/2015 2:15 M
| Windaws 7 idasm.exe 11/5/2015 7:36 PM
| v10.0A
N ¥_1.idasm.exe.config 11/5/2015 5:17 PM
Join
E .
N lc.exe 11/5/2015 7:35 PM
. NETFX 4.7 Tools ¥ Ic.exe.config 10/1/2015 2:21PM
| Windows Kite K3 mage.exe 11/52015 7:36FM
| Windows Phone LI 4| | *

idasm.exe Date modified: 11/5/2015 7:36 PM
Application Size: 487 KB

— They can be run at the command line from the Visual Studio
2017 Command Prompt®, which can be started from All
Programs | Visual Studio 2017 | Visual Studio Tools |
Developer’s Command Prompt for V52017,

2 NET Framework 4.7 is not installed with Visual Studio 2017. You can install it separately if you need it.
® You may need to run the Command Prompt as Administrator in some cases.
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Language Interoperability

e Having all language compilers use a common
intermediate language and common base class makes
it possible for languages to interoperate.

— All'languages need not implement all parts of the CTS.

—- One language can have a feature that another does not.

e The Common Language Specification (CLS) defines a
subsetofthe CTS that represents the basic
functionality that all .NET languages should
implement if they are to interoperate with each other.

— For example, a class written in-Visual Basic can inherit from
a class written in C#.

— Interlanguage debugging_is possible.

— CLS rule: Method calls need not support a variable number
of arguments even though such @ construct can be expressed
in MSIL.

— CLS prohibits the use of pointers.

e CLS compliance only applies to public features.

— C# code should not define public and protected class-names
that differ only by case sensitivity since languages as-Visual
Basic are not case sensitive. Private C# fields could have
such names.
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Managed Code

e In.the serialization example we never freed any
allocated memory.

— Memory that is no longer referenced can be reclaimed by the
CLR’s garbage collector.

= Automatic memory management eliminates the common
programming error. of memory leaks.

— Garbage collection is-one of the services provided to .NET
applications bythe Common Language Runtime.

e Managed code uses the'services of the CLR.

— MSIL can express access to unmanaged data in legacy code.

o Type-safe code cannot be subverted.

— For example, a buffer overwrite is not able to corrupt other
data structures or programs. Security policy canbe applied to
type-safe code.

e Type-safe code can be secured.
— Access to files or user interface features can be controlled.

— You can prevent the execution of code from unknown
sources.

— You can prevent access to unmanaged code to prevent
subversion of .NET security.

— Paths of execution of .NET code to be isolated from one
another.
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Assemblies

e .NET programs are deployed as an assembly.

~ The'metadata about the entire assembly is stored in the
assembly’s manifest.

— An assembly has one or more EXESs or DLLs with associated
metadata information.

=1alx]

Find Find Mext

I// Metadata wersion: ul._B.30319 -
.assembly extern mscorlib

{

-publickeytoken = (B7 7A /5C 56 19 34 EO 89 )
-ver 4:@:-8:8

b

.assembly extern System.Runtime_Serialization.Formatters.Soap

{
-publickeytoken = (B@ 3F_SF 7F 11 D5 8a 3n )
-ver 4:@:-8:8

b

.assembly Serialize

{
-.custom instance void [mscorlib]3ystem.Reflection.fissemblyTitlenttr
.custom instance void [mscorlib]3ystem.Reflection.fissemblyDescripti—
.custom instance void [mscorlib]3ystem.Reflection.fissemblyConfigura
.custom instance void [mscorlib]System.Reflection.fissemblyCompanyAt
.custom instance void [mscorlib]System.Reflection.AssemblyProductAt
-.custom instance void [mscorlib]3ystem.Reflection.fssemblyCopyright

.custom instance void [mscorlib]System.Reflection.fissemblyTrademark
.custom instance void [mscorlib]System.Runtime.InteropServices Coml
-.custom instance void [mscorlib]3ystem.Runtime.InteropServices . Guid

.custom instance void [mscorlib]System.Reflection.fissemblyFilelersi
.custom instance void [mscorlib]System.Runtime._Uersioning-TargetFra

1] | M Lz
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Assembly Deployment

e The assemblies can be uniquely named.

~ Assemblies can be versioned and the version is part of the
assembly’s name.

— Unique (strong) names use a public/private encryption
scheme.

— The culture used can also be made part of the assembly
name.

o Assemblies-are self-describing. Information is in the
metadata associated with the assembly, not in the
System Registry.

e Private, or xcopy deployment requires only that all
the assemblies an application needs are in the same
directory.

— This makes deployment of components much simpler.

e Public assemblies require a strong hame and an entry
in the Global Assembly Cache (GAC).

e Either approach means the end of DLL Hell!

— Components with different versions can be deployed side by
side and need not interfere with each other.
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JIT Compilation

e Before executing on the target machine, MSIL is
translated by a just-in-time (JIT) compiler to native
code.

e Some code typically will never be executed during a
program-run.

— Hence it may be more efficient to translate MSIL as needed
during execution, storing the native code for reuse.

e \When a type is loaded, the loader attaches a stub to
each method of the type.

— On the first call'the stub passes‘control to the JIT, which
translates to native'code and modifies the stub to save the
address of the translated native code.

— On subsequent calls to the method transfer is then made
directly to the native code.

e As part of JIT compilation code goes through.a
verification process.

— Type safety is verified, using both the MSIL and metadata.

— Security restrictions are checked.
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All Rights Reserved



NetCs

ASP.NET and Web Services

NET includes a totally redone version of the popular
Active Server Pages technology, known as ASP.NET.

Whereas ASP relied on interpreted script code
interspersed with page formatting commands,
ASP.NET relies on compiled code.

— The code can be written in any .NET language, including C#,
Visual Basic, JScript. NET and C++/CLI.

ASP.NET provides Web Forms which vastly
simplifies creating Web user.interfaces.

— Drag and drop in’Visual Studio’2017 makes it very easy to
lay out forms.

— Also supported are ASPINET MVC-and Web API.

For application integration across'the internet, Web
services use the SOAP protocol.

— The beautiful thing about a Web service,is that from the
perspective of a programmer, a Web service.is no different
from any other kind of service implemented by a class in'a
NET language.

However, Web APl and REST have become more
important than SOAP.

Web services and C# (or Visual Basic) as a scripting
language allows Web programming to follow an
object-oriented programming model.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC
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The Role of XML

e XML is ubiquitous in .NET and is highly important
in Microsoft’s overall vision.

e ‘Some uses of XML in .NET include:

— XML is used for encoding requests and responses in the
SOARP protocol.

— XML is the serialization format for disconnected datasets in
ADO.NET.

— XML is used extensively in configuration files.

— XML documentation can be automatically generated by
.NET languages.

— .NET classes provideavery convenient APl for XML
programming as an alternative to DOM or. SAX.

e Also, as we shall see shortly,'CLR Serialization is not
available in .NET Core, while XML Serialization may
be used to achieve serialization ina cross-platform
manner.
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Performance

e Concerns about performance of managed code are
similar to the concerns assembly language
programmers had with high level languages.

e Garbage collection usually produces faster allocation
than C++ unmanaged heap allocation. Deallocation is
done on a separate thread by the garbage collector.

e JIT compilation takes a hit the first time when
verification andtranslation take place, but
subsequent executions pay-no penalty.

e There is a penalty when security checks have to be
made that requirea stack walk.

e Compiled ASP.NET cade is going to be a lot faster
than interpreted ASP pages.

e Bottom line: for most of the code that is written, any
small loss in performance is far outweighed by the
gains in reliability and ease of development.

— High performance servers might still have to-use
technologies such as ATL Server and C++.

o Apps targeting the Windows 10 platform may use
NET Native to achieve higher performance.
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.NET Native

e .NET Native is a precompilation technology for
building and deploying apps to Windows 10.

— Ratherthan generating IL, Windows apps are compiled
directly to native code for faster startup and execution.

¢ _NET Native changes the way in which .NET
Framework applications are built and executed.

— During.precompilation required portions of the .NET
Framework are statically linked to your code, enabling the
compilerto perform global code optimization.

— The .NET Native runtime isoptimized for static
precompilation.

— .NET Native uses the same backend as the C++ compiler for
superior performance.

o .NET Native brings the performance of C++to
managed code.

e See MSDN for more information:

https://msdn.microsoft.com/en-us/library/dn584397(v=vs.110).aspX
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.NET Core

NET Core is a modular subset version of the .NET
Framework that is portable across multiple
platforms.

Rather 'than one large assembly, .NET Core is
released through NuGet in smaller feature-specific
assembly packages.

.NET Core provides-key functionality used in
applications regardless of platform.

— This common functionality provides for shared code that can
be used across-platforms.

— Your application then links in additional platform-specific
code.

Microsoft platforms you can targetinclude
traditional desktop Windows and Windows phones.

Through third-party tools such as-Xamianyou can
target Android and iOS.

Visual Studio 2017 provides support for cross-
platform development.
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.NET Frameworks

e With the advent of .NET Core the term “framework”
becomes more complex.

e Traditionally, there was just one .NET Framework
(in"various.versions).

o But now thereare multiple .NET frameworks.

o A framework defines an APl you can rely on when
you target that framework.

— A framework is versioned as new APIs are added.

e Unfortunately, there are many differences between
the .NETCoreApp framework API and the classic
NET API.

— Thus apps built for classic .NET may not run with a simple
recompile on .NET Core.

e For example, the Serialization example does not-run
on .NET Core.

— The CLR Serializer does not work with .NET-Core, butyou
can achieve serialization with the XML Serializer.

e For more information about .NET Core see this
Object Innovations course:

4012 .NET Core Frameworks
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XML Serialization Example

e Although you cannot use CLR Serialization as
illustrated earlier in the chapter with .NET Core, you
can‘use XML Serialization.

— See the XmlSerialize example in this chapter.

class Customer

public string name;
public long. id;

class Program

static void-Main(string[] args)

{
+
{
{
Rev. 4.8

List<Customer> list = new List<Customer>();

Customer cust ="new Customer();
cust.name = ""Charles.Darwin'';
cust.id = 10;

list.Add(cust);

cust = new Customer();
cust.name = "Isaac Newton';
cust.id = 20;
list.Add(cust);

foreach (Customer x In list)
Console_WriteLine(X.name + ": " + X:sid);

Console._WriteLine('Saving Customer List'™);

XmlSerializer ser = new
XmlSerializer(typeof(List<Customer>));
FileStream s = new FileStream(*'cust.xml",
FileMode.Create);
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XML Serialization (Cont’d)

}

ser.Serialize(s, list);
s.FlushQ);
s.Dispose();

Console._WriteLine(""Restoring to New List");

FileStream s2 =
new FileStream(“'cust.xml™, FileMode.Open);
list = (List<Customer>)ser.Deserialize(s2);

foreach (Customer y in list2)
ConsolecWriteLine(y-name + ": " + y.i1d);

e The data is serialized to the file cust.xml.

<?xml version="1.0" encoding=""utf-8"?>
<ArrayOfCustomer xmIns:xsi="http://www.w3.0rg/2001/
XMLSchema-i1nstance"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema’">
<Customer>
<name>Charles Darwin</name>
<id>10</id>
</Customer>
<Customer>
<name>lsaac Newton</name>
<1d>20</id>
</Customer>
</ArrayOfCustomer>
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Summary

.NET solves problems of past Windows development.

It provides one development paradigm for multiple
languages.

Design and programming language no longer conflict.

NET uses managed code with services provided by
the Common Language Runtime that uses the
Common Type System.

Plumbingcode for fundamental system services is
there, yet you can extend it'or replace it if necessary.

The .NET Framework is a very large class library
available consistently‘across many languages.

NET Core is a modular subset version of the .NET
Framework that is portable across multiple
platforms.

CLR Serialization is not available in;"NET Core, but
you can use XML Serialization.
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NET Threading

Objectives

After completing this unit you will be able to:

Usethe Thread class to implement multithreading in
NET applications.

Use the Monitor class to program safe concurrent
access-to shared data.

Use the ThreadPool class to obtain threads from a
pool that is managed by the system.

Describe the difference between foreground and
background threads.

Describe different classes that can be used for
synchronizing threads.

Use the Task Parallel Libraryto implement task
parallelism and data parallelismin .NET
applications.
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Threads

e Operating systems use processes to separate the
different applications that they are executing.
Threads run inside of processes to allow for multiple
execution paths inside of a process.

¢ “Threads are what are scheduled by the operating
system, not processes or application domains.

Rev. 4.8

Threads maintain a context, exception handlers catch
exceptions thrown within the thread in which they occur.

Machine registers and stack are also part of the thread’s
context.

This context has to-be saved when the operating system’s
scheduler switches from one thread to another.

The Thread object that represents‘the current executing
thread can be found from thestatic property
Thread.CurrentThread.
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.NET Threading Model

e The .NET Framework provides extensive support for
multiple thread programming in the
System.Threading namespace.

e The core class is Thread, which encapsulates a thread
of execution.

— “This class provides.methods to start and suspend threads, to
sleep, and to perform other thread management functions.

e The method that will execute for a thread is
encapsulated-inside a delegate of type ThreadStart.

— Recall that a delegate can wrap-either a static or an instance
method.

e When starting a thread, it is frequently useful to
define an associated class, which will'contain instance
data for the thread, including-initialization
information.

— A designated method of this class can'bbe used as the
ThreadStart delegate method.

e NET 4 introduced the Task Parallel Library (TPL)
to simplify the implementation of parallel code using
multiple threads.

— We will discuss TPL later in the chapter after covering the
fundamentals of threads in .NET.
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Console Log Example

e The ThreadDemo program provides an illustration of
this architecture.

—~The ConsoleLog class encapsulates a thread ID and
parameters specifying a sleep interval and a count of how
many lines of output will be written to the console.

—~~At-also provides a Stopwatch object (System.Diagnostics
namespace) to provide timings.

— It provides the method ConsoleLog that writes out logging
information to the console, showing the thread ID and
number of elapsed (millisecond) ticks. Here is the program
code:

using System;
using System.Diagnostics;
using System.Threading;

class ConsolelLog
{
private int delta;
private int count;
private int ticks = O;
public static Stopwatch stopWatch =
new Stopwatch();
public ConsoleLog(int delta, Int count)

{

this.delta = delta;
this.count = count;
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Console Log Example (Cont’'d)

public void ConsoleThread()
{
for (int 1 = 0; 1 < count; i1++)
{
Console._WriteLine(
"Thread {0}: ticks = {1}",
Thread.CurrentThread.ManagedThreadld,
ticks);
Thread.Sleep(delta);
ticks += delta;
+
Consale._WritelLine(
"Thread {0} i1s_terminating",
Thread-CurrentThread.ManagedThreadld);
Console._WriteLine(
"\nElapsed time:\n\t" +
ConsolelLog.stopWatch.Elapsed);

}
}

public class ThreadDemo

{
public static void Main()

{
Sequential();

UseThreads();
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Console Log Example (Cont’'d)

public static void Sequential()

Console._WriteLine(Sequential™);
ConsolelLog.stopWatch.Restart();

ConsoleLog slowLog = new ConsoleLog(1000, 5);
ConsolelLog. fastLog = new ConsoleLog(400, 5);
slowLog.ConsoleThread();
fastLog.-ConsoleThread();

public static void UseThreads()

{
+
{
}
}
Rev. 4.8

ConsoleWriteLine("'"\nUsing Threads™);
ConsolelLog.stopWatch.Restart();
ConsoleLogslowLog = new ConsoleLog(1000, 5);
ConsolelLog fastLog = new ConsoleLog(400, 5);
ThreadStart slowStart =

new ThreadStart(slowLog:ConsoleThread);
ThreadStart fastStart =

new ThreadStart(fastLog.ConsoleThread);
Thread slowThread = new:Thread(slowStart);
Thread fastThread = new .Thread(fastStart);
Console._WriteLine(''Starting . threads ..:');
slowThread.Start();
fastThread.Start();
Console._WriteLine(""Threads have started™);
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Console Log Example (Cont’'d)

e The program is configured with a “slow” thread and
a “fast” thread.

—~The slow thread will sleep for 1 second between outputs, and
the fast thread will sleep for only 400 milliseconds. A
ConsolelLog object is created for each of these threads,
initialized with-appropriate parameters. Both will do five
lines of output.

o Next, ‘appropriate delegates are created of type
ThreadStart.

— Notice that we use an instance method, ConsoleThread, as
the delegate method.

— Use of an instance method rather than a-static method is
appropriate in this case, because we want to associate
parameter values (sleep interval and output count) with each
delegate instance.

e \We then create and start the threads.

— We write a message to the console just-before and just after
starting the threads.

— You will notice a slight delay as the program executes,
reflecting the sleep periods.

e Notice the difference in total time from the stopwatch
for the method using threading versus the sequential
version.
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Race Conditions

e A major issue in concurrency is shared data.

—~ If two computations access the same data, different results
can be obtained depending on the timing of the different
accesses, a situation known as a race condition.

~ Race conditions present a programming challenge because
they can occur unpredictably. Careful programming is
required toensurethey do not occur.

e Race conditions-can easily arise in multithreaded
applications, because threads belonging to the same
process share the sameaddress space and thus can
share data.

e Consider two threads making deposits to a bank
account, where the deposit operation is not atomic:

— Get balance.
— Add amount to balance.

— Store balance.
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Race Condition Example

e The following sequence of actions will then produce a
race condition, with invalid results.

1:Balance starts at $100.

2.Thread 1 makes deposit of $25 and is interrupted after
getting balance and adding amount to balance, but before
storing balance:

3. Thread 2 makes deposit of $5000 and goes to completion,
storing $5100.

4.Thread .1 now.finishes, .storing $125, overwriting the
result of'thread 2. The $5000 deposit has been lost!

e The program ThreadAccount\Race illustrates this
race condition.

— The Account class has a method DelayDeposit, which
updates the balance non-atomically.

— The thread sleeps for 5 seconds‘in-the middle of the update
operation, leaving open a window of vulnerability for.another
thread to come in.
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Race Condition Example (Cont’d)

using System.Threading;

public class Account

{
protected decimal balance;
public Account (decimal balance)
{
this.balance = balance;
}
public void Deposit(decimal amount)
{
balance +=_amount;
}
public void DelayDeposit(decimal amount)
{
decimal newbal = balance '+ amount;
Thread.Sleep(5000);
balance = newbal;
s
public decimal Balance
{
get
{
return balance;
}
}
}
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Race Condition Example (Cont’d)

e The test program launches threads in a manner
similar to that used in the ThreadDemo program.

—~The AsynchAccount class contains the thread methods that
will be used by thread 1 (to call DelayDeposit) and thread 2
(to call Deposit).

using .System;
using.System.Threading;

class AsynchAccount

{
private decimal amount;
public AsynchAccount(decimal amount)
{
this.amount ‘=~<amount;
+
public void AsynchDelayDeposit()
{
ThreadAccount.account.DelayDeposit(amount);
+
public void AsynchDeposit()
{
ThreadAccount.account.Deposit(amount);
+
+
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Race Condition Example (Cont’d)

public class ThreadAccount
{
public static Account account;
public static void Main()
{
account = new Account(100);
AsynchAccount asynchl = new
AsynchAccount(25);
AsynchAccount asynch2 = new
AsynchAccount(5000) ;
ThreadStart startl = new
ThreadStart(asynchl.AsynchDelayDeposit);
ThreadStart start2 = new
ThreadStart(asynch2.AsynchDeposit);
Console._WriteLine("'balance = {0:C}",
accountcBalance);
Console._WriteLine(
"delay deposit of {0:C} on thread 1", 25);
Thread tl = new Thread(startl);
Thread t2 = new Thread(start2);
tl.Start();
Console._WriteLine(
"deposit of {0:C} on thread 2", 5000);
t2.Start();
t2.Join();
Console_WriteLine(
"balance = {0:C} (thread 2 done)™",account.Balance);
tl.Join();
Console._WriteLine(
"balance = {0:C} (thread 1 done)™",account.Balance);

}
}
e t2.Join blocks current thread until thread t2 finishes.

— This technique enables us to show the balance after a thread
has definitely completed.
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Thread Synchronization

e Such race conditions can be avoided by serializing
access to the shared data.

e ‘Suppose only one thread at a time is allowed to access
the'bank account.

— Then the first thread that starts to access the balance will
complete the operation before another thread begins to access
the-balance (the second thread will be blocked).

— In this case threads synchronize based on accessing data.

e Another way threads can synchronize is for one
thread to block until another thread has completed.

— The Join method is ameans for accomplishing this kind of
thread synchronization, as illustrated-above.

e The System.Threading namespace provides a number
of thread synchronization facHities.

— We will illustrate use of the Monitor.class.
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Monitor

e You can serialize access to shared data using the
Enter and Exit methods of the Monitor class.

—~"Monitor.Enter obtains the monitor lock for an object. An
object/is passed as a parameter. This call will block if another
thread has entered the monitor of the same object. It will not
block.if the current thread has previously entered the
monitor.

— Monitor.Exitreleases the monitor lock. If one or more
threads are waiting to acquire the lock, and the current thread
has executed Exit as many times as it has executed Enter,
one of the threads will be unblocked and allowed to proceed.

e An object reference-is passed as the parameter to
Monitor.Enter and Monitor.EXit.

— This is the object on which the monitor lock is acquired or
released. To acquire a lock onthe current object, pass this.

e The program ThreadAccount\Monitor illustrates the
use of monitors to protect the critical section'where
the balance is updated.

e The program ThreadAccount\Lock illustrates an
alternative implementation using C# keyword lock.
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Monitor Example

using System;

using System.Threading;

public class Account {
protected decimal balance;
public Account (decimal balance)

{
this.balance = balance;
}
public void Deposit(decimal amount)
{
Monitor_Enter(this);
balance +=_amount;
Monitor .Exit(this);
ShowBalance();
}

public void DelayDeposit(decaimal amount)
{
Thread.Sleep(5000) ;
Monitor.Enter(this);
balance += amount;
Monitor.Exit(this);

ShowBalance();
+
public decimal Balance
{

get

{

return balance;

}
}
private void ShowBalance()
{

Console._WriteLine("balance = {0:C} ({1}D)",
balance, Thread.CurrentThread.Name);
+

}

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 204
All Rights Reserved



NetCs

Using C# lock Keyword

Chapter 7

public class Account

{
protected decimal balance;
protected string owner;
public Account (decimal balance)
{
this.balance = balance;
this.owner. = "Tom Thread";
+
public void Deposit(decimal amount)
lock(this)
{
balance +=/amount;
+
ShowBalance();
+
public void DelayDeposit(decimal amount)
{
Thread.Sleep(5000);
lock(this)
{
balance += amount;
+
ShowBalance();
}
+
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Synchronization of Collections

e Some lists, such as TraceListeners are thread safe.
When this collection is modified, a copy is modified
and-the reference is set to the copy.

e Normally, collections like ArrayL.ist are not thread
safe. Making them automatically thread safe would
decrease the performance of the collection even when
thread safety is not an issue.

e An ArrayList hasa static Synchronized method to
return a thread-safe version of the ArrayList. The
IsSynchronized property indicates if the ArrayList is
thread safe or not.

— The SyncRoot property can return an object that can be used
to synchronize access to-a collection:

e The System.Collections.Concurrent namespace,
introduced with .NET 4, provides several thread-safe
collection classes.
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ThreadPool Class

e The ThreadPool class provides a pool of worker
threads that are managed by the system.

—~You are thus relieved of having to create and start your own
thread.

¢ The static method QueueUserWorkltem() will retrieve
a‘thread from the thread pool, if available, and start
it. If'no thread is'available, the request will be queued
until a'thread is available.

public static bool QueueUserWorkltem(
WaitCallback callBack
)

e The WaitCallback delegate represents a callback
method that that is to be executed on a. ThreadPool
thread.

public delegate void WairtCallback(
Object state
)

— You create the delegate by passing your callback method to
the WaitCallback constructor.

e ThreadPool threads are always background-threads.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 207
All Rights Reserved



NetCs Chapter 7

ThreadPool Example

e We illustrate the use of ThreadPool with another
implementation of the Console Log example.

—~See ThreadPoolDemo\Step1l in the chapter folder. It has the
same structure as the earlier example where we created
threads ourselves.

—~To match the’'WaitCallback delegate, the thread procedure
takes an ODbject input parameter.

class ThreadWithState
{

private i1nt Delta;
private int-Count;
private int ticks = O;

public ThreadWithState(int delta, Int count)
{

this.Delta = delta;
this.Count = count;
s
public void ConsoleLog()
{
oo o
public void ThreadProc(Object info)
{
ConsoleLog();
+
}
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Starting a ThreadPool Thread

o Now we don’t separately create a Thread object and
start it.

—"We use a single call to QueueUserWorkltem().

public static void Main()
{
ThreadWithState slowLog =
new ThreadWithState(1000, 5);
ThreadWithState fastLog =
new ThreadWithState(400, 5);

// Queue the slow log on a background thread
ThreadPool.QueueUserWorkltem(
new WaitCallback(slowLog.ThreadProc));

// Run the fast ‘log on the main thread
fastLog.ConsoleLog();

}

e Build and run.

Thread
Thread

0

0
400
800
1000

1: ticks

3: ticks
Thread 1: ticks
Thread 1: ticks
Thread 3: ticks
Thread 1: ticks 1200
Thread 1: ticks 1600
Thread 1 1s terminating
Thread 3: ticks = 2000

— The fast thread finishes, and the program exits before the
slow thread can finish. Why?
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Foreground and Background Threads

e Managed threads are either foreground threads or
background threads.

e ‘A'background thread is identical to a foreground
thread except that it does not keep the managed
execution‘environment running.

—“When all foreground threads have stopped, the system stops
all'the background threads and shuts down.

e Threads created from the Thread class are by default
foreground-threads.

— You can make athread a background thread by setting the
IsBackground property to true.

e Threads in the ThreadPool are always background
threads, and this cannot be changed.
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Synchronizing Threads

e To make your application using background threads
behave properly, you need to synchronize the
background threads with the foreground threads.

e The .NET Framework provides several useful classes
that can be used for such synchronization:

— "EventWaitHandle
— AutoResetEvent
— ManualResetEvent

— CountdownEvent

e For synchronizing-asingle thread with another,
AutoResetEvent and ManualResetEvent are useful.

— A thread blocks when calling WaitOne() until another thread
calls Set(), which signals the wait handle.

— The difference between these two classes is that.an
AutoResetEvent automatically resets after it has/been
signaled and has released a single waiting thread.

e A CountdownEvent is useful for synchronizing
multiple threads with another thread.

— It maintains a counter of the number of times it has been
signaled and will release waiting threads when the counter
has been decremented to zero.
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Improved ThreadPool Example

o Step2 of the ThreadPoolDemo program illustrates use
of an AutoResetEvent to synchronize the worker

thread with the main thread.

class ThreadWithState
{

public static AutoResetEvent
ev = new AutoResetEvent(false);

public void ThreadProe(Object info)
{

ConsoleLog();

ev.Set();

}
}

public static void Main(Q)
{
ThreadWithState slowLog =
new ThreadWithState(1000,-5);
ThreadWithState fastlLog =
new ThreadWithState(400, 5);

// Queue the slow log on a background thread
ThreadPool .QueueUserWorkltem(
new WaitCallback(slowLog.ThreadProc)) ;

// Run the fast log on the main thread
fastLog.ConsoleLog();

ThreadWithState.ev.WaitOne();
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e Build and run the Step2 version.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

: ticks
: ticks
I ticks
2 ticks
: ticks
- ticks
- ticks
: ticks
IS term
/ticks
- ticks

0

0
400
800
1000
1200
1600
2000

nating

3000
4000

IS terminating

e Now the workerthread runs to completion before the
application exits.
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Task Parallel Library (TPL)

e The Task Parallel Library (TPL) provides classes and
methods that simplify programming with multiple
threads.

— The Task class provides a wrapper for threads from the
ThreadPool.

o TPL supports two kinds of parallelism:

— Task parallelism facilitates parallel program using tasks,
which‘are like threads but-at a higher level of abstraction.

— Data parallelism facilitates performing the same operation
concurrently onelements in an array or collection.

e Besides making parallel programming simpler, TPL
can make programs more efficient.

— TPL can scale the degree of.concurrency dynamically based
on the number of processors available.
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o We illustrate the uses of tasks by providing another

implementation of our console log example.

—~See TaskDemo in the chapter directory.

— The same wrapper class is used for encapsulating the thread

procedure.

— The main program creates an array of Task objects.

static void Marn(string[] args)
{
ThreadWithState slowLog =
new ThreadWithState(1000, 5);
ThreadWithState mediumLog =
new ThreadWrthState(700, 5);
ThreadWithState fastlLog =
new ThreadWithState(400, 5);

// Array of tasks. Use.a) factory for
// starting third task
Task[] tasks = new Task[3];

tasks[0] = new Task(() => slowLog.ThreadProc());

tasks[0].Start();
tasks[1] = Task.Run(
(O => mediumLog.ThreadProc());
tasks[2] = Task.Factory.StartNew(
() => fastLog.ThreadProc());

// Wait for all tasks to complete
Task.WairtAll(tasks);
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Starting Tasks

e There are three ways to start a task.

—~ Instantiate a Task object and call the Start()method.

tasks[0] = new Task(() => slowLog.ThreadProc());
tasks[0].Start();

—- Call the static Run() method to create and start the task in
one operation

tasks[1l] = Task.Run(
(O => mediumLog.ThreadProc());

— Call the static StartNew() method of the Factory property to
create and start'the task in one operation. This technique
provides a greater-variety of options than the Run() method.

tasks[2] = Task.Factory.StartNew(
() => fastLog.ThreadProc());

e In each case we pass in a delegate, which'can be
conveniently expressed by a lambda expression.
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e The Task class makes it easy to wait on multiple

threads.

—~Use the WaitAll() method. You do not need to manually

create synchronization objects. The system handles the

synchronization for you.

// Wait for_all tasks to complete
Task.WartAll (tasks);

e Here is the resultof running the program:

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
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- ticks = 0

- ticks = 0

- ticks =.0

: ticks =400
- ticks = 700
: ticks = 800
- ticks = 1000
- ticks = 1200
- ticks = 1400
: ticks = 1600
: ticks = 2000

iIs terminating

- ticks = 2100
: ticks = 2800
- ticks = 3000

IS terminating

- ticks

= 4000

is terminating
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Data Parallelism

e TPL provides parallel For and ForEach loop that can
make it easy to achieve data parallelism for arrays
and-collections.

— For.an example, see PrimeCounter/Parallel. This program
finds prime numbers.

private static long[] FindPrimesParallel(
long “First, Int count)
{
long lastExclusive = first + count;
List<long> primes = new List<long>();
if (first- == 1) // 1 is not a prime
first =.2;
Parallel _For(first, lastExclusive, 1 =>
{
int numfact;
Factors(i, out ‘numfact);
1T (nhumfact == 1)
primes._Add(1);
s

return primes.ToArray();

— You will implement this example as part of the lab.
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Lab 7

Threading Techniques for Parallel Programming

In this lab you will use several different threading techniques to
count-prime numbers. Determining whether a large integer is a
prime number is a compute-intensive operation, and performance
Improvements can be obtained with multiple-core CPUs by the use
of parallel programming. You will compare several techniques.

Detailed instructions are.contained in the Lab 7 write-up at the end
of the chapter.

Suggested time: 60 minutes
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Summary

e You can use the Thread class to implement
multithreading in .NET applications.

e ‘You can use the Monitor class to program safe
concurrent access to shared data.

¢ With the ThreadPool class you can obtain threads
from a pool that is managed by the system.

o A foreground thread will keep the .NET execution
environment running, while background threads will
be stopped once all foreground threads have
completed.

e There are various classes for synchronizing threads,
including ManualResetEvent, AutoResetEvent and
CountdownEvent.

e You can use the Task Parallel‘Library to implement
task parallelism and data parallelism in .NET
applications.
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Threading Techniques for Parallel Programming

Introduction

In this lab you will use several different threading techniques to count prime numbers.
Determining whether a large integer is a prime number is a compute-intensive operation,
and performance improvements can be obtained with multiple-core CPUs by the use of
parallelsprogramming.. You will compare several techniques.

Suggested Time: 60 minutes

Root Directory: OIC\NetCs

Directories:(_Labs\Lab7\PrimeCounter (do your work here)
Chap07\PrimeCounter\Starter (backup of starter code)
Chap07\PrimeCounter\Threads (answer to Part 1)
ChapO07\RPrimeCounter\ThreadPool (answer to Part 2)
Chap07\PrimeCounter\Tasks (answer to Part 3)
Chap07\PrimeCounter\Parallel (answer to Part 4)

Part 1. Using Threads

1. Open the starter project and examine-the code. There'is a class Util with a static
method CountPrimes() that counts the number of primes in‘an interval beginning
with first. This method relies on the method FindPrimes(), which returns an array of
all the prime numbers in an interval. That method in turn relies on'Factors(), which
will factor a number. There is a test program that will enable you to interactively test
these three methods. Build and run the program, satisfying yourself that they work.

2. Modify the test program to test only CountPrimes() with a hardcoded first number of
one trillion and a count of 1000.

class Program

{
const long BIGNUM = 1000000000000; // one trillion
const int COUNT = 1000;
static void Main(string[] args)
{
Console._WriteLine("{0} total primes"™, Util.CountPrimes(BIGNUM,
COUNT));
}
}

3. Build and run without debugging. The result is 37 primes.
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4. Add some instrumentation to your program to measure the time required for the

computation. Use the StopWatch class from the System.Diagnostics namespace.
Also, display the number of logical processors using the ProcessorCount property of
the Environment class. Label the output “Sequential”.

class Program

{

}

const long BIGNUM = 1000000000000; // one trillion
const int COUNT = 1000;
static Stopwatch stopWatch = new Stopwatch();

static void Main(string[] args)

Console._WriteLine("'Number OFf Logical Processors: {0}",
Environment.ProcessorCount);

Console.-WriteLine(''Sequential™);

stopWatch.Restart();

Console . WriteLine("{0} total primes"™, Util.CountPrimes(BIGNUM,
COUNT));

Console._Writekine(''elapsed time:\t{0}", stopWatch.Elapsed);

5. Create a helper class ThreadWithState so.that you will be able to pass first and

count to the associated thread. Also maintain.astatic data member TotalPrimes. The
thread procedure should count the primes in the interval and add this count to the total
count. Both the count and total count should be displayed. Beware of a possible race
condition in updating TotalPrimes. A simple solution'is to use the
Interlocked.Add() method. Finally ‘display the elapsed time.on the stopwatch. You
will need to make stopWatch in the Program class public.

public class ThreadWithState

{

public static int TotalPrimes = O;
public long First;
public int Count;

public void ThreadProc()

{
int numPrimes = Util.CountPrimes(First, Count);
Console._WriteLine("{0} primes"™, numPrimes);
// Add this threads count to the total
Interlocked.Add(ref TotalPrimes, numPrimes);
Console . WriteLine("{0} total primes", TotalPrimes);
Console.WriteLine("elapsed time:\t{0}",

Program.stopWatch.Elapsed);

Finally, provide code in Main() to start two threads. The first thread will be for the
first half of the interval beginning at BIGNUM, and the second thread for the second
half of the interval. Use the ThreadDemo example as a model.
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Console.WriteLine("Using Two Threads');
stopWatch_Restart();

ThreadWithState twsl = new ThreadWithState { First = BIGNUM,

Count = COUNT / 2 };

ThreadWithState tws2 = new ThreadWithState {

First = BIGNUM + COUNT / 2, Count = COUNT - COUNT / 2 };
Thread tl1 new Thread(new ThreadStart(twsl.ThreadProc));
Thread t2 new Thread(new ThreadStart(tws2.ThreadProc));
tl.Start(Q);
t2.Start();

7. Buildand run. Here is some sample output on a 2.8 GHz AMD processor with 6 cores
and 8GB of system memory. This completes Part 1.

Number OF Logical Processors: 6

Sequential

37 total primes

elapsed time: 00:00:03:7012794
Using Two Threads

19 primes

19 total primes

elapsed time: 00:00:01.7747568
18 primes

37 total primes

elapsed time: 00:00:01.9316970

Part 2. Using the Thread Pool

1. Inthe previous solution we created individual threadsand started them. Replace these
four lines of code by two lines of code in which you call QueueUserWorkltem()
from the ThreadPool class. Use the WaitCallback delegate.

ThreadPool .QueueUserWorkltem(new WaitCallback(twsl.ThreadProc));
ThreadPool .QueueUserWorkltem(new WaitCallback(tws2.ThreadProc));

2. There is a compile error. To use in the WatiCallback delegate youneed to change
the signature of the thread procedure.

public void ThreadProc(Object statelnfo)

3. Build and run. You don’t get any output from the thread procedure for either thread!
What is the difference between threads you create from the Thread-class and threads
obtained from the ThreadPool class?
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Threads created from the Thread class by default are foreground threads, while
threads from the ThreadPool class are background threads. Since background threads
do not keep the managed execution environment running, once the main thread
completes, the system will stop the background threads and shut down.

A'quick and dirty way to keep the main thread from finishing before the threads you
started from the thread pool is to have the main thread sleep for a few second:

Thread.Sleep(5000);

6.

You can then build and run and see output from the thread procedure. A better
approach is to have the main thread wait on a synchronization object. A convenient
class to use in this context is CountdownEvent. You can initialize the counter to 2
(for the two tasks), and signal the event counter at the end of the thread procedure.
We-don’t need to depend on the thread procedure for output any longer but can print
the total number of primes and elapsed time in the main thread.

public class ThreadWithState

{
public static int TotalPrimes = 0;
public long First;
public int Count;
public static CountdownEvent cde = new. CountdownEvent(2);
public void ThreadProc(Object statelnfo)
{
int numPrimes = Util_CountPrimes(First, Count);
Console . WriteLine("{0} primes', numPrimes);
// Add this threads count to the total
Interlocked.Add(ref TotalPrimes, numPrimes);
cde.Signal();
}
}
class Program
{
static void Main(string[] args)
{
}}-Wait for threads to complete
ThreadWithState.cde_Wait();
Console _WriteLine("'{0} total primes",
ThreadWithState.TotalPrimes);
Console._WriteLine("elapsed time:\t{0}", stopWatch.Elapsed);
}
}
7. Build and run. This completes Part 2.
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Part 3. Using Tasks

1. Modify the thread procedure to return the number of primes this thread has found as
an integer. Also, the helper class does not need a synchronization object any longer,
because the Task<T> class will cause an automatic wait until the result is available.

public class ThreadWithState

{
public static int TotalPrimes = O;
public long First;
public-int Count;
public int ThreadProc()
{
int numPrimes.= Util.CountPrimes(First, Count);
Console _WriteLine(""{0} primes"™, numPrimes);
// Add this thread"s count to the total
Interlocked.Add(ref TotalPrimes, numPrimes);
return numPrimes;
}
}

2. In Main() replace the two lines where you called QueueUserWorkltem() by code
that instantiates Task<int> objects via the Factory.StartNew() method. In place of
using a special delegate class, you can use lambda notation. The value returned by
each thread can be accessed through the Result property.

Task<int> taskl
Task<int> task?2

Task.Factory.StartNew(() => twsl.ThreadProc());
Task.Factory.StartNew(() => tws2.ThreadProc());

// Task class causes automatic wait until results are available

Console _WriteLine('{0} total primes", .taskl.Result + task2.Result);
Console._WriteLine("elapsed time:\t{0}",- stopWatch.Elapsed);

3. Import the System.Threading.Tasks namespace.
4. Build and run. This completes Part 3.

Part 4. Using Implicit Parallelism

A really powerful feature of the Task Parallel Library is its capability in.many cases to
implicitly cause parallel processing. Then the system can determine the optimal number
of threads to use. The result is ease of programming and excellent performance:

1. Rather than manually starting threads in the main program, in our final solution we
will modify the Util class to implement a parallel version of the CountPrimes()
method, which in turn will rely on a parallel version of FindPrimes(). The heart of
the computation is this for loop:

for (long i = First; i <= last; i++)

int numfact;
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Factors(i, out numfact);
if (humfact == 1)
primes.Add(i);
3

2. We will replace it with a Parallel.For loop. Here is the complete code for the parallel
version of our method. Again we use lambda notation, this time to specify the
delegate method that will be invoked at each loop iteration.

private static long[] FindPrimesParallel(long first, int count)

{

long lastExclusive = First + count;
List<long> primes = new List<long>();

it (First ==1) // 1 is not a prime
Ffirst =2;

Parallel .For(first, lastkExclusive, i =>

{

int _numfact;
Factors(i, out numfact);
if (humfact == 1)
primes.Add(i);
s

return primes.ToArray();

3. Import the System.Threading.Tasks namespace:

4. Implement the parallel version of CountPrimes().

public static int CountPrimesParallel(long first, int count)

{
}

5. The main program now is very simple. There is'not any thread code; we just call the
two versions of CountPrimes() and display timing information using the stop watch.

return FindPrimesParallel(first, count).Length;

class Program

{
const long BIGNUM = 1000000000000; // one trilMion
const int COUNT = 1000;
static Stopwatch stopWatch = new Stopwatch();
static void Main(string[] args)
{
Console_WriteLine(""Number OFf Logical Processors: {0}",
Environment.ProcessorCount);
Console._WriteLine(*'Sequential™);
stopWatch.Restart();
Console _WriteLine("{0} total primes"™, Util._CountPrimes(BIGNUM,
COUNT));
Console.WriteLine("elapsed time:\t{0}", stopWatch.Elapsed);
Console._WriteLine("Implilcitly Parallel™);
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stopWatch.Restart();
Console _WriteLine(""{0} total primes",
Util.CountPrimesParallel (BIGNUM, COUNT));
Console._WriteLine("elapsed time:\t{0}", stopWatch.Elapsed);
}
}

6. Build and run. Here is some sample output, using the same machine described earlier.
The implicitly parallel version shows dramatic performance improvement, taking
advantage of all six cores. This completes Part 4.

Number OF Logical Processors: 6
Sequential

37..total primes

elapsed time: 00:00:03.7762193
Implilcitly Parallel

37 total primes

elapsed-time: 00:00:00.7838209

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 227
All Rights Reserved



NetCs Chapter 7

5%
Oé/ )

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 228
All Rights Reserved



Orchard R

Gréenwood Villag

h: 303-3C

9-08-00389-000-08-01-17



	Table of Contents
	Chapter 1 - .NET Fundamentals
	Chapter 2 - Class Libraries
	Chapter 3 - Assemblies, Deployment and Configuration
	Chapter 4 - Metadata and Reflection
	Chapter 5 - I/O and Serialization
	Chapter 6 - .NET Programming Model
	Chapter 7 - .NET Threading
	Chapter 8 - .NET Security
	Chapter 9 - Interoperating with COM andWin32
	Chapter 10 - ADO.NET and LINQ
	Chapter 11 - Debugging Fundamentals
	Chapter 12 - Tracing
	Chapter 13 - More about Tracing
	Appendix A - .NET Remoting
	Appendix B - Learning Resources



