tCOU SewWwdadre

“TRAINING MATERIALS FOR IT PROFESSIONALS

T

'

¢

’...-\...OOO.......
oy

NET Framework
Using C#

NET Framework
Using C#

Student Guide

Revision 4.8

Obiject Innovations Course 4112

NET Framework Using C#
Rev. 4.8

Student Guide

Information in this document is subject to change without notice. Companies, names and data used
in‘examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without-the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Object
k \ .1 VA] ‘ 0 N s ™._is a trademark of Qbject/Innovations.

Author: Robert J. Oberg

Special Thanks: Michael Stiefel, Peter Thorsteinson,’Dana Wyatt, Paul Nahay, Ed Strassberger,
Robert Seitz, Sharman Staples, Matthew Donaldson

Copyright ©2017 Object Innovations Enterprises, LLC AWrights reserved.
Object Innovations

877-558-7246
www.objectinnovations.com

Published in the United States of America.

Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC i
All Rights Reserved

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter5
Chapter 6
Chapter.7
Chapter8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13

Appendix A
Appendix B

Rev. 4.8

Table of Contents (Overview)

NET Fundamentals

Class Libraries

Assemblies, Deployment and Configuration
Metadata and Reflection

I/0O and Serialization

NET Programming Model

NET Threading

NET Security

Interoperating with COM and Win32
ADO:NET and LINQ

Debugging Fundamentals

Tracing

More about Tracing

.NET Remoting
Learning Resources

Copyright ©2017 Object Innovations Enterprises, LLC iii
All Rights Reserved

Directory Structure

e. The course software installs to the root directory
C:\OIC\NetCs.

~"Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and so
on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied;.and answers are provided in the chapter directories.

— The Demos directory is provided for hand-on work during
lectures.

e Data files install to the directory C:\OIC\Data.

e The directory C:\OIC\Deploy isprovided to practice
deployment.

Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC iv
All Rights Reserved

Table of Contents (Detailed)

Chapter 1 .NET FUNAmMENTAlS..........ccceiiiieiieie e 1
What A MICIOSOTt INET 2. et 3
Open Standards and INteroperabilityccoveiieeieiiieieere e 4
Windows Development Problems............cov i 5
Common Language RUNTIMEcooiiiiiiieieee e 6
CLR Serialization EXamPIecoooiiiiiiiiieeee e 7
Attribute-Based Programmingcccueieerieiieeieeiesieeseeeseesieesse e seesseseesseessesssessesssenns 10
YL Lo = v SRRSO 11
B 7L T S TS PP PR ORPO PR 12
NET-Framework Class LIDIAIY........cccoieiiiniiisisieeee e 13
Interface=-Based ProgrammMingccciiueieiie et ne e 14
EVerythingds.an ODJECL......cu i re e ere s 15
CoMMON TYPE SYSTEM ... el ettt ettt e e sbe e e e sbe e sneeenes 16
ILDASM L. i et e ih ettt ettt et re ettt nns 17
NET Framework SDK TOOISic.oiiiiiitr i 19
Language Interoperabilityot 20
MaNAGEA COUE ...t ittt aie et adba ettt ettt ettt st sbeesbesne e beebeaneenreas 21
ASSEMDIIES ... e 00 R ettt e st e bt eere e te et eeneenraetenneas 22
ASSEMDBIY DEPIOYMENT.......c it et 23
JIT COMPIALION ...kt db e ettt re et e e e s taenreaneen 24
ASP.NET and WED SEIVICES......ccc.iiieniiiiieiieeee iisssihne e sdba et seesieeseesseesieessesssessessaesseessens 25
The ROIE OF XIML....oviiiieieice e s st ade i et neesne e sneeneeanee e e 26
PEITOIMANCEot et r et bbbttt 27
INET NALIVE ¢ e sttt h bttt tnme et be s s e e s 28
NET COTE ettt T ekt e s bt e e tee e bRt e et e 29
INET FramEWOIKS.....cvveiieieciesieee et desfonn e ae e esee s dat e anaesneeshns e sseessaeneenneas 30
XML Serialization EXamPIec.ooveiiiiiee s oo afane et e a0 e e R e 31
SUMMEAIY .ttt et e e bt e e nbe e e s feeF Rt e nrbeeennseeesssdonenseesnsseeanbeeeenes 33

Chapter 2 Class LiDraries ... et sabe e sdan s 35
Objects and COMPONENTScveiierireieiie e erie e e se e sre e esee s e e e seesrae e aneastaesseenndareenes 37
Limitation of COM COMPONENESccviieiieiiieie s ese e e e s b e sneeee e e donnesee s b 38
ComponeNnts IN INET ..o et et 39
Class Libraries at the Command LiNE..........ccoooveririeiieiieie e et s e 40
Component Example: Customer Management SYSteMccccovvevvereneeeielosiiieninennennns 41
Monolithic VErsus COMPONENT..........cciiiieieeie et sreesre e b e e naes 43
Demo: Creating @ Class LIDrary ... s 44
Demo: A Console CHIENT PrOgram ..ot 46
Class Libraries Using Visual StUAIOccviieiieiiiii e 47
Demo: Creating a Class LIDrarycccoueiieiiic i 48
References in Visual STUAIO.........ooiiiiiiiiic e 50
References at Compile Time and RUN TIME.......coooiiiiiiiiiiirieeee e 52

Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC Y

All Rights Reserved

ProjeCt DEPENAENCIES.oveeieiiieitee ittt bttt sttt b e be b sneesbeeneeenes 53

Specifying Version NUMDEIS ... 54
LD 2 bbb 55
SUMMIATY .ttt e et e e e bt e e e bb e e et e e s st e e e s b e e e s Rbe e e e bt e e e bbeeebneeanbeeeanes 56
Chapter.3 Assemblies, Deployment and Configuration...........ccccccccceveeiveiciieinennn. 59
ASSEIMBIIES ... 61
Customer Management SYSTEIMcocuviiiiiieiiiie i bre e 62
ILDASM ...ttt e b e R et r ettt beere e et et et e 63
ASSEMBDIY MBATTEST ... et 64
Assembly Dependency Metadata...........cccoueiveiieriiieiece e 65
ASSEMDIY MELAAALA...........c.eoeeiieie e e 66
Versioning @n ASSEMDIY ..o 67
ASSEMDBIYVErSION AIHDULEooeii e 68
SETONGANBIMES ...ttt ittt ettt e e st e e sr b e e ssb e e e bb e e e nbb e e e beeeanbeeeanes 69
Digital SIGNATUIES ...ooeeeieecie et e s e steere e e e steebeaneenren 70
Verification With Digital:SIGNatUIESccviiiiieiieieee e 71
[o O 0 T0 LS SRR 72
Digitally Signing@n ASSEMDIYcuivveieiie it sreees 73
Digital Signing FIOWCRAI..........c.oi e 74
Signing the Customer ASSEMDIY.......ctc.io oo e s 75
Signed ASSEMDIY MELAAATA ©.........eveeeeeieessdire e sismimins e ettt 76
Private Assembly DeploymMENT Juc..ouv oo e 77
ASSEMDIY CACNE.....eeceie e et e dee et re e e nre s 78
Deploying a Shared ASSEMDIY ...l et o e nie et 79
Signed ASSEMBIY DEMO........coiiiiiiiie bt bbb 80
Versioning Shared COMPONENTScccvuive i seeses e see s bes e sdoe s e sie e siee e eeesreesaeeneesnees 82
How the CLR LOCates ASSEMDIIESo.iiudeslnnieieies hatione et nes 83
Resolving an Assembly REFEreNCEoovvveei i iliniiiiie e ifie e B 84
Version Policy ina Configuration File................fi i bt 85
FINdINg the ASSEMDIYcveiiiee e e e 86
LD BA e et b ah e 87
APPHICALION SEIINGS. ...oveeiiiie et et es e be et ane e e 88
Application Settings Using Visual StUTIOooeiiiiiiine el b sdene e 89
Application SettingS DEMOccuviiiiieieeie et se e re e sraesneeneeihnnne e 90
Application Configuration File...........c.coooiiiieiiiiiicecceee b s s oo 95
User Configuration File ..o e 96
.01 S S ST 97
SUMIMAIY .ttt sttt e e bt e s sbeesbeessbeesbeessbeesseesnseeseedhobdreenreeannes 98
Chapter 4 Metadata and RefleCtioncccveviiiii s 105
L] To = U TSSO 107
RETIECTION ...ttt 108
Sample RefleCtion Programcccooiiiieiiiie ittt 109
System.Reflection. ASSEMDIYooiiiii s 112
YA (<] LT Y o LT TP P RO P PP PR PPROPPPRPS 113
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC vi

All Rights Reserved

System.Reflection.MethodINTOccoiiiiii e 115

DYNAMIC INVOCAIIONc.eiiiiiiiiiiesiie et bbb 116
LI LN = 7o |10 USSR 117
LateBinding EXAMPIEoooiiiee e 118
. ¢ SO PRSPPSO 119
SUIMMIBIY .ttt b bt e bt et nn e nb e nne s 120
Chapter 5 1/0 and Serialization ... 125
Input-and OULPUE IN NET ..o 127
D] €T (0] LSRR 128
Directory EXample PrOGIaMccovoeieieee e ssee st e e ae e srn s e e 129
FIIES AN SEIBAIMS cii. ittt bbb 132
“REAA™ COMMANT ...ttt ettt b e et et beenbesneenreas 134
Code for “Write” COMIMANGcccveiieiieie e eie et e ae e sneeeas 135
SEHATIZAION ...t et bbbt 136
N LU o1 O SRR 137
SerialiZation EXAMPIE L i ittt 139
.01 T S PUPRPSSSPRS 142
SUMIMIATY ..ottt sibe et e e st d it e ettt e et e et e e sab e e e aabe e e nsb e e e ebb e e e nbb e e e nbneeantnae s 143
Chapter 6 .NET Programming Model<...........ccooviiiiiiie e 145
Garbage ColIECTION ...l it 147
FINalize MEthodovoe s e s et 148
C# DeStruCtor NOTALION ...ttt et 149
1] 00K 0 SO S SRR 150
Finalize/Dispose EXamPIe ..o sl 151
Finalize/Dispose TSt PrOQram...........coeiunenrerreenuesiioneessaneessesianseeseeseasseseessesssessenes 153
Garbage Collection Performance............ccccteuihueiiiieiee s e sdie s s 155
(€12 0T =1 o] Lt L SRR p T RTTRTRPRTR 156
PrOCESSES ...ttt s fan et en et 157
TRIEAS ...t et et b 158
ASYNCAIONOUS CallSooivieieiiece e i s ada e bR 159
ASYNCNIONOUS DEIEGALES........oivieiiiieiiie ittt a i et et 160
Using a CallBack MEthod............ccooiiiiiiiiiiiiiieee e bt s 161
BaCKGrOUNAWOIKETc.veieieieieiece et n e e es R SRR e 164
Asynchronous Programs in C# 6.0cccoceiieiieiiiie e e astns e ve e ahe e 165
Task and TaSKSTRESUITSociiiiieieeee e et 166
AYSNC METNOUS ... e ot e 167
NEW ASYNC EXAMPIE.......eeiiieieiiee et saeeae s e aang e eneenneens 168
SYNCAIONOUS Call.......cviiiiiiicece et Te S 169
ASYNC Call..eei e et e ae e 170
TRIEAAING ...ttt 171
LAD BA bbb bbbt r e 172
LD BBt b e bbbt e et 173
APPLICALION 1SOIALION.ciiiiiiiiiiiiee e e 174
APPHCATION DOMAIN......oiiiiiiiiic bbb nre s 175
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC vii

All Rights Reserved

Application Domains and ASSEMDBIIESccviiiiiiiii e 176

APPDOMAIN .t b bbb r e 177
CrEatEDOMAINeeiiei et ettt b bbbt b bbb ne e 178
APP DOMAIN EVENTS.....c.oeiiiicccce ettt sae e sre e enes 179
LA BC ..ttt b e beereere et e e 180
SUIMMIBIY .ttt b e bt n b e et e nn e be b e e nne s 181
Chapter 7 .NET Threadingccocoiiiiieiee e 189
TRFBAAS. ...ttt ne s 191
NET Threading MOEl ..o 192
Console Log EXAMPIE........ccvieeeee e s 193
RACE CONUITIONS . ittt sttt sb ettt e et b nbesbesneereas 197
Race ConditION EXAMPIEcooiiiiiiieiie e 198
Thread SYNCRIONIZATIONcoviiiiiieieee e 202
0] T (e T USROS PT PPN PRPRPRTRIR 203
MONITOF EXAMPIEoiei it re e ne et e reene e 204
USING CH 10CK KEYWOIGLiii ...ttt sr ittt nae e 205
Synchronization of COECHIONS c....iu ..ot 206
THIEAAP OO ClaSS it carvervenriteitisieshres ettt i dhe ettt bbbttt bbb 207
ThreadPool EXamMPle ..o i 208
Starting a ThreadPool TRFEAdctiii e 209
Foreground and Background Threads......... ... esmmmmeceeeeneenieneneeiesiese s 210
SYNChroNIZING TRIEAGS ...l st eeeeee e ire e e eeie st e te et e ste et e e sreeste e e sneenaeeneenneas 211
Improved ThreadPool EXamPIE i ittt 212
Task Parallel Library (TPL) ..o e i scafore it 214
TasK EXAMPIE.....coiiiiiiice et bbb 215
Y2 L L T I TS S SRS 216
Waiting for Task COMPIELIONccvvoiiiies e e 217
Data ParalleliSmoouiiiiiiiiieee e i ifo e 218
7. o ST SS U SURUTPR PSSR 219
SUMIMEATY .ttt ettt e sbe e e s nbs e e e ST aF e tt e e enteeesas b s e e nnb e e e bemat e e e s 220
Chapter 8 .NET SECUNILYcc.oiieieeieciece et e de e seesae e dr e e e nna s 229
Fundamental Problem of SECUNILYcccooiiiiiiiiiiieee et 231
AUNENTICALION. ... b s dhee e SRR s 232
AULNOTIZALION ... e anfng e e e siinb et 233
The Internet and .NET SECUILYooiiiiiiiiie e e Bt 234
CO0E ACCESS SECUILY .veviiieiieieieiite sttt fonf e e 235
ROIE-BASEA SECUNILY ...ecuviieieieeieciie et e saeenee s e nnngeeneenneens 236
NET SECUIILY CONCEPLS ...vveiieiectieite ettt s re e e s 8T 237
] 0 TSI o] ST RTR 238
IPErMISSION INTEITACEoivee e enes 239
IPermission Demand MEethod ... 240
IPermission Inheritance HIErarchycccooioiiiiiecic e 241
SEACK WALKING ...ttt 242
AASSEIT ettt R e e R bt hb e e Re e e et et e e br e e ennreeanes 243
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC viii

All Rights Reserved

Other CAS MELNOGS.ceiieiieiesie ettt sneenreas 245
Security Policy SIMpPITICAtIONccveiiieiiii e 246
Simple SANADOXING APL........oi et 247
SANADOX EXAMPIE ... 248
SEttiNG UP PEIMISSIONSc.viiiiiiieiieiei ettt 249
Creating the SANADOX........ccveiiiieiiece et sre s 250
Role-Based SECUrity iN .NETc.coiviiiiieiie it 251
IABNTITY ODJECLS .. et 252
PrINCIPAFODBJEEES ... 253
Windows Principal INfOrmation............cccveieiiiiieie i 254
Custom Identity @and PrinCipalc.cooeiiiiiiie i 256
BaSICIUBNTITY.CS ... ittt bttt b e b re et nee s be b e 257
B Fo T (07T o Y o TR U PSP PT P URTPRPRTPPPPTPTR 258
(0 LT S o TP PSP 261
] TS o USSP PTPRPRPRPRPN 263
0] (=T T Lo I ol T USRI 265
SAMPIE RUN .. i e Bttt 266
PrINCIPAIPEIMISSION k.. cvveieieiec e sdien et e e et et e e e te e e e e steeseesneesreenneareenneens 267
LD 8 e e bbbt 268
SUMMANY . s e sttt st e e an e beesnne s 269
Chapter 9 Interoperating with COM and WiN32cc..cooiiiiiiiiiiie e, 273
Interoperating Between Managed-and Unmanaged COodecccoevvevveeiveiesiesieernenn, 275
COM Interop and PINVOKE.cccleidiniiiie i itinneesaafone e adinne et snee e 276
Calling COM Components from Managed COdede . boeeeriirenenieieeesee e 277
The TIDIMP.EXE ULHILY ..ovveeeieceee e e e bt 278
TIDIMP SYNEAX .ot s b et ek et e et te et e e te e e sneeeas 279
USING TIDIMP oo b e ot 280
Demonstration: Wrapping a Legacy COM SerVer i i adbrieiene ittt 281
REQIStEr the COM SEIVETc.ui it ettt nee e s nmnmnn e nne e 283
OLE/COM ODJECE VIBWEc.veeviecieecie ettt sis et e e ieaveesva e tane e s donneansesse e st s 284
64-Dit SyStem CONSIAEIALIONSc.eiviiiieiiieiieie e st sbn et e e sbne s 285
RUN the COM CHIENT.....c.oiiieiieeceeee e oo T st e s 286
Implement the .NET CHENt Programcccveoviieiiieiieiesiesie e sfane e eee e sse e ssinnsncs 288
The Client Target Platform IS 32-Dit...........cccooeiiiiieiiieceeceec bt s 290
Import a Type Library Using Visual Studioccccovviiinininiieii st 292
Platform Invocation Services (PINVOKE)cccooiviiiiiiiiiiniieeeee i 294
A SIMPIE EXAMPIE ...ttt en sl 295
Marshalling Out Parametersccviieiieiecc e 297
TrANSIALING TYPES ..ttt sttt esr e b e et e neesbeeneas 299
7. o1 SO PUPPSSSRSRS 301
SUMIMIATY ..ttt ettt ettt e ekt e ek b e e ek e e et bt e eab e e e aab e e e nsb e e e nbb e e e nbb e e e bneeantnee s 302
Chapter 10 ADO.NET and LINQ......ccooiiiiiiiiiiisisie e 305
N L 28\ V1 USSR 307
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC iX

All Rights Reserved

AD O . NET AT CNIEECIUIE ... nnn 308

B I T = o (01 T [T SRS 310
ADO.NET INTEITACESveviiiiiieiieieie ettt bbbt 311
INET NaMESPACES ... et ettt et e e e b e e e s bb e s e nrae e e beeeanes 312
CONNECTEA DALA ACCESSoveereieieisiieiteaiesieesteeeesieesteesbesseesbeesbeaseesbeesbeeneesreesbeenbesneesreeneas 313
ACMEPUD DAtADASEeveeieeiieciieie sttt enes 314
Creating @ CONNECLIONccvieieiiesiee et e et e et e esreesteentesneenaeeneenneas 315
SQL EXPreSS LOCAIDB..........ccuiiiiiiieie ettt sttt nte e nne s 316
SOILOCAIDB UBHILY ...t 317
USING SEIVET EXPIOTET ... 318
PerfOrMING QUETTES .. . evveteeeiecie sttt e st e e s e te et esreesteeneesaaesteeneeareenseans 319
CoNNECtiNg 10 @ DAADASEcccveiviiiiiiciie ettt 320
Dataase COUEooeeo it 321
CONNECTION STITMG ... che ittt ettt b ettt e bbb 323
USING COMIMANGS ... Lexteeveerie et eiese e e eee st e e s e e te e st e teeseessaesaeeeesreesraenaeaneenneens 324
Creating aCommand ODJECT..........ccutiiiiiiiiiee e 325
USING @ DAt REAAEN ...t ittt 326
Data Reader: Code EXamPIe..... ot i 327
GENEIIC COIBCTIONS. ki et st ettt bbb 328
EXECULING COMMANTS .42 kv eiee ettt e et taeste e reesreennesraenne e 329
Parameterized QUEKIES ... ittt ador ettt ettt et e e anbe e teeeee e 330
Parameterized Query EXample-..........c..oooodiri it 331
LA LOA et 332
DataSeL......coeieieeee e e s s 333
DataSet ArCNITECIUIE.......ocueeeiiie et sttt ettt sttt ae e 334
WHY DatASEE? ... et ifon et for ettt 335
DataSet COMPONENTS.vviiiiiieiiiieriie e e b ee e sasadbe et e st e b e sir e s e e e snineeans 336
D1 VAo F= o] (-] e U TR 337
DataSet EXample Program ... st seenesee s bt see it 338
Data ACCESS ClaSS ... cviiiiiiieiiieiiiiesie e sie e ee s s dr e e et e snee s ia e esrees e e nreeneeenee e 339
REtrieVINg the DAtcccueiveiiiieiieie e oo fe cae e e s e aiiane e eeabie e 340
FIlING @ DAASELocveiiecii et e b e et bar e aae s 341
ACCESSING @ DALASEL..... oo fe et sbe e ne e 342
Using a Standalone DataTable...........cccoooiiiiiiiiiediad i 343
DataTable Update EXamPIeccoveiiiieiicceec e s 344
AdAING @ NEW ROW......cviiiiiiicii et sa e e s et 347
Searching and Updating @ ROWcc.coiiiiiiiieiieeeee e e bt 348
DEIETING @ ROW ...t ey 349
ROW VEISIONS ...ttt sttt e e bbb sne e se e i 350
ROW STALE ...t et e b e e r e b e e e e e e 351
Iterating Through DataROWSccoiiiiiiiiiie e e 352
ComMMAN BUITAEIS ...ttt ettt et sne e nneenneas 353
Updating @ Databasecoveiiiieiicc e 354
D U B =TT To [T o USSR 355
DataGridVIEW CONLIOL........coiiiiiieiieeee e et 356
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC X

All Rights Reserved

Language Integrated QUEry (LINQ)ooeeiiiiiiieiienieiie e 357

LINQ 0 ADO.NET oottt sttt neenaena e e e e e e 358
Bridging ODJects and Data..........ccceivereiieiieiiee e 359
LEINQ DEIMO .ottt bbb bbbt beeneeneas 360
ODbject Relational DESIGNETceoiiiiiiie ettt 361
L= IS T=T T ST 363
BasiC LINQ QUEIY OPEIALOrSccuviieriieieeieseesteeiestee e eeesseesteeeesnee e esaesneessaeeesneenes 364
ODbtaiNING @ Data SOUICEcviiieiieeie ettt sre s 365
LINQ QUEIY EXBMPIE.....cc.eiiiiiiieeese et ae e 366
=] 0T TSR T TSP PP URTPRPPPPRPTPTR 367
(@] 0 1=] T T S STSUSRRS 368
7N 1o (=10 L] o PSSR 369
ObtaINING LISES QNG ATTAYS -......eeveeiieteieeitesies e 370
o] (=3 ¢ €= Dot U1 o] ISR 371
MOdITYING-2 DAt SOUICEcéereiieeieeie ettt ste e te e reenae s e e sraeneenee e 372
Performing Inserts via LINQ 10 SQLiu....ccveiiiiieiieiieiesie e 373
Performing Deletes via LINQ 0 SQLccoooiiiiiiieieee e 374
Performing Updates via LINQ t0:SOQL ..ot i 375
LA L0B ... sl e B ettt bbbt 376
SUMMEAIY .o de et tee s dfa e te e ae e i et e e st e e st e e ssbe e e nnb e e e sbbe e e nbbeeasneeaseaeas 377
Chapter 11 Debugging Fundamentalsc......commmee oo, 387
L0000 o] | [W T4 T= = (] € SRS 389
ComPIlE-TIME DEIMO ... et et as ettt re et te e sreenas 390
RUNTIME EITOIS ..ot et afe e st sttt 391
DEDUGGING ... e Do bbbt 392
Bytes SAMPIE PrOgramM........ccviiiiieieie e s sae e fre e ban e sdae e e e snee e enaesnaesseennesneenes 393
Project ConfiguIationScc.oiiiiiiie e feasdas et bttt ae e sre e nne e 394
Release Configuration..........ccooeieeieiieiieneee e i ife e e 395
Creating a New Configurationcooveeeieeneesdadheineese i 396
Build Settings for a Configuration............ccvoveiiei et 397
Customizing @ TOOIDAN..........coiiieiicce e e et de et 399
Using the Visual Studio DeDUGQEToouviiiiiiiieiieieee s s 402
OVErTIOW EXCEPLION ..o o st 403
JUSE-IN-TIME DEDUGGING .vveviirieiieee ettt an e ae e e ene e ihnnanes 404
ALtaCh t0 RUNNING PrOCESS.....cveiiiiiieiiieiecie et bt s e e s ionn e 407
Standard Debugging — BreakpointScooeiieiinieiienieie e e adesden e 409
Standard Debugging — Watch Variables............ccocooiiiiiiiiieec e it 410
Stepping With the DEDUGQETcvoieeieeie e dh i e 411
Demo: Stepping With the DEDUGQEr.........coveiieeecec e e, 412
THE Call STACK.......eiiieiieiiee ettt eas 413
JIT Debugging in WINAOWS ADPPS.cveiuirierieriieieieiiesie ettt snesne st nnens 414
CoNFIGUIALION FIB....eeiie ettt re et e e eas 415
FINAING the BUQ ...oveeiiee ettt e e nre e reene e 416
7. oI SR PUPRPSPSRRP 418
SUMIMEBIY .t b ettt b e b e nb e et nn s be b e nne s 419
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC xi

All Rights Reserved

(@ gF=T o) (= A N =T | Vo OSSOSO 421

Instrumenting an APPHCALIONcveiiiie i 423
(@] o =T N o] o] [To= [0 o S S SRTSSPRRO 424
DEDUGGING REVIEW.ot nae e 426
TTACING -ttt bt bbbttt bbb bR Rttt n bbbttt 427
DebUg and Trace ClaSSES.......ucuiiierieeie et e st e s e e e e e e sraeneenree s 428
TraCiNg EXAMPIE ..o e 429
VIEWING TTACE OULPUL ...ttt 430
DEDUY STATEMENLS ...ttt 431
D =T oTW o | oL S 432
AASSBIT ettt e e et b e n e n e e e n e nne e 433
IMOre DeBUG OULPULocueiiiiiie s 434
WWIIELING SYMEAX ...t ettt bbbt se b b nne s 435
LD L2 i bbb bbbt e et e 436
T o o S PRSP PPRPPP 437
VIBWING EVENE LOGS . iinreicdinieaniiieesatfiresieesteesiesesstee e teesae e siesstessee b e saeeseesseeseeenesnes 438
EVENt LOG ENTEY TYPES ...t 439
NET EVentLog ComPONENT ..ot ti ettt sin e sineeans 440
QUICK EVENLLOG DBMOovveuieederreeie e aiae s ibin et ste e te et aesreeste e e sreeste e e snaenaeeneenneas 441
Full-Blown EVENtLOG DBMO.......cueieeiieiiiieiiee et sie et sseesne e 444
Retrieving Entries from an EVENt LOG..........ctiiiiiiiiiiiiece e 445
DisplayEventLog Sample PEOGRAM...........ccur e wibeeee it e eeseesieeeeseeseeeesseesseesesseenes 446
SUMMATY .ttt iee e s e st e e ssteeasstee e s et e nsbeeeasee s e e sabe e e snb e e e nsbeeesnbeesnbbeeatneeanteaeas 447
Chapter 13 MOore about TraCing...cl i i aioe e adhraneeseesteeeeseesreeseesseesreeeens 451
TraCe SWITCNES ..o bt bbb 453
BOOICANSWITCN ... B e b s e 454
SAMPIE PrOQIaM.....coeiiiiie e s b st ekttt ettt e b sae s 455
Using a Configuration Fle ..o b i e B 456
TrACESWITCN ..o e a e bbb 457
SWITCNDEIMO. ...t T a1ttt bbbt 458
TraCE LISTENEIS. ..cvieiiiieie ettt esfae e este e be e e dhne e snee e adhe s 461
DETAUITTIACELISTENETveieieieieee et b sfa e enteenee e s anne e 462
Listener EXample PrOQgramcocvoieiieiierieie e e se e e ade b sae e et e ene s 463
A STrEAM LISTENET ...t s ee et s 464
A CUSEOM LISTENET ...ttt bt i e e 465
Trace OUtPUL 0 8 WINCOW.oiiiiiiiicieie s s ea e 466
AN EVENE LOG LISTENETiieiiceie et e e e 467
Tracing in the Order APPLCALION.........cccveiiiiiiiecce e 468
TTACE OULPUL ...ttt ettt e e e be e sae e e beesnneenneeses e e anee s 469
. oI TSP PRSSSSPSS 470
SUMIMIATY ..ttt ettt ettt e ekt e ek b e e ek e e et bt e eab e e e aab e e e nsb e e e nbb e e e nbb e e e bneeantnee s 471
AppendiXx A .NET REMOTINGcccveiieieiie e 475
Distributed Programming in .NET ..o 477
Windows Communication FOUNGALIONcceiiiiiiiiiieieeese e 478
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC xii

All Rights Reserved

NET RemMOtiNg ArCITECTUIEccueeiiieiiiie e e e 479

Remote Objects and Mobile ODJECESc.ooiiiiiiiiiiicee e 481
Object Activation and LITEIMEccoeireiiie e 482
Singleton and SINGIECAILcooooiiie s 483
NET Remoting EXamMPIe.......oooiiieieee et 484
NET/Remoting EXample: DEfS ..o 485
NET Remoting EXample: SEIVEN ..ot 486
NET Remoting Example: CHENt..........ccooviiiiiiee e 488
LD A ettt b Reereere et e e 490
SUIMIMIBIY L. e ettt b bbbt b bt e et e et e nn b b nne s 491
Appendix B Learning RESOUICESccciiiiiiieiiresisee e 495
Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC xiii

All Rights Reserved

e
4,0
VS
/‘Oé) A
7

Rev. 4.8 Copyright ©2017 Object Innovations Enterprises, LLC Xiv
All Rights Reserved

NetCs Chapter 1

Chapter 1

NET -Fundamentals

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 1
All Rights Reserved

NetCs Chapter 1

NET Fundamentals

Objectives

After-completing this unit you will be able to:

e Understand the problems Microsoft .NET is designed
to solve.

e Understand the basic programming model of
Microsoft .NET.

e Understand the basic programming tools provided by
Microsoft .NET.

e Discuss .NET Native, .NET Core and cross-platform
development.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 2
All Rights Reserved

NetCs Chapter 1

What Is Microsoft .NET?

e Microsoft .NET was developed to solve three
fundamental problems.

e First, the Microsoft Windows programming model
must be unified to remove the widely varied
programming models and approaches that exist
among the various Microsoft development
technologies.

e Second, Microsoft based solutions must be capable of
interacting with the modern world of heterogeneous
computing environments.

e Third, Microsoft needs a development paradigm that
Is capable of being expanded.to-encompass future
development strategies; technologies, and customer
demands.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 3
All Rights Reserved

NetCs Chapter 1

Open Standards and Interoperability

e The modern computing environment contains a vast
variety of hardware and software systems.

— Computers range from mainframes and high-end servers, to
workstations and PCs, and to small mobile devices such as
PDAs and cell phones.

—“Operating systems include traditional mainframe systems,
many flavors of Unix including Android, Linux, Apple’s
10S,-several versions of Windows, real-time systems and
more.

— Many different languages, databases, application
development tools and middleware products are used.

e Applications need to be able to work in this
heterogeneous environment.

— Even shrink-wrapped applications deployed on.a single PC
may use the Internet for registration and updates.

e The key to interoperability among applications is the
use of standards, such as HTML, HTTP, XML,
SOAP, and TCP/IP.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 4
All Rights Reserved

NetCs Chapter 1

Windows Development Problems

e In.classic Windows development design and language
choice often clashed.

— Visual'Basic vs. C++ approach

— |IDispatch; Dual, or Vtable interfaces
~ VB vs.MFC

— ODBC or OLEDB or ADO

e Application deployment was hard.
— Critical entries-in Registry for-COM components
— No versioning strategy

— DLL Hell

o Security was difficult to implement:

— No way to control code or give cade rights to certain actions
and deny it the right to do other actions.

— Security model is difficult to understand.-Did you ever pass
anything but NULL to a LPSECURITY_ATTRIBUTES
argument?

e Too much time is spent in writing plumbing code that
the system should provide.

— MTS/COM+ was a step in the right direction.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 5
All Rights Reserved

NetCs Chapter 1

Common Language Runtime

e The first step in solving the three fundamental
problems is for Microsoft .NET to provide a set of
underlying services available to all languages.

e The runtime environment provided by .NET that
providesthese services is called the Common
Language Runtime or CLR.

— A runtime provides services to executing programs.

— Traditionally there are different runtimes for different
programming-environments. Examples of runtimes include
the standard Clibrary, MFC, the Visual Basic 6 runtime and
the Java Virtual Machine.

e These services are available to.all languages that
follow the rules of the CLR.

— C# and Visual Basic are examples of Microsoft languages
that are fully compliant with the CER requirements.

— Not all languages use all the features of the CLR.

e As a terminology note, beginning with .NET 2.0,
Microsoft has dropped the “.NET”” in the‘Visual
Basic language.

— The pre-.NET version of the language is now referred to as
Visual Basic 6 or VB6.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 6
All Rights Reserved

NetCs Chapter 1

CLR Serialization Example

e Let us use serialization to illustrate how the CLR
provides a set of services that unifies the Microsoft
development paradigm.

— ‘Every programmer has to do it.

—- It can.get complicated with nested objects, complicated data
structures, and a variety of data storages.

— The'programmer should also be able to override the system
service if-necessary.

o See the Serialize example in this chapter.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC
All Rights Reserved

NetCs Chapter 1

Serialization Example (Cont’d)

e Ignore the language details covered in a later chapter.

[Serializable]

class Customer

{
public string name;
public long id;

+

class Test

{
static void Main(string[] args)

{
ArrayList list = new ArrayList();

Customer cust = ‘new Customer();
cust.name = *Charles Darwin';
cust.id = 10;

list.Add(cust);

cust = new Customer();
cust.name = ""lIsaac Newton';
cust.id = 20;
list.Add(cust);

foreach (Customer x In list)
Console._WriteLine(X.name + """ + x.id);

Console._WriteLine('Saving Customer List');
FileStream s = new FileStream(''cust txt",
FileMode.Create);
SoapFormatter f = new SoapFormatter();
SaveFile(s, T, list);

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 8
All Rights Reserved

NetCs Chapter 1

Serialization Example (Cont’d)

Console._WriteLine("'Restoring to New List");
s = new FileStream(*'cust.txt",
FileMode.Open);
T = new SoapFormatter();
ArrayList list2 =
(ArrayList)RestoreFile(s, T);

foreach (Customer y in list2)
Console._WriteLine(y.-name + ": " + y.i1d);

}

public static-void SaveFile(Stream s,
IFormatter, ¥, IList list)
{
T.Serialize(s, list);
s.Close();
+

public static IList RestoreFile(Stream s,
IFormatter T)

IList list = (IList)f.Deserialize(s);
s.Close();
return list;

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 9

All Rights Reserved

NetCs Chapter 1

Attribute-Based Programming

e We add two Customer objects to the collection, and
print them out. We save the collection to disk and
then restore it. The identical list is printed out.

Chardles Darwin: 10

Isaac Newton: 20

Saving Customer List
Restoring to New List
Charles. Darwin: 10

Isaac Newton: 20

Press enter to continue...

e \We wrote no.code to save or restore the list!

— We just annotated the class'we wanted to save with the
Serializable attribute.

— We specified the format'(SOAP) that the data was to be
saved.

— We specified the medium (disk)where the data was saved.

— This is typical class partitioning in the .NET Framework.

e Attribute-based programming is used-throughout
NET to describe how code and data should be
treated by the framework.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 10
All Rights Reserved

NetCs Chapter 1

Metadata

e The compiler adds the Serializable attribute to the
metadata of the Customer class.

e Metadata provides the Common Language Runtime
with information it needs to provide services to the
application.

— Version and localeinformation
— All the types
— Details about each type, including name, visibility, etc.

— Details about the members of each type, such as methods, the
signatures of methods, etc:.

— Attributes

e Metadata is stored with the application so that .NET
applications are self-describing. The registry.is not
used.

— The CLR can query the metadata at runtime. It can see if the
Serializable attribute is present. It can findout the structure
of the Customer object in order to save and restore it.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 11
All Rights Reserved

NetCs Chapter 1

Types

e Types are at the heart of the programming model for
the CLR.

— Most.of the metadata is organized by type.

e A type Is analogous to a class in most object-oriented
programming languages, providing an abstraction of
data and behavior; grouped together.

e A type inthe CLR contains:
— Fields (data members)
— Methods
— Properties

— Events (which are now full-fledged'members of the Microsoft
programming paradigm).

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 12
All Rights Reserved

NetCs

Chapter 1

NET Framework Class Library

e The SoapFormatter and FileStream classes are two of
the thousands of classes in the .NET Framework that
provide system services.

e The functionality provided includes:

Base Class Library (basic functionality such as strings, arrays
and formatting).

Networking
Security

Remoting
Diagnostics

1/0

Database

XML

Web Services
Web programming

Windows User Interface

e This framework is usable by all CLR compliant
languages.

Rev. 4.8

Copyright © 2017 Object Innovations Enterprises, LLC 13
All Rights Reserved

NetCs Chapter 1

Interface-Based Programming

Interfaces allow you to work with abstract types in a
way that allows for extensible programming.

The SaveFile and RestoreFile routines are written
usingthe IList and IFormatter interfaces.

These routines'will work with all the collection classes
that support the lList interface, and the formatters
that supportthe 1Formatter interface.

Implementation inheritance permits code reuse.

You can implement the ISerializable interface to
override the framework’s implementation.

— The metadata for the type tells the‘framework that the class
has implemented the interface.

Interface-based programming allows classes.to
provide implementations of standard functionality
that can be used by the framework.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 14

All Rights Reserved

NetCs Chapter 1

Everything is an Object

e Every type in .NET derives from System.Object.’

e Everytype, system or user defined, has metadata.

— In'the sample the framework can walk through the ArrayL.ist
of Customer objects and save each one as well as the array
itself.

e Allraccess to objects in .NET is through object
references.

 An exception is the pointer type, which is rarely used in C#.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 15
All Rights Reserved

NetCs Chapter 1

Common Type System

e The Common Type System (CTS) defines the rules
for the types and operations that the CLR will
support.

— The CTS limits .NET classes to single implementation
inheritance.

—“The CTS is.designed for a wide range of languages, not all
languages will support all features of the CTS.

e The CTS makes it possible to guarantee type safety.

— Access to objects can berestricted to object references (no
pointers), eachreference refers to-a defined memory. Access
to that layout is only through public methods and fields.

— By performing a local analysis of theclass, you can verify to
make sure that the code does-not perform-any inappropriate
memory access. You do not have to analyze the users of the
class.

e NET compilers emit Microsoft Intermediate
Language (MSIL or IL) not native code.

— MSIL is platform independent.

— Type-safe code can be restricted to a subset of verifiable
MSIL expressions.

— Once code is verified, it is verified for all platforms.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 16
All Rights Reserved

NetCs

Chapter 1

ILDASM

e The Microsoft Intermediate Language Disassembler
(ILDASM) can display the metadata and MSIL
Instructions associated with .NET code.

It is.avery.useful tool both for debugging and increasing
your'understanding of the .NET infrastructure.

e You may wish to add ILDASM to your Tools menu in
Visual Studio 2017.

Rev. 4.8

Use the' command Tools | External Tools. Click the Add
button, enter ILDASM for the Title, and click the ... button to
navigate to the folder \Program Files (x86)\Microsoft
SDKs\Windows\v10.0A\bil\NETFX 4.6.1 Tools.

External Tools l ‘ ed A
Menu contents:
Create BGUID Add
Error LooSkup
o —— |
Mawe Lip |
Move Do |
Title: | 1LDASM
Command: I C:'Program Files (x36)\Microsoft SDKs\Windo E
Arguments: I J
Initial directory: I j
[T Use Qutput window ™ Prompt for arguments
™ | Tireak output as Unicode ¥ Close on exit
Ok | Cancel | Apply |
Copyright © 2017 Object Innovations Enterprises, LLC 17

All Rights Reserved

NetCs Chapter 1
ILDASM (Cont'd)
e You can use ILDASM to examine the .NET
framework code.

— Here.is a fragment of the MSIL from the Serialize example.
=
Find. Find Mext

IL 6829 newobj instance void Customer::.ctor() -]

IL-BB2e: stlec.1

IL_882f: 1dloc.1

IL_8838:, ldstr "Isaac Hewton"

IL_8835: ~stfld string Customer::name

IL_883a: “l1ldloc.1

IL_@83b: 1ldc.ih.s 2a

IL_@83d: conuiis8

IL_@83e: stfld int64 Customer::id

IL_8843: 1dloc.@

IL_8e4y: 1l1dloc.1

IL_@845: calluirt instance int32 [mscorlib]System.Collections.ArraylList

IL_@84a: pop

IL_884b: nop

IL_884c: 1dloc.8

IL_@884d: calluirt instance /class [mscorlib]System.Collections.IEnumerat

IL 8852: stloc.s csicénonn

-try

{

IL_8854: br.s IL_8a84

IL_8856: 1dloc.s cs5550000

IL_8858: calluirt instance object [mscorlib]System.Collections.IEnume

IL_@85d: castclass Customer

IL_8862: stloc.2

IL_8863: 1dloc.2

IL_8844: 1dfld string Customer::name

IL_8869: 1ldstr =l

IL _8@6e: 1dloc.2

IL_@@6f: 1dfld int64 Customer::id

IL_8874: box [mscorlib]System.Intoh

IL_8879: call string [mscorlib]System.String::Concat{object,

object, -
4] | 2y

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 18

All Rights Reserved

NetCs Chapter 1

.NET Framework SDK Tools

e Installing Visual Studio 2017 will also install the
NET Framework SDK, version 10.0A.

— Thesetools are located in folder \Program Files (x86)\
Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.6.1 Tools®.

n C:\Program Files (x86)\Microsoft SDKs\Windows\v10.04A’ - |EI|5|

‘(’()\,ﬂ . =bin ~NETFX ... ~ = [§23) | search NETFX 4.6.1 Tools !,“!]‘
Organize Open', Burn® Mew folder =« i IZIEZI
. Microsoft SDKs Al [, MName = | Date modified -
. Azure 1 drver.exe 11/5/2015 7:36 PM
i ClickOné3 B CorFlags.exs 11/5/2015 7:35 PM
) ClickOnce Boatstrapper
Fa 18 dizco.exe 11/5/2015 7:36 PM
| Microsoft Azure 7 FusLOGVWhexe 11/5/2015 7:36 FM
| MuGetPackages B gacutil. exe 11/5/2015 7:36 PM
| Portable J ?'__'I gacutil. exe.config 11/5/2015 5:17 PM
. TypeScript 2 IDasm. chm 10/1/2015 2:15 M
| Windaws 7 idasm.exe 11/5/2015 7:36 PM
| v10.0A
N ¥_1.idasm.exe.config 11/5/2015 5:17 PM
Join
E .
N lc.exe 11/5/2015 7:35 PM
. NETFX 4.7 Tools ¥ Ic.exe.config 10/1/2015 2:21PM
| Windows Kite K3 mage.exe 11/52015 7:36FM
| Windows Phone LI 4| | *

idasm.exe Date modified: 11/5/2015 7:36 PM
Application Size: 487 KB

— They can be run at the command line from the Visual Studio
2017 Command Prompt®, which can be started from All
Programs | Visual Studio 2017 | Visual Studio Tools |
Developer’s Command Prompt for V52017,

2 NET Framework 4.7 is not installed with Visual Studio 2017. You can install it separately if you need it.
® You may need to run the Command Prompt as Administrator in some cases.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 19
All Rights Reserved

NetCs Chapter 1

Language Interoperability

e Having all language compilers use a common
intermediate language and common base class makes
it possible for languages to interoperate.

— All'languages need not implement all parts of the CTS.

—- One language can have a feature that another does not.

e The Common Language Specification (CLS) defines a
subsetofthe CTS that represents the basic
functionality that all .NET languages should
implement if they are to interoperate with each other.

— For example, a class written in-Visual Basic can inherit from
a class written in C#.

— Interlanguage debugging_is possible.

— CLS rule: Method calls need not support a variable number
of arguments even though such @ construct can be expressed
in MSIL.

— CLS prohibits the use of pointers.

e CLS compliance only applies to public features.

— C# code should not define public and protected class-names
that differ only by case sensitivity since languages as-Visual
Basic are not case sensitive. Private C# fields could have
such names.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 20
All Rights Reserved

NetCs Chapter 1

Managed Code

e In.the serialization example we never freed any
allocated memory.

— Memory that is no longer referenced can be reclaimed by the
CLR’s garbage collector.

= Automatic memory management eliminates the common
programming error. of memory leaks.

— Garbage collection is-one of the services provided to .NET
applications bythe Common Language Runtime.

e Managed code uses the'services of the CLR.

— MSIL can express access to unmanaged data in legacy code.

o Type-safe code cannot be subverted.

— For example, a buffer overwrite is not able to corrupt other
data structures or programs. Security policy canbe applied to
type-safe code.

e Type-safe code can be secured.
— Access to files or user interface features can be controlled.

— You can prevent the execution of code from unknown
sources.

— You can prevent access to unmanaged code to prevent
subversion of .NET security.

— Paths of execution of .NET code to be isolated from one
another.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 21
All Rights Reserved

NetCs Chapter 1

Assemblies

e .NET programs are deployed as an assembly.

~ The'metadata about the entire assembly is stored in the
assembly’s manifest.

— An assembly has one or more EXESs or DLLs with associated
metadata information.

=1alx]

Find Find Mext

I// Metadata wersion: ul._B.30319 -
.assembly extern mscorlib

{

-publickeytoken = (B7 7A /5C 56 19 34 EO 89)
-ver 4:@:-8:8

b

.assembly extern System.Runtime_Serialization.Formatters.Soap

{
-publickeytoken = (B@ 3F_SF 7F 11 D5 8a 3n)
-ver 4:@:-8:8

b

.assembly Serialize

{
-.custom instance void [mscorlib]3ystem.Reflection.fissemblyTitlenttr
.custom instance void [mscorlib]3ystem.Reflection.fissemblyDescripti—
.custom instance void [mscorlib]3ystem.Reflection.fissemblyConfigura
.custom instance void [mscorlib]System.Reflection.fissemblyCompanyAt
.custom instance void [mscorlib]System.Reflection.AssemblyProductAt
-.custom instance void [mscorlib]3ystem.Reflection.fssemblyCopyright

.custom instance void [mscorlib]System.Reflection.fissemblyTrademark
.custom instance void [mscorlib]System.Runtime.InteropServices Coml
-.custom instance void [mscorlib]3ystem.Runtime.InteropServices . Guid

.custom instance void [mscorlib]System.Reflection.fissemblyFilelersi
.custom instance void [mscorlib]System.Runtime._Uersioning-TargetFra

1] | M Lz

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 22
All Rights Reserved

NetCs Chapter 1

Assembly Deployment

e The assemblies can be uniquely named.

~ Assemblies can be versioned and the version is part of the
assembly’s name.

— Unique (strong) names use a public/private encryption
scheme.

— The culture used can also be made part of the assembly
name.

o Assemblies-are self-describing. Information is in the
metadata associated with the assembly, not in the
System Registry.

e Private, or xcopy deployment requires only that all
the assemblies an application needs are in the same
directory.

— This makes deployment of components much simpler.

e Public assemblies require a strong hame and an entry
in the Global Assembly Cache (GAC).

e Either approach means the end of DLL Hell!

— Components with different versions can be deployed side by
side and need not interfere with each other.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 23
All Rights Reserved

NetCs Chapter 1

JIT Compilation

e Before executing on the target machine, MSIL is
translated by a just-in-time (JIT) compiler to native
code.

e Some code typically will never be executed during a
program-run.

— Hence it may be more efficient to translate MSIL as needed
during execution, storing the native code for reuse.

e \When a type is loaded, the loader attaches a stub to
each method of the type.

— On the first call'the stub passes‘control to the JIT, which
translates to native'code and modifies the stub to save the
address of the translated native code.

— On subsequent calls to the method transfer is then made
directly to the native code.

e As part of JIT compilation code goes through.a
verification process.

— Type safety is verified, using both the MSIL and metadata.

— Security restrictions are checked.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 24
All Rights Reserved

NetCs

ASP.NET and Web Services

NET includes a totally redone version of the popular
Active Server Pages technology, known as ASP.NET.

Whereas ASP relied on interpreted script code
interspersed with page formatting commands,
ASP.NET relies on compiled code.

— The code can be written in any .NET language, including C#,
Visual Basic, JScript. NET and C++/CLI.

ASP.NET provides Web Forms which vastly
simplifies creating Web user.interfaces.

— Drag and drop in’Visual Studio’2017 makes it very easy to
lay out forms.

— Also supported are ASPINET MVC-and Web API.

For application integration across'the internet, Web
services use the SOAP protocol.

— The beautiful thing about a Web service,is that from the
perspective of a programmer, a Web service.is no different
from any other kind of service implemented by a class in'a
NET language.

However, Web APl and REST have become more
important than SOAP.

Web services and C# (or Visual Basic) as a scripting
language allows Web programming to follow an
object-oriented programming model.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC

All Rights Reserved

Chapter 1

NetCs Chapter 1

The Role of XML

e XML is ubiquitous in .NET and is highly important
in Microsoft’s overall vision.

e ‘Some uses of XML in .NET include:

— XML is used for encoding requests and responses in the
SOARP protocol.

— XML is the serialization format for disconnected datasets in
ADO.NET.

— XML is used extensively in configuration files.

— XML documentation can be automatically generated by
.NET languages.

— .NET classes provideavery convenient APl for XML
programming as an alternative to DOM or. SAX.

e Also, as we shall see shortly,'CLR Serialization is not
available in .NET Core, while XML Serialization may
be used to achieve serialization ina cross-platform
manner.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 26
All Rights Reserved

NetCs Chapter 1

Performance

e Concerns about performance of managed code are
similar to the concerns assembly language
programmers had with high level languages.

e Garbage collection usually produces faster allocation
than C++ unmanaged heap allocation. Deallocation is
done on a separate thread by the garbage collector.

e JIT compilation takes a hit the first time when
verification andtranslation take place, but
subsequent executions pay-no penalty.

e There is a penalty when security checks have to be
made that requirea stack walk.

e Compiled ASP.NET cade is going to be a lot faster
than interpreted ASP pages.

e Bottom line: for most of the code that is written, any
small loss in performance is far outweighed by the
gains in reliability and ease of development.

— High performance servers might still have to-use
technologies such as ATL Server and C++.

o Apps targeting the Windows 10 platform may use
NET Native to achieve higher performance.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 27
All Rights Reserved

NetCs Chapter 1

.NET Native

e .NET Native is a precompilation technology for
building and deploying apps to Windows 10.

— Ratherthan generating IL, Windows apps are compiled
directly to native code for faster startup and execution.

¢ _NET Native changes the way in which .NET
Framework applications are built and executed.

— During.precompilation required portions of the .NET
Framework are statically linked to your code, enabling the
compilerto perform global code optimization.

— The .NET Native runtime isoptimized for static
precompilation.

— .NET Native uses the same backend as the C++ compiler for
superior performance.

o .NET Native brings the performance of C++to
managed code.

e See MSDN for more information:

https://msdn.microsoft.com/en-us/library/dn584397(v=vs.110).aspX

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 28
All Rights Reserved

NetCs Chapter 1

.NET Core

NET Core is a modular subset version of the .NET
Framework that is portable across multiple
platforms.

Rather 'than one large assembly, .NET Core is
released through NuGet in smaller feature-specific
assembly packages.

.NET Core provides-key functionality used in
applications regardless of platform.

— This common functionality provides for shared code that can
be used across-platforms.

— Your application then links in additional platform-specific
code.

Microsoft platforms you can targetinclude
traditional desktop Windows and Windows phones.

Through third-party tools such as-Xamianyou can
target Android and iOS.

Visual Studio 2017 provides support for cross-
platform development.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 29

All Rights Reserved

NetCs Chapter 1

.NET Frameworks

e With the advent of .NET Core the term “framework”
becomes more complex.

e Traditionally, there was just one .NET Framework
(in"various.versions).

o But now thereare multiple .NET frameworks.

o A framework defines an APl you can rely on when
you target that framework.

— A framework is versioned as new APIs are added.

e Unfortunately, there are many differences between
the .NETCoreApp framework API and the classic
NET API.

— Thus apps built for classic .NET may not run with a simple
recompile on .NET Core.

e For example, the Serialization example does not-run
on .NET Core.

— The CLR Serializer does not work with .NET-Core, butyou
can achieve serialization with the XML Serializer.

e For more information about .NET Core see this
Object Innovations course:

4012 .NET Core Frameworks

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 30
All Rights Reserved

NetCs

Chapter 1

XML Serialization Example

e Although you cannot use CLR Serialization as
illustrated earlier in the chapter with .NET Core, you
can‘use XML Serialization.

— See the XmlSerialize example in this chapter.

class Customer

public string name;
public long. id;

class Program

static void-Main(string[] args)

{
+
{
{
Rev. 4.8

List<Customer> list = new List<Customer>();

Customer cust ="new Customer();
cust.name = ""Charles.Darwin'';
cust.id = 10;

list.Add(cust);

cust = new Customer();
cust.name = "Isaac Newton';
cust.id = 20;
list.Add(cust);

foreach (Customer x In list)
Console_WriteLine(X.name + ": " + X:sid);

Console._WriteLine('Saving Customer List'™);

XmlSerializer ser = new
XmlSerializer(typeof(List<Customer>));
FileStream s = new FileStream(*'cust.xml",
FileMode.Create);

Copyright © 2017 Object Innovations Enterprises, LLC 31
All Rights Reserved

NetCs

Chapter 1

XML Serialization (Cont’d)

}

ser.Serialize(s, list);
s.FlushQ);
s.Dispose();

Console._WriteLine(""Restoring to New List");

FileStream s2 =
new FileStream(“'cust.xml™, FileMode.Open);
list = (List<Customer>)ser.Deserialize(s2);

foreach (Customer y in list2)
ConsolecWriteLine(y-name + ": " + y.i1d);

e The data is serialized to the file cust.xml.

<?xml version="1.0" encoding=""utf-8"?>
<ArrayOfCustomer xmIns:xsi="http://www.w3.0rg/2001/
XMLSchema-i1nstance"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema’">
<Customer>
<name>Charles Darwin</name>
<id>10</id>
</Customer>
<Customer>
<name>lsaac Newton</name>
<1d>20</id>
</Customer>
</ArrayOfCustomer>

Rev. 4.8

Copyright © 2017 Object Innovations Enterprises, LLC 32
All Rights Reserved

NetCs Chapter 1

Summary

.NET solves problems of past Windows development.

It provides one development paradigm for multiple
languages.

Design and programming language no longer conflict.

NET uses managed code with services provided by
the Common Language Runtime that uses the
Common Type System.

Plumbingcode for fundamental system services is
there, yet you can extend it'or replace it if necessary.

The .NET Framework is a very large class library
available consistently‘across many languages.

NET Core is a modular subset version of the .NET
Framework that is portable across multiple
platforms.

CLR Serialization is not available in;"NET Core, but
you can use XML Serialization.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 33

All Rights Reserved

NetCs Chapter 1

5%
Oé/)

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 34
All Rights Reserved

NetCs Chapter 7

Chapter 7

NET Threading

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 189
All Rights Reserved

NetCs Chapter 7

NET Threading

Objectives

After completing this unit you will be able to:

Usethe Thread class to implement multithreading in
NET applications.

Use the Monitor class to program safe concurrent
access-to shared data.

Use the ThreadPool class to obtain threads from a
pool that is managed by the system.

Describe the difference between foreground and
background threads.

Describe different classes that can be used for
synchronizing threads.

Use the Task Parallel Libraryto implement task
parallelism and data parallelismin .NET
applications.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 190

All Rights Reserved

NetCs

Chapter 7

Threads

e Operating systems use processes to separate the
different applications that they are executing.
Threads run inside of processes to allow for multiple
execution paths inside of a process.

¢ “Threads are what are scheduled by the operating
system, not processes or application domains.

Rev. 4.8

Threads maintain a context, exception handlers catch
exceptions thrown within the thread in which they occur.

Machine registers and stack are also part of the thread’s
context.

This context has to-be saved when the operating system’s
scheduler switches from one thread to another.

The Thread object that represents‘the current executing
thread can be found from thestatic property
Thread.CurrentThread.

Copyright © 2017 Object Innovations Enterprises, LLC 191
All Rights Reserved

NetCs Chapter 7

.NET Threading Model

e The .NET Framework provides extensive support for
multiple thread programming in the
System.Threading namespace.

e The core class is Thread, which encapsulates a thread
of execution.

— “This class provides.methods to start and suspend threads, to
sleep, and to perform other thread management functions.

e The method that will execute for a thread is
encapsulated-inside a delegate of type ThreadStart.

— Recall that a delegate can wrap-either a static or an instance
method.

e When starting a thread, it is frequently useful to
define an associated class, which will'contain instance
data for the thread, including-initialization
information.

— A designated method of this class can'bbe used as the
ThreadStart delegate method.

e NET 4 introduced the Task Parallel Library (TPL)
to simplify the implementation of parallel code using
multiple threads.

— We will discuss TPL later in the chapter after covering the
fundamentals of threads in .NET.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 192
All Rights Reserved

NetCs Chapter 7

Console Log Example

e The ThreadDemo program provides an illustration of
this architecture.

—~The ConsoleLog class encapsulates a thread ID and
parameters specifying a sleep interval and a count of how
many lines of output will be written to the console.

—~~At-also provides a Stopwatch object (System.Diagnostics
namespace) to provide timings.

— It provides the method ConsoleLog that writes out logging
information to the console, showing the thread ID and
number of elapsed (millisecond) ticks. Here is the program
code:

using System;
using System.Diagnostics;
using System.Threading;

class ConsolelLog
{
private int delta;
private int count;
private int ticks = O;
public static Stopwatch stopWatch =
new Stopwatch();
public ConsoleLog(int delta, Int count)

{

this.delta = delta;
this.count = count;
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 193

All Rights Reserved

NetCs Chapter 7

Console Log Example (Cont’'d)

public void ConsoleThread()
{
for (int 1 = 0; 1 < count; i1++)
{
Console._WriteLine(
"Thread {0}: ticks = {1}",
Thread.CurrentThread.ManagedThreadld,
ticks);
Thread.Sleep(delta);
ticks += delta;
+
Consale._WritelLine(
"Thread {0} i1s_terminating",
Thread-CurrentThread.ManagedThreadld);
Console._WriteLine(
"\nElapsed time:\n\t" +
ConsolelLog.stopWatch.Elapsed);

}
}

public class ThreadDemo

{
public static void Main()

{
Sequential();

UseThreads();

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 194
All Rights Reserved

NetCs

Chapter 7

Console Log Example (Cont’'d)

public static void Sequential()

Console._WriteLine(Sequential™);
ConsolelLog.stopWatch.Restart();

ConsoleLog slowLog = new ConsoleLog(1000, 5);
ConsolelLog. fastLog = new ConsoleLog(400, 5);
slowLog.ConsoleThread();
fastLog.-ConsoleThread();

public static void UseThreads()

{
+
{
}
}
Rev. 4.8

ConsoleWriteLine("'"\nUsing Threads™);
ConsolelLog.stopWatch.Restart();
ConsoleLogslowLog = new ConsoleLog(1000, 5);
ConsolelLog fastLog = new ConsoleLog(400, 5);
ThreadStart slowStart =

new ThreadStart(slowLog:ConsoleThread);
ThreadStart fastStart =

new ThreadStart(fastLog.ConsoleThread);
Thread slowThread = new:Thread(slowStart);
Thread fastThread = new .Thread(fastStart);
Console._WriteLine(''Starting . threads ..:');
slowThread.Start();
fastThread.Start();
Console._WriteLine(""Threads have started™);

Copyright © 2017 Object Innovations Enterprises, LLC 195
All Rights Reserved

NetCs Chapter 7

Console Log Example (Cont’'d)

e The program is configured with a “slow” thread and
a “fast” thread.

—~The slow thread will sleep for 1 second between outputs, and
the fast thread will sleep for only 400 milliseconds. A
ConsolelLog object is created for each of these threads,
initialized with-appropriate parameters. Both will do five
lines of output.

o Next, ‘appropriate delegates are created of type
ThreadStart.

— Notice that we use an instance method, ConsoleThread, as
the delegate method.

— Use of an instance method rather than a-static method is
appropriate in this case, because we want to associate
parameter values (sleep interval and output count) with each
delegate instance.

e \We then create and start the threads.

— We write a message to the console just-before and just after
starting the threads.

— You will notice a slight delay as the program executes,
reflecting the sleep periods.

e Notice the difference in total time from the stopwatch
for the method using threading versus the sequential
version.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 196
All Rights Reserved

NetCs Chapter 7

Race Conditions

e A major issue in concurrency is shared data.

—~ If two computations access the same data, different results
can be obtained depending on the timing of the different
accesses, a situation known as a race condition.

~ Race conditions present a programming challenge because
they can occur unpredictably. Careful programming is
required toensurethey do not occur.

e Race conditions-can easily arise in multithreaded
applications, because threads belonging to the same
process share the sameaddress space and thus can
share data.

e Consider two threads making deposits to a bank
account, where the deposit operation is not atomic:

— Get balance.
— Add amount to balance.

— Store balance.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 197
All Rights Reserved

NetCs Chapter 7

Race Condition Example

e The following sequence of actions will then produce a
race condition, with invalid results.

1:Balance starts at $100.

2.Thread 1 makes deposit of $25 and is interrupted after
getting balance and adding amount to balance, but before
storing balance:

3. Thread 2 makes deposit of $5000 and goes to completion,
storing $5100.

4.Thread .1 now.finishes, .storing $125, overwriting the
result of'thread 2. The $5000 deposit has been lost!

e The program ThreadAccount\Race illustrates this
race condition.

— The Account class has a method DelayDeposit, which
updates the balance non-atomically.

— The thread sleeps for 5 seconds‘in-the middle of the update
operation, leaving open a window of vulnerability for.another
thread to come in.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 198
All Rights Reserved

NetCs

Chapter 7

Race Condition Example (Cont’d)

using System.Threading;

public class Account

{
protected decimal balance;
public Account (decimal balance)
{
this.balance = balance;
}
public void Deposit(decimal amount)
{
balance +=_amount;
}
public void DelayDeposit(decimal amount)
{
decimal newbal = balance '+ amount;
Thread.Sleep(5000);
balance = newbal;
s
public decimal Balance
{
get
{
return balance;
}
}
}
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 199

All Rights Reserved

NetCs Chapter 7

Race Condition Example (Cont’d)

e The test program launches threads in a manner
similar to that used in the ThreadDemo program.

—~The AsynchAccount class contains the thread methods that
will be used by thread 1 (to call DelayDeposit) and thread 2
(to call Deposit).

using .System;
using.System.Threading;

class AsynchAccount

{
private decimal amount;
public AsynchAccount(decimal amount)
{
this.amount ‘=~<amount;
+
public void AsynchDelayDeposit()
{
ThreadAccount.account.DelayDeposit(amount);
+
public void AsynchDeposit()
{
ThreadAccount.account.Deposit(amount);
+
+
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 200

All Rights Reserved

NetCs Chapter 7

Race Condition Example (Cont’d)

public class ThreadAccount
{
public static Account account;
public static void Main()
{
account = new Account(100);
AsynchAccount asynchl = new
AsynchAccount(25);
AsynchAccount asynch2 = new
AsynchAccount(5000) ;
ThreadStart startl = new
ThreadStart(asynchl.AsynchDelayDeposit);
ThreadStart start2 = new
ThreadStart(asynch2.AsynchDeposit);
Console._WriteLine("'balance = {0:C}",
accountcBalance);
Console._WriteLine(
"delay deposit of {0:C} on thread 1", 25);
Thread tl = new Thread(startl);
Thread t2 = new Thread(start2);
tl.Start();
Console._WriteLine(
"deposit of {0:C} on thread 2", 5000);
t2.Start();
t2.Join();
Console_WriteLine(
"balance = {0:C} (thread 2 done)™",account.Balance);
tl.Join();
Console._WriteLine(
"balance = {0:C} (thread 1 done)™",account.Balance);

}
}
e t2.Join blocks current thread until thread t2 finishes.

— This technique enables us to show the balance after a thread
has definitely completed.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 201
All Rights Reserved

NetCs Chapter 7

Thread Synchronization

e Such race conditions can be avoided by serializing
access to the shared data.

e ‘Suppose only one thread at a time is allowed to access
the'bank account.

— Then the first thread that starts to access the balance will
complete the operation before another thread begins to access
the-balance (the second thread will be blocked).

— In this case threads synchronize based on accessing data.

e Another way threads can synchronize is for one
thread to block until another thread has completed.

— The Join method is ameans for accomplishing this kind of
thread synchronization, as illustrated-above.

e The System.Threading namespace provides a number
of thread synchronization facHities.

— We will illustrate use of the Monitor.class.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 202
All Rights Reserved

NetCs Chapter 7

Monitor

e You can serialize access to shared data using the
Enter and Exit methods of the Monitor class.

—~"Monitor.Enter obtains the monitor lock for an object. An
object/is passed as a parameter. This call will block if another
thread has entered the monitor of the same object. It will not
block.if the current thread has previously entered the
monitor.

— Monitor.Exitreleases the monitor lock. If one or more
threads are waiting to acquire the lock, and the current thread
has executed Exit as many times as it has executed Enter,
one of the threads will be unblocked and allowed to proceed.

e An object reference-is passed as the parameter to
Monitor.Enter and Monitor.EXit.

— This is the object on which the monitor lock is acquired or
released. To acquire a lock onthe current object, pass this.

e The program ThreadAccount\Monitor illustrates the
use of monitors to protect the critical section'where
the balance is updated.

e The program ThreadAccount\Lock illustrates an
alternative implementation using C# keyword lock.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 203
All Rights Reserved

NetCs Chapter 7

Monitor Example

using System;

using System.Threading;

public class Account {
protected decimal balance;
public Account (decimal balance)

{
this.balance = balance;
}
public void Deposit(decimal amount)
{
Monitor_Enter(this);
balance +=_amount;
Monitor .Exit(this);
ShowBalance();
}

public void DelayDeposit(decaimal amount)
{
Thread.Sleep(5000) ;
Monitor.Enter(this);
balance += amount;
Monitor.Exit(this);

ShowBalance();
+
public decimal Balance
{

get

{

return balance;

}
}
private void ShowBalance()
{

Console._WriteLine("balance = {0:C} ({1}D)",
balance, Thread.CurrentThread.Name);
+

}

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 204
All Rights Reserved

NetCs

Using C# lock Keyword

Chapter 7

public class Account

{
protected decimal balance;
protected string owner;
public Account (decimal balance)
{
this.balance = balance;
this.owner. = "Tom Thread";
+
public void Deposit(decimal amount)
lock(this)
{
balance +=/amount;
+
ShowBalance();
+
public void DelayDeposit(decimal amount)
{
Thread.Sleep(5000);
lock(this)
{
balance += amount;
+
ShowBalance();
}
+
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC

All Rights Reserved

205

NetCs Chapter 7

Synchronization of Collections

e Some lists, such as TraceListeners are thread safe.
When this collection is modified, a copy is modified
and-the reference is set to the copy.

e Normally, collections like ArrayL.ist are not thread
safe. Making them automatically thread safe would
decrease the performance of the collection even when
thread safety is not an issue.

e An ArrayList hasa static Synchronized method to
return a thread-safe version of the ArrayList. The
IsSynchronized property indicates if the ArrayList is
thread safe or not.

— The SyncRoot property can return an object that can be used
to synchronize access to-a collection:

e The System.Collections.Concurrent namespace,
introduced with .NET 4, provides several thread-safe
collection classes.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 206
All Rights Reserved

NetCs Chapter 7

ThreadPool Class

e The ThreadPool class provides a pool of worker
threads that are managed by the system.

—~You are thus relieved of having to create and start your own
thread.

¢ The static method QueueUserWorkltem() will retrieve
a‘thread from the thread pool, if available, and start
it. If'no thread is'available, the request will be queued
until a'thread is available.

public static bool QueueUserWorkltem(
WaitCallback callBack
)

e The WaitCallback delegate represents a callback
method that that is to be executed on a. ThreadPool
thread.

public delegate void WairtCallback(
Object state
)

— You create the delegate by passing your callback method to
the WaitCallback constructor.

e ThreadPool threads are always background-threads.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 207
All Rights Reserved

NetCs Chapter 7

ThreadPool Example

e We illustrate the use of ThreadPool with another
implementation of the Console Log example.

—~See ThreadPoolDemo\Step1l in the chapter folder. It has the
same structure as the earlier example where we created
threads ourselves.

—~To match the’'WaitCallback delegate, the thread procedure
takes an ODbject input parameter.

class ThreadWithState
{

private i1nt Delta;
private int-Count;
private int ticks = O;

public ThreadWithState(int delta, Int count)
{

this.Delta = delta;
this.Count = count;
s
public void ConsoleLog()
{
oo o
public void ThreadProc(Object info)
{
ConsoleLog();
+
}
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 208

All Rights Reserved

NetCs Chapter 7

Starting a ThreadPool Thread

o Now we don’t separately create a Thread object and
start it.

—"We use a single call to QueueUserWorkltem().

public static void Main()
{
ThreadWithState slowLog =
new ThreadWithState(1000, 5);
ThreadWithState fastLog =
new ThreadWithState(400, 5);

// Queue the slow log on a background thread
ThreadPool.QueueUserWorkltem(
new WaitCallback(slowLog.ThreadProc));

// Run the fast ‘log on the main thread
fastLog.ConsoleLog();

}

e Build and run.

Thread
Thread

0

0
400
800
1000

1: ticks

3: ticks
Thread 1: ticks
Thread 1: ticks
Thread 3: ticks
Thread 1: ticks 1200
Thread 1: ticks 1600
Thread 1 1s terminating
Thread 3: ticks = 2000

— The fast thread finishes, and the program exits before the
slow thread can finish. Why?

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 209
All Rights Reserved

NetCs Chapter 7

Foreground and Background Threads

e Managed threads are either foreground threads or
background threads.

e ‘A'background thread is identical to a foreground
thread except that it does not keep the managed
execution‘environment running.

—“When all foreground threads have stopped, the system stops
all'the background threads and shuts down.

e Threads created from the Thread class are by default
foreground-threads.

— You can make athread a background thread by setting the
IsBackground property to true.

e Threads in the ThreadPool are always background
threads, and this cannot be changed.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 210
All Rights Reserved

NetCs Chapter 7

Synchronizing Threads

e To make your application using background threads
behave properly, you need to synchronize the
background threads with the foreground threads.

e The .NET Framework provides several useful classes
that can be used for such synchronization:

— "EventWaitHandle
— AutoResetEvent
— ManualResetEvent

— CountdownEvent

e For synchronizing-asingle thread with another,
AutoResetEvent and ManualResetEvent are useful.

— A thread blocks when calling WaitOne() until another thread
calls Set(), which signals the wait handle.

— The difference between these two classes is that.an
AutoResetEvent automatically resets after it has/been
signaled and has released a single waiting thread.

e A CountdownEvent is useful for synchronizing
multiple threads with another thread.

— It maintains a counter of the number of times it has been
signaled and will release waiting threads when the counter
has been decremented to zero.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 211
All Rights Reserved

NetCs Chapter 7

Improved ThreadPool Example

o Step2 of the ThreadPoolDemo program illustrates use
of an AutoResetEvent to synchronize the worker

thread with the main thread.

class ThreadWithState
{

public static AutoResetEvent
ev = new AutoResetEvent(false);

public void ThreadProe(Object info)
{

ConsoleLog();

ev.Set();

}
}

public static void Main(Q)
{
ThreadWithState slowLog =
new ThreadWithState(1000,-5);
ThreadWithState fastlLog =
new ThreadWithState(400, 5);

// Queue the slow log on a background thread
ThreadPool .QueueUserWorkltem(
new WaitCallback(slowLog.ThreadProc)) ;

// Run the fast log on the main thread
fastLog.ConsoleLog();

ThreadWithState.ev.WaitOne();

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC
All Rights Reserved

212

NetCs

Improved Example (Cont’'d)

Chapter 7

e Build and run the Step2 version.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

: ticks
: ticks
I ticks
2 ticks
: ticks
- ticks
- ticks
: ticks
IS term
/ticks
- ticks

0

0
400
800
1000
1200
1600
2000

nating

3000
4000

IS terminating

e Now the workerthread runs to completion before the
application exits.

Rev. 4.8

Copyright © 2017 Object Innovations Enterprises, LLC

All Rights Reserved

213

NetCs Chapter 7

Task Parallel Library (TPL)

e The Task Parallel Library (TPL) provides classes and
methods that simplify programming with multiple
threads.

— The Task class provides a wrapper for threads from the
ThreadPool.

o TPL supports two kinds of parallelism:

— Task parallelism facilitates parallel program using tasks,
which‘are like threads but-at a higher level of abstraction.

— Data parallelism facilitates performing the same operation
concurrently onelements in an array or collection.

e Besides making parallel programming simpler, TPL
can make programs more efficient.

— TPL can scale the degree of.concurrency dynamically based
on the number of processors available.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 214
All Rights Reserved

NetCs

Task Example

Chapter 7

o We illustrate the uses of tasks by providing another

implementation of our console log example.

—~See TaskDemo in the chapter directory.

— The same wrapper class is used for encapsulating the thread

procedure.

— The main program creates an array of Task objects.

static void Marn(string[] args)
{
ThreadWithState slowLog =
new ThreadWithState(1000, 5);
ThreadWithState mediumLog =
new ThreadWrthState(700, 5);
ThreadWithState fastlLog =
new ThreadWithState(400, 5);

// Array of tasks. Use.a) factory for
// starting third task
Task[] tasks = new Task[3];

tasks[0] = new Task(() => slowLog.ThreadProc());

tasks[0].Start();
tasks[1] = Task.Run(
(O => mediumLog.ThreadProc());
tasks[2] = Task.Factory.StartNew(
() => fastLog.ThreadProc());

// Wait for all tasks to complete
Task.WairtAll(tasks);

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC
All Rights Reserved

215

NetCs Chapter 7

Starting Tasks

e There are three ways to start a task.

—~ Instantiate a Task object and call the Start()method.

tasks[0] = new Task(() => slowLog.ThreadProc());
tasks[0].Start();

—- Call the static Run() method to create and start the task in
one operation

tasks[1l] = Task.Run(
(O => mediumLog.ThreadProc());

— Call the static StartNew() method of the Factory property to
create and start'the task in one operation. This technique
provides a greater-variety of options than the Run() method.

tasks[2] = Task.Factory.StartNew(
() => fastLog.ThreadProc());

e In each case we pass in a delegate, which'can be
conveniently expressed by a lambda expression.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 216
All Rights Reserved

NetCs

Waiting for Task Completion

Chapter 7

e The Task class makes it easy to wait on multiple

threads.

—~Use the WaitAll() method. You do not need to manually

create synchronization objects. The system handles the

synchronization for you.

// Wait for_all tasks to complete
Task.WartAll (tasks);

e Here is the resultof running the program:

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Rev. 4.8

Wwphrwphrbhboowoaophrhotwoaopr,ohotw

- ticks = 0

- ticks = 0

- ticks =.0

: ticks =400
- ticks = 700
: ticks = 800
- ticks = 1000
- ticks = 1200
- ticks = 1400
: ticks = 1600
: ticks = 2000

iIs terminating

- ticks = 2100
: ticks = 2800
- ticks = 3000

IS terminating

- ticks

= 4000

is terminating

Copyright © 2017 Object Innovations Enterprises, LLC

All Rights Reserved

217

NetCs Chapter 7

Data Parallelism

e TPL provides parallel For and ForEach loop that can
make it easy to achieve data parallelism for arrays
and-collections.

— For.an example, see PrimeCounter/Parallel. This program
finds prime numbers.

private static long[] FindPrimesParallel(
long “First, Int count)
{
long lastExclusive = first + count;
List<long> primes = new List<long>();
if (first- == 1) // 1 is not a prime
first =.2;
Parallel _For(first, lastExclusive, 1 =>
{
int numfact;
Factors(i, out ‘numfact);
1T (nhumfact == 1)
primes._Add(1);
s

return primes.ToArray();

— You will implement this example as part of the lab.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 218
All Rights Reserved

NetCs Chapter 7

Lab 7

Threading Techniques for Parallel Programming

In this lab you will use several different threading techniques to
count-prime numbers. Determining whether a large integer is a
prime number is a compute-intensive operation, and performance
Improvements can be obtained with multiple-core CPUs by the use
of parallel programming. You will compare several techniques.

Detailed instructions are.contained in the Lab 7 write-up at the end
of the chapter.

Suggested time: 60 minutes

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 219
All Rights Reserved

NetCs Chapter 7

Summary

e You can use the Thread class to implement
multithreading in .NET applications.

e ‘You can use the Monitor class to program safe
concurrent access to shared data.

¢ With the ThreadPool class you can obtain threads
from a pool that is managed by the system.

o A foreground thread will keep the .NET execution
environment running, while background threads will
be stopped once all foreground threads have
completed.

e There are various classes for synchronizing threads,
including ManualResetEvent, AutoResetEvent and
CountdownEvent.

e You can use the Task Parallel‘Library to implement
task parallelism and data parallelism in .NET
applications.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 220
All Rights Reserved

NetCs Chapter 7
Lab 7

Threading Techniques for Parallel Programming

Introduction

In this lab you will use several different threading techniques to count prime numbers.
Determining whether a large integer is a prime number is a compute-intensive operation,
and performance improvements can be obtained with multiple-core CPUs by the use of
parallelsprogramming.. You will compare several techniques.

Suggested Time: 60 minutes

Root Directory: OIC\NetCs

Directories:(_Labs\Lab7\PrimeCounter (do your work here)
Chap07\PrimeCounter\Starter (backup of starter code)
Chap07\PrimeCounter\Threads (answer to Part 1)
ChapO07\RPrimeCounter\ThreadPool (answer to Part 2)
Chap07\PrimeCounter\Tasks (answer to Part 3)
Chap07\PrimeCounter\Parallel (answer to Part 4)

Part 1. Using Threads

1. Open the starter project and examine-the code. There'is a class Util with a static
method CountPrimes() that counts the number of primes in‘an interval beginning
with first. This method relies on the method FindPrimes(), which returns an array of
all the prime numbers in an interval. That method in turn relies on'Factors(), which
will factor a number. There is a test program that will enable you to interactively test
these three methods. Build and run the program, satisfying yourself that they work.

2. Modify the test program to test only CountPrimes() with a hardcoded first number of
one trillion and a count of 1000.

class Program

{
const long BIGNUM = 1000000000000; // one trillion
const int COUNT = 1000;
static void Main(string[] args)
{
Console._WriteLine("{0} total primes"™, Util.CountPrimes(BIGNUM,
COUNT));
}
}

3. Build and run without debugging. The result is 37 primes.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 221
All Rights Reserved

NetCs Chapter 7

4. Add some instrumentation to your program to measure the time required for the

computation. Use the StopWatch class from the System.Diagnostics namespace.
Also, display the number of logical processors using the ProcessorCount property of
the Environment class. Label the output “Sequential”.

class Program

{

}

const long BIGNUM = 1000000000000; // one trillion
const int COUNT = 1000;
static Stopwatch stopWatch = new Stopwatch();

static void Main(string[] args)

Console._WriteLine("'Number OFf Logical Processors: {0}",
Environment.ProcessorCount);

Console.-WriteLine(''Sequential™);

stopWatch.Restart();

Console . WriteLine("{0} total primes"™, Util.CountPrimes(BIGNUM,
COUNT));

Console._Writekine(''elapsed time:\t{0}", stopWatch.Elapsed);

5. Create a helper class ThreadWithState so.that you will be able to pass first and

count to the associated thread. Also maintain.astatic data member TotalPrimes. The
thread procedure should count the primes in the interval and add this count to the total
count. Both the count and total count should be displayed. Beware of a possible race
condition in updating TotalPrimes. A simple solution'is to use the
Interlocked.Add() method. Finally ‘display the elapsed time.on the stopwatch. You
will need to make stopWatch in the Program class public.

public class ThreadWithState

{

public static int TotalPrimes = O;
public long First;
public int Count;

public void ThreadProc()

{
int numPrimes = Util.CountPrimes(First, Count);
Console._WriteLine("{0} primes"™, numPrimes);
// Add this threads count to the total
Interlocked.Add(ref TotalPrimes, numPrimes);
Console . WriteLine("{0} total primes", TotalPrimes);
Console.WriteLine("elapsed time:\t{0}",

Program.stopWatch.Elapsed);

Finally, provide code in Main() to start two threads. The first thread will be for the
first half of the interval beginning at BIGNUM, and the second thread for the second
half of the interval. Use the ThreadDemo example as a model.

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 222

All Rights Reserved

NetCs Chapter 7

Console.WriteLine("Using Two Threads');
stopWatch_Restart();

ThreadWithState twsl = new ThreadWithState { First = BIGNUM,

Count = COUNT / 2 };

ThreadWithState tws2 = new ThreadWithState {

First = BIGNUM + COUNT / 2, Count = COUNT - COUNT / 2 };
Thread tl1 new Thread(new ThreadStart(twsl.ThreadProc));
Thread t2 new Thread(new ThreadStart(tws2.ThreadProc));
tl.Start(Q);
t2.Start();

7. Buildand run. Here is some sample output on a 2.8 GHz AMD processor with 6 cores
and 8GB of system memory. This completes Part 1.

Number OF Logical Processors: 6

Sequential

37 total primes

elapsed time: 00:00:03:7012794
Using Two Threads

19 primes

19 total primes

elapsed time: 00:00:01.7747568
18 primes

37 total primes

elapsed time: 00:00:01.9316970

Part 2. Using the Thread Pool

1. Inthe previous solution we created individual threadsand started them. Replace these
four lines of code by two lines of code in which you call QueueUserWorkltem()
from the ThreadPool class. Use the WaitCallback delegate.

ThreadPool .QueueUserWorkltem(new WaitCallback(twsl.ThreadProc));
ThreadPool .QueueUserWorkltem(new WaitCallback(tws2.ThreadProc));

2. There is a compile error. To use in the WatiCallback delegate youneed to change
the signature of the thread procedure.

public void ThreadProc(Object statelnfo)

3. Build and run. You don’t get any output from the thread procedure for either thread!
What is the difference between threads you create from the Thread-class and threads
obtained from the ThreadPool class?

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 223
All Rights Reserved

NetCs Chapter 7

Threads created from the Thread class by default are foreground threads, while
threads from the ThreadPool class are background threads. Since background threads
do not keep the managed execution environment running, once the main thread
completes, the system will stop the background threads and shut down.

A'quick and dirty way to keep the main thread from finishing before the threads you
started from the thread pool is to have the main thread sleep for a few second:

Thread.Sleep(5000);

6.

You can then build and run and see output from the thread procedure. A better
approach is to have the main thread wait on a synchronization object. A convenient
class to use in this context is CountdownEvent. You can initialize the counter to 2
(for the two tasks), and signal the event counter at the end of the thread procedure.
We-don’t need to depend on the thread procedure for output any longer but can print
the total number of primes and elapsed time in the main thread.

public class ThreadWithState

{
public static int TotalPrimes = 0;
public long First;
public int Count;
public static CountdownEvent cde = new. CountdownEvent(2);
public void ThreadProc(Object statelnfo)
{
int numPrimes = Util_CountPrimes(First, Count);
Console . WriteLine("{0} primes', numPrimes);
// Add this threads count to the total
Interlocked.Add(ref TotalPrimes, numPrimes);
cde.Signal();
}
}
class Program
{
static void Main(string[] args)
{
}}-Wait for threads to complete
ThreadWithState.cde_Wait();
Console _WriteLine("'{0} total primes",
ThreadWithState.TotalPrimes);
Console._WriteLine("elapsed time:\t{0}", stopWatch.Elapsed);
}
}
7. Build and run. This completes Part 2.
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 224

All Rights Reserved

NetCs Chapter 7

Part 3. Using Tasks

1. Modify the thread procedure to return the number of primes this thread has found as
an integer. Also, the helper class does not need a synchronization object any longer,
because the Task<T> class will cause an automatic wait until the result is available.

public class ThreadWithState

{
public static int TotalPrimes = O;
public long First;
public-int Count;
public int ThreadProc()
{
int numPrimes.= Util.CountPrimes(First, Count);
Console _WriteLine(""{0} primes"™, numPrimes);
// Add this thread"s count to the total
Interlocked.Add(ref TotalPrimes, numPrimes);
return numPrimes;
}
}

2. In Main() replace the two lines where you called QueueUserWorkltem() by code
that instantiates Task<int> objects via the Factory.StartNew() method. In place of
using a special delegate class, you can use lambda notation. The value returned by
each thread can be accessed through the Result property.

Task<int> taskl
Task<int> task?2

Task.Factory.StartNew(() => twsl.ThreadProc());
Task.Factory.StartNew(() => tws2.ThreadProc());

// Task class causes automatic wait until results are available

Console _WriteLine('{0} total primes", .taskl.Result + task2.Result);
Console._WriteLine("elapsed time:\t{0}",- stopWatch.Elapsed);

3. Import the System.Threading.Tasks namespace.
4. Build and run. This completes Part 3.

Part 4. Using Implicit Parallelism

A really powerful feature of the Task Parallel Library is its capability in.many cases to
implicitly cause parallel processing. Then the system can determine the optimal number
of threads to use. The result is ease of programming and excellent performance:

1. Rather than manually starting threads in the main program, in our final solution we
will modify the Util class to implement a parallel version of the CountPrimes()
method, which in turn will rely on a parallel version of FindPrimes(). The heart of
the computation is this for loop:

for (long i = First; i <= last; i++)

int numfact;

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 225
All Rights Reserved

NetCs Chapter 7

Factors(i, out numfact);
if (humfact == 1)
primes.Add(i);
3

2. We will replace it with a Parallel.For loop. Here is the complete code for the parallel
version of our method. Again we use lambda notation, this time to specify the
delegate method that will be invoked at each loop iteration.

private static long[] FindPrimesParallel(long first, int count)

{

long lastExclusive = First + count;
List<long> primes = new List<long>();

it (First ==1) // 1 is not a prime
Ffirst =2;

Parallel .For(first, lastkExclusive, i =>

{

int _numfact;
Factors(i, out numfact);
if (humfact == 1)
primes.Add(i);
s

return primes.ToArray();

3. Import the System.Threading.Tasks namespace:

4. Implement the parallel version of CountPrimes().

public static int CountPrimesParallel(long first, int count)

{
}

5. The main program now is very simple. There is'not any thread code; we just call the
two versions of CountPrimes() and display timing information using the stop watch.

return FindPrimesParallel(first, count).Length;

class Program

{
const long BIGNUM = 1000000000000; // one trilMion
const int COUNT = 1000;
static Stopwatch stopWatch = new Stopwatch();
static void Main(string[] args)
{
Console_WriteLine(""Number OFf Logical Processors: {0}",
Environment.ProcessorCount);
Console._WriteLine(*'Sequential™);
stopWatch.Restart();
Console _WriteLine("{0} total primes"™, Util._CountPrimes(BIGNUM,
COUNT));
Console.WriteLine("elapsed time:\t{0}", stopWatch.Elapsed);
Console._WriteLine("Implilcitly Parallel™);
Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 226

All Rights Reserved

NetCs Chapter 7

stopWatch.Restart();
Console _WriteLine(""{0} total primes",
Util.CountPrimesParallel (BIGNUM, COUNT));
Console._WriteLine("elapsed time:\t{0}", stopWatch.Elapsed);
}
}

6. Build and run. Here is some sample output, using the same machine described earlier.
The implicitly parallel version shows dramatic performance improvement, taking
advantage of all six cores. This completes Part 4.

Number OF Logical Processors: 6
Sequential

37..total primes

elapsed time: 00:00:03.7762193
Implilcitly Parallel

37 total primes

elapsed-time: 00:00:00.7838209

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 227
All Rights Reserved

NetCs Chapter 7

5%
Oé/)

Rev. 4.8 Copyright © 2017 Object Innovations Enterprises, LLC 228
All Rights Reserved

Orchard R

Gréenwood Villag

h: 303-3C

9-08-00389-000-08-01-17

	Table of Contents
	Chapter 1 - .NET Fundamentals
	Chapter 2 - Class Libraries
	Chapter 3 - Assemblies, Deployment and Configuration
	Chapter 4 - Metadata and Reflection
	Chapter 5 - I/O and Serialization
	Chapter 6 - .NET Programming Model
	Chapter 7 - .NET Threading
	Chapter 8 - .NET Security
	Chapter 9 - Interoperating with COM andWin32
	Chapter 10 - ADO.NET and LINQ
	Chapter 11 - Debugging Fundamentals
	Chapter 12 - Tracing
	Chapter 13 - More about Tracing
	Appendix A - .NET Remoting
	Appendix B - Learning Resources

