WINDOWS PRESENTATION
FOUNDATION

Using C#

Windows Presentation
Foundation Using C#

Student Guide

Revision 4.7

Obiject Innovations Course 4135

Windows Presentation Foundation Using C#
Rev. 4.7

Student Guide

Information in this document is subject to change without notice. Companies, names and data used
in_.examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Object
l \ .1 VA] ‘ 0 N 5 ™ is a trademark of Object Innovations.

Authors: Robert J. Oberg and Ernani Junior Cecon

Special Thanks: Dana Wyatt
Copyright ©2015 Obiject Innovations Enterprises, LLC All'rights reserved.

Obiject Innovations
877-558-7246
www.objectinnovations.com

Published in the United States of America.

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC ii
All Rights Reserved

Table of Contents (Overview)

Chapter 1 Introduction to WPF

Chapter 2 XAML

Chapter 3 WPF Controls

Chapter 4 Layout

Chapter 5 Dialogs

Chapter 6 Menus and Commands

Chapter 7 Toolbars and Status Bars

Chapter 8 Dependency Properties and Routed Events
Chapter 9 Resources

Chapter 10 Data Binding

Chapter 11 Styles, Templates, Skins and Themes
Chapter 12 WPF and Windows Forms Interoperation
Appendix A Learning Resources

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC

All Rights Reserved

Directory Structure

e Install the course software by running the self-
extractor Install WpfCs_47.exe.

e The course software installs to the root directory
C:\OIC\WpfCs.

~ Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02 and so
on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

— The Demos directory-is provided for performing in-class
demonstrations led by the instructor.

e Data files install to the directory C:\OIC\Data.

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC iv
All Rights Reserved

Table of Contents (Detailed)

Chapter 1: Introduction 10 WPFcci i 1
HIStory of MICroSOTt GUIoiiiiiic e 3
WY WPE? ..t bbbttt b bbbt b e bt et n s 4
WHEN SNOUI T USE WPE? ...ttt 5
WPF and .NET FrameWOrk 3.0cooiiiiiiiieiieiee et 6
NET FrameWOorK 4.0/4.6oooeeiieeiee ettt sre e enes 7
VISUAL STUTIO 2015, bbbt 8
Visual Studio CommuNity 2015........ccooiiiieiiee e 9
TArget FraMEBWOIK.....ccieiiii e 10
WPF Core Types and INfraStrUCUES.coiiieiieieieiie et 11
AL ettt bbb bbbt bbb bttt nen s 12
(O] 1 0] LS F USRS RPTTT 13
Data BINAING 1ttt bbb 14
AAPPEATANCE ... it e ettt ettt 15
(Yo UL g Lo =T T SRS 16
LC] o] ot OSSR 17
=T L T PSR TTPRPROPRN 18
DOoCUMENTS AN PIINTING. ... etive ettt sttt 19
PIAN OF COUISE ...ttt sttt bbbttt bbb bbbt ne s 20
ApPPLication and WINAOWociiiie ettt sae e sraenne e 21
FirstWpf EXample Program ... it siir et 22
Demo — Using Visual STUdIO 2015 ..ottt 23
(@321 [T I T =T 11 (oo PSS 24
Providing an EVent HanAIErcooiiiiiiiii it 25
Specifying INItial INPUL FOCUS.c..oiiiiieiies stk nr e ke 26
COMPIELE FIrSt PrOQIaMi ittt ettt eb ettt 27
Device-INdependent PIXEIScuoiveiiiieiie ettt sra e sne e ee e snee e 29
ClaSS HIBIAICNYo ettt e ere et r e re e te et re e reenes 30
CONLENT PIOPEITY ..ttt e btttk e b e e ettt nne e 31
SIMPIE BIUSNES ... bbb nar e e et 32
PANEIS ... et bbbt a e 33
Children Of PANEIS.ooiiiiiee e sbbnned 34
EXample — TWOCONTIOISccueiiiiieie et e 35
TWOCONTIOIS — COUR ...ttt a e aneenne e 36
AULOMALIC SIZING .vvevvieiieieesie ettt et e e e e esre e teeseeaseesse e sasbadartenseanee s 37
7. oI SO S P RPTOTTPRP S S ST 39
SUMIMAIY ...ttt ekttt ekt e e st e e bt e e ae e e ke e esb e e b e e seeeebeesaeeebeeane e e e e naseennes 40

ChAPLEr 22 XAML ..ttt r e bbb e beeneenneas 45
WAL IS XAMLT? ..ottt bbb ne et 47
Default NAMESPACEcovieiiiiie ettt b et nbesreenes 48
XAML Language NAMESPACE.cccreerriirierieeiiiesiee e nes 49

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC Y

All Rights Reserved

NET Class and NAMESPACEccueiiiriiiieiiieite ettt st ne e b be e e 50

Elements and ATIIIDULES..........oi i 51
XAML in Visual Studio 2015......cc.ooieiieecieceee e 52
Demo: One BUttON Via XAMLcciiiiiicc ettt 53
Adding an EVENt HANAIEoooviiiiiie e 56
LAYOUL TN WPE ...ttt bbbt 58
(000 1170 | 11T TS - TSR 59
Margin and PaddiNng.........ccciveiiiieiieie et 60
THICKNESS STIUCTUIE.......viiiiii et e e be et e ree e 61
ChIlAren OF PANEIS.........cccvviiieie ettt snee s 62
Example — TWOCONTIOISXaMIccooiieiiiic e 63
TWOCONTIOIS — XAML....oociicece ettt st re et aneeane e 64
AULOMALIC SIZING +tetieitieie ettt ettt b e et e e be e e e s beesbeeneesbeebeaneens 65
TWOCONLIOIS = COUE......ccciiiiiiiitie ettt e e ae e e re e 66
L@ =] o1 =i [TS 67
AACCESS KBY/S ittt ittt ettt asid e e abt ettt e ettt na b e e Rt e e Rt e e R e e e bt e R b e et a e e e b e nne s 68
ACCESS KBYS I XA ... ittt sttt e e sne e be e b enee e 69
CONTENT PrOPEITY ittt sttt sttt 70
Checked and UNnchecked EVENLS......cccoceiiiieiic e 71
7. o1 S ST RRRRTP 72
Property EIBMENt SYNTAX .i.ioueiiiiiiiieieitie e sissine ettt 73
TYPE CONVEITEES. ...t bt et db et eb ettt e s Rb ettt e bt e bt e e bt e e sb e e nbeesabeenbeeanbeenbeeennaen 74
SUIMIMIATY .ttt o 2T+ttt e e bt e ettt SRt e ekt e e e ab et e es e e enb e e e e bt e e e bbe e e bn e e anseeeenes 75
Chapter 3: WPF CONTIOISeoieeieiie it ihisie s itese s an e e et e e aessaesaeensessaesseaneesneas 81
BULIONS IN VWP ...ttt ekt dr e s b b e e te e st e s be e s be e e nte e sreesnteenreens 83
BUttoNDEMO EXAMPIE......c.eiiieieee s ettt 84
USING the BULLON CIASSccvieiiiieiiieiie ettt srta et ta et ste et snnesreees 85
TOQGIE BUTONS. ...ttt sttt e sttt ete st e beene e 86
ISTRFEESTALE ... et e et e e st b et e e be e e aaefate e eneeesbeeaneeenree e 87
L0 1= o3 = 0) G TSR 88
ChECKBOX COUE ...ttt ettt e et a e s e e s ta e eeendesteentesnaesndeeennee e 89
LI 1oL I T TSRS OPY P BPP 90
10 [To] =0 1 (o] o IS ST ST OSSP 91
LCT(0N] 0] =10) GO PP ST OPRTP TP PP 92
LD E= T [S RO TR 93
.1 oIRGB 94
L= = 0) s SRR 95
INItIAlIZING the TEXIBOXeciviiiiiieiieeie ettt e e aa e e s e skn e neenee st 96
(08 [T0] o o= T o IS U o] 10 USRS PR 97
ITEMS CONTIOISt te e e be e e s e r e 98
Y] LoTot (o] o] o1 o] 3T PPRPR 99
USING @ LISEBOX ...evveieeieciie ettt et e st e e s esnaenneenaesneenne e 100
ShOWLIStSINGIE EXAMPIE......cviiieiieece et 101
MUItiple-Selection LIStBOX........cccuuiuiiiriiieieiie et 102
SEIECTEA ITEBIMS ...ttt e sae e e te e s b e e te e sraeebeeaneeas 103
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vi

All Rights Reserved

USING the COMDOBOX.......ccuiiiiiiieiesie ettt nae e 104

COomMbDOBOX EXAMPIE ...t 105
Storing Objects iN LiSt CONIOIScccveiieiiie e 107
Collection ItemMS iN XAIMLcooiiieec e et es 108
LD BBttt b beereene et e e 109
SUMMABIY <.t b e bbb e b e nb e e b et be b e nne s 110
ChaPLer 41 LAYOUL.......cviiieeieitesie ettt bbbttt 119
LaYOUL TN WWVPE ... ettt b et be b e 121
CoNntrolling SIZE: REVIEW ..o 122
Margin and Padding: REVIEWcccveiuiiieiieiieie e se e sae e see e naesne e 123
ThiCKNESS SEIUCLUIE: REVIEWoviiiiiiieiieiieie et 124
SIZEDEIMO PrOGIAM ittt sttt ettt e e bt e b sre e 125
TOP PANEL L.t 126
(00101 (=101 o (0] 01T 1 Y TSRO 127
XAIML VS COUB . cuiuviitienienien e sttin ettt ettt st b et st e e se et e b et st benbesbeabenreeneenes 128
TYPE CONVEITEL ...ttt ettt ettt et et bee s ae e et e e ebn e e b e e smneenbeeaneeas 130
AIGNMENT ..ttt bbbttt b et b e bttt ne e e 131
Default AHGNMENT EXAMPIE cio..veveeie et 132
Alignment inside a Stack Panelcc...covoiiieiiiice e 133
Vertical ANGNMENT ..o it ettt re e s 134
HOFZoNtal ALIGNMENT ... ot 135
Vertical AgnmMeNnt in @ WINGOW...........cccoiieiieieiic it 136
(@00 0] C=T a1 0 AN [T 0] 21T 1 S o SRS 137
Content AlIgNMeNnt EXAMPIE. ..o i 138
e (0TI T 1=t 1 o] s N PR 139
TEANSTOIMS ..ottt b b s kbbbt ettt b e bbbt e e e 140
Rotate Transform EXampPle ..ot 141
PANBIS .. ettt r et ae Rt nte e re b e 142
SAPES . b eh et bbbt 143
SHZE AN POSITION ...ttt e n e bbbt e 144
SImMple Shapes EXAMPIE........coui it ra et e e ae b sreenas 145
ATEACNET PrOPEITIES ... ettt bbbt bbb drg s 146
SEACKPANEL ... e enn e ane s 147
Children of STACKPANENc..oiviiiii e 148
WWIAPPANELot read e re e re e eeeabin 149
DOCKPANEL ... e e bt ne e 150
Dock Example XAML and COUE.......cc.oiiiiiiiiiiieieieie e 151
LAD A ettt bbb e ad e SRR 152
] 1 o SRR SR PP 153
G EXAMPIE ...ttt e 154
(€] ¢ o =T o' T TSRS 155
Using the COlECtIONS EQITON.........ccuiiieiiecee e 156
SEAT SHZINQ .eevieie ittt et e et et et e e e et e e ere e te et e e e nreeneereas 160
Grid.COIUMNSPAN ...ttt be e nreas 161
SCIOIING .t 162
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vii

All Rights Reserved

SCAIING ettt bt re et e b e nreas 163

ScrollViewer and ViewboX COMPAredccceieieiiiiiiniiieiee e 164
LAD 4Bt bbbttt 165
SUMIMIATY .ttt ettt ettt e ekt e e bt e e b e e et e e e ab e e e st e e esb e e e nnb e e e nbb e e e nbbeeenbbeennteae s 166
(O gF-T o] (] T B TT- | [0[RP 183
Dialog BOXES INWVPFE ..ottt ae e nnaeneenee e 185
Y (TS oTo o] = T) PRSPPI 186
MessageBox SNOW METNOMcooiiiiiiiiii s 187
CloSING @ FOIM: REVIEWcuiiiiiiiieiitei ettt 190
CommMON DiIAlOG BOXES.....ccuveiiiiiiieiit et se ettt e ste e e sneenaeeneenneas 191
FIleOPEN EXAMPIEc.oeoeceeeee e e 192
FileOpen EXample COOEcooo i e 193
CUSTOM DHAIOYS ...ttt bbb 194
L ToTe L) -1 [0 1SR 195
Modal Dialog EXAMPIE...........ccciirieiieiie et 196
NEW ProdUCT DIal0Q.......cciiiiiiieiiieieitieiieeie ettt ae e 197
XAML for NeW ProducCt DIAI0Gccueiueeieieiieiiesie e 198
Code for New Product DIalog..........cciereireieiieiiese e seesie e steesie e e see e sseesae e sneas 199
Bringing Up the DIalOgccovoviiicii e 200
DIalog BOX OWNET ...ttt ianesiee sttt adibe ettt sbeebesre e beeneesneenbeeneenree e 201
Modeless Dialog BOX EXAMPIEc.ciiiiiiiiiiiii s 202
Displaying the DIAl0Qciiiiiiieiieie et ste e sae e e sre e e e nne e 203
Communicating With Parent ..ot 204
XAML for Modeless DIalog..........cciii i e siie et 205
Handler for the ApPlY BUTTONooiiiii it bt 206
Handler for the ClOSE BULIONcoviiii et 207
Instances of @ Modeless Dialogccvovviiiiie it 208
Checking fOr @n INSTANCEcoveiieieie et bbbt 209
7. o1 T S S SRS OSSPSR 210
SUMIMIATY ..ttt ettt ettt e e bt e et e e e s s s oKt e ente e e ARt et e esb e e e s e s e R R R n e e e e nteee s 211
Chapter 6: Menus and COMMANScccueiuiiieireieiee e eaeiit e eee e sed e e eee e eeeaseesseens 219
MENUS IN VWP ...ttt e s e e £R e e e et e e et ab e seeeensdenbeennins 221
MENU CONIOIS ..ttt e e R R et 222
MenuCalculator EXAMPIEooiiieieiie ettt s e sda e e e 223
A SIMPIE IMEBNU .ttt e ar et e st e enes 224
The Menu USING XAML ..o e 225
Handling the CHCK EVENL...........coiviii e ke sb e 226
The Menu Using Procedural COUE..........ccovviieiiiiieiieie ettt e e 227
ICONS 1N IMIBINUS ...ttt b et e s te e beeseesneenae e s b e e b 228
CONEEXE IMIBNU ...ttt ettt b ettt et esae e e nbeesbeesnreeas 229
XAML TOr CONEXE IMBINU ...t 230
T CT 0T L2 (0] PRSP PPRPOPRRRPRN 231
LD BA ettt b nbe e beereene et e es 232
KEYDOAId SNOMCULS.......c.eiiiitiitiiiieiieee et 233
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC viii

All Rights Reserved

COMMANS ... 234

Simple CommANd DEIMOc..oviiiiiiiicie e 235
WPF Command ArChITECIUIE.coiiiiieieiee e 238
CommaNd BINAINGS ...cuveieieiieciieeieseece et te e sre et e e sreesteentesseenteeneesreas 239
Command BiNdING DEMOc.oouiiiiiiiiciiee ettt nreas 240
CUSTOM COMMEANTSviieieiieeieeie st e s et e et e te et esreesbeeneesreesteaneeaneenseeneenneas 243
Custom Command EXAMPIEooveirie e 244
MenuCalculator Command BindiNgScccoveiiiieieiieiic e 246
INPUE BINAINGS. ...ttt ettt b et re e b e et nnee e 247
MIBNU TEEMIS ..ttt e b e e bb e s br e e s nn e e s nreean 248
RUNNING MeNUCAICUIALON...........ooieiece e 249
CheCKiNg MENU TTBIMS cu...vvevece ettt e neesre e 250
Common EVENE HANGIETScviiieiieiec e e 251
MENU ChECKING LLOGICcitiieiuieiieieieite ittt sttt 252
LOF 1ot U] =14 {0 o 18 I T 1o RS 253
AULOMALIC CRECKING ...ttt et re e e e nenne e 254
Automatic Checking EXampPIe ... 255
(.10 1] O S PSSRSO 256
SUMIMIATY ettt ittt d et e e ek e b ettt e ekt e et e e et e e e e ab e e eab e e e nnb e e e nbb e e e nbb e e e nbneeentnee s 257
Chapter 7: Toolbars and Status BarsSccccceiieiiiieiecc e 265
TOOIDAIS IN VWP ...t et ekttt ettt e e st e esaeteeneenbeeteaneesneeneas 267
XAML TOF TOOIDAIS ...ttt ettt 268
CommAaNdS AN EVENES......c.viiiiis kit sbe ettt st st nee e s 269
IMAGES ON BULLONS. ...t ii i s £ ettt 270
I] I I 1 SO o BTSSRSO P TP TP ORPRPP 271
Other EIements 0N TOOIDAISc.ooiiiiiiiee b b 272
SEALUS BAIS ...ttt St fre et et et e et et e e e b e e nneeenneas 273
7. o USSR P TPRPSSRRRR 274
SUMMABIY <. s bttt bRt et enbefb et e b e nne s 275
Chapter 8: Dependency Properties and Routed EVENtS............civuerireeiiereeisiinesennens 283
DePendenCy PrOPEITIESc.ooiiiieiieieeie ettt bbb se b as e steesaeabeenee e 285
Change NOTITICATIONccuiiiiiiie e e e bbbtk dbe e 286
Property Trigger EXAMPIEocvoiiei ettt ia e a e 287
Property Value INNEITANCEcoviiieiiece e baat e st 288
Property Value Inheritance EXample ... s 289
Support for MUIEIPIE PrOVIEISoviiiiiiieieeese e sh e 290
0o ot I N =TSSR S S 291
VISUBL T ...ttt ettt bbbttt et e bbb b e beene e e ner e b 292
ViSUAI TTEE EXAMPIE.eiiiiiieiie ettt e s e b e e 293
ROULE EVENTS ...ttt ettt sraenteeneeereene e 294
EVENE HANAIEIS. ...ttt 295
ROULING SEFALEGIES .. .cvieuieiieite ettt re e e s e e be e e s reenreenneareenneens 296
Ready-made Routed EVENtS INWPF.........ccooiiiiiie e e 297
Routed EVENT EXAMPIEoiiiiiiiieeee e 298
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC iX

All Rights Reserved

SUIMMEBIY . bbbttt e bt b e s e nb e et e b e e b nnnenne s 302
ChAPTEr 92 RESOUICES.......uiiiietiti ittt bbb bbb 307
RESOUICES 1N .NET ...ttt ne e 309
RESOUICES INWWPFE ...ttt te e e e nraeeennee e 310
BINAIY RESOUICTES .. .eeuviiiieitieiieeiesttesteeie st e e et et e e st e te et easeesteesaeaneesteeneesneesseenneeneenes 311
LOOSE FIlES @S RESOUITESeivievieiierieie sttt sttt bbb nee s 312
Binary ResSOUIrces EXAMPIEcoviiiiiie e 313
LOQICAI RESOUITES ...ttt bttt bbb 314
LOQICal RESOUICES DEMOvceeiiieeiecie sttt te et esraenreeneeene e 316
L0gical RESOUICES IN COOEcviiveeiieeiece ettt et ene e 319
SEALIC RESOUICES ...ttt itieie ettt sttt sttt sttt st e st e et e st e nbeebeeneesbeenbeeneenreas 321
DYNAMIC RESOUITESc.viveiiitieiieiiete ettt sttt sb bbb 322
DynamiCReSoUrce EXAmMPIE.........c.oovoiiiie e 323
.1 oI T TSSO PURPRPRPRPRPR 324
SUMIMIATY ..okttt ettt eke et she etk e e st be e e st e e he e e mb e e e be e e st e e Re e emb e e ehe e e nbeeebeeanbeenmneenneeanneas 325
Chapter 10: Data BiNGINGccooeeiiiiiiiiee et 331
What is Data BINAING?........coeiiiiii it sre e sne s 333
Binding in Procedural COOE. oot et 334
Procedural Code EXamPI.. ..ot 335
BINAING IN XAML ...ttt e et e e e e s e e saeanaesraesreenaeanaenneens 337
Binding to Plain .NET PrOPErtiSccueiviiieiicie ittt 338
Binding to .NET Properties EXampPlecccoooiiiiiimiiniiinin e 339
Binding t0 @ COIIECTIONoiiiiiii it 341
Binding to a Collection EXaMPIE.........cccveueiie it st 342
LAD LOA e et bt Ko Rttt bbbt e et e 343
Controlling the Selected ITBM ..ot e 344
ComboBox Synchronization EXampPIe...........c.ociiiiin it 345
[t= O 0] 1 (=) S T PP U PR PR 346
Data CONLEXE DEIMO.......c.eeeiiiiiiie ittt b e e n e e e e e 347
Data TEMPIALESeeeeeie e sd b ettt b b e et e e e sbeanbeene e 350
Data Template EXAMPIE........ooie e ar et 351
Specifying @ Data TEMPIALE.........ccviieiieie e e e st re e esRa e eeshnnenees 352
VAIUE CONVEITELSevieeieieite ettt sttt bt s s bnat e e e e nd bbb e 353
Value ConVerter EXAMPIE.........ooi i et 354
Using a Value Converter i XAML ..ot 355
COIIECTION WVIBWS......tiiiiieiiee ettt bbbt s b 357
ST 1o SO S SRS ST 358
(€] o107][oo TP PRI ep PR 359
Grouping EXAMPIEcc.oiiiieeee s 360
0= o USSR 362
FIering EXAMPIE ...ooeeeecee et 363
Collection VIEWS IN XAML ..ot 364
Collection Views in XAML EXaMPIe.......cccoiiiiiee e 365
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC X

All Rights Reserved

DAL PrOVITRTS. ..ttt s s e s s nnnnnnnnnnnnnnn 366

ODjJECIDALAPIOVIAET ...ttt 367
ObjectDataProvider EXaMPIEccvoiiieiieiiee e 368
XMIDAIAPTOVIUEcvveietett ettt bttt bbb e ne e 370
XMIDataProvider EXAMPIEcvoiiiiiieiieie ettt 371
LAD LOBottt ettt e aeere e e e e 372
Data Access With Visual Studio 2015...........ccooiiiiiiiie s 373
SMAlIPUD DAADASEeivveiieiiiieiie ittt 374
ADONET ENntity FrameWOrK.........ccooiiiiiiiiiecieee e 376
BOOK BIrOWSEI DEIMO........cciiiiiiiiieiesiiesieee ettt sae e ereesteenaeaneenneens 377
Add a Model using Database FirSt.........cccceiieiieieiiesiee e 378
AU 8 DA SOUICEciveerierieieiie sttt sttt st sbe st b e eneene et e nens 380
Book Browser Demo ComPIetedcoooiieiiiiiiieii e 384
NAVIGATION COUR ...kttt bbbttt 385
DataGrid CONIOL ..ottt bbb 386
Editing the BOOK Table ... 389
(08 1 I o] 1 SRR PTTRTPRURPRTR 390
Database UPOATES ... ueuveriiit it e ibe ettt 391
Refreshing the DataGridc...c.ooveoiioieii i 392
SUMIMIATY vttt st b ettt id e ettt e e bt d e b bt e e kb e e et e e et e e e ab e e esb e e e nnb e e e nnb e e e nbb e e e tneeenbeee s 393
Chapter 11: Styles, Templates, SKins and ThemMES............ccccovveieiieiieiie e 405
WPF @Nd INTEITACEScueeeie it ittt bttt nre s 407
RS 1T L= S S S S SUSPP 408
SEYIE EXAMPIE ..o ek et ettt ettt ettt st e et ne e nne e 409
SEYIE DETINITION ...ttt e e ettt 410
F N o] 01 Y T TS YA [S SRS 411
SEYIE INNEIITANCE ... s ettt ettt te e esreeae e nre s 412
YT (@Y =T ¢ o 1o T O SRR PR RTRURPRT 413
SAING STYIES ... bbb 414
Style Sharing EXAmMPIe........ooiiieece et et e 415
DemO: RESLIHCHING STYIESviieiciieee et e e e 417
TYPEUA SEYIES .o ab bttt sb et dre s 420
Typed Style EXAMPIE........ooiie e bkt 421
LI 0T =] S S NSRS 423
Property Trigger EXAMPIEcovoiuiiiie et ae e aeeenn 424
Data Trigger EXAMPIE......c.ooiiiiiieee e i e e 426
MUIEIPIE CONAITIONS ... e 428
VAIAALION. ...ttt b bbb e e iR bt 429
Validation EXAMPIEocoviieiie e e ir s 430
TOMPIALES ...ttt SR e 431
A Simple Template EXAMPIEccoiiiiiiiee e 432
IMpProving the TemMPIate.........cccvoiiiie e 433
Templated Parent’s PrOPEIrtiES.......c.civeiieiieiieie et 434
Respecting Properties EXample ..o 435
RESPECTING ViISUAI STALES.......ccuiiiiiiiiieiei s 438
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC xi

All Rights Reserved

Using Templates With STYIESc.ooiiiiiiee s 440
Templates with Styles EXample........ccooviiieieccceee e 441
SKINS .ttt bbb bRt ee e 442
ChAaNGING SKINSciiuiiiiiie ettt b et sb et et e beebesneenneas 443
SKINS EXAMPIE ...t 444
TRBIMIES ...ttt bbbt 446
THEMES EXAMPIE.....c.eiiiieciieie ettt re et e e e e sreenas 447
7. o T SRS PUPRPSPSRRR 449
SUMIMBIY 1. bbbttt b et b e b e e b e et e nn e be b e nnnenne s 450
Chapter 12 WPF and Windows FOrms INteroperation.............cccocevevvnenenneieeneennen, 463
Interoperating With WINAOWS FOIMS ..ot 465
Add a Form to a WPF APPHCALIONcceiiiiiiiiie e 466
Demo: Form in WPF APPHCALION.........ccoviiieiiee e 467
Add a WPF Window to a Windows Forms Application............cccccecevveveiicieciecie s, 471
Mixing WPF and Windows Forms in the Same Window............cccocevviiniinneniinneennnn, 472
Hosting a Windows Forms Control USiNg COOEcccoviriiieiiieiene e 473
WindoWSFOrMSHOSE Via COURc..eiiiriiieeieieriesie e 474
Windows FOrms MonthCalendar....c.......ooeiieiiiiiieeee e 475
WindowSFOrMSHOSE VIA XAML it 476
SUMMEBIY . et et e et ekt e et b e bttt et e b b enne s 477
AppendixX Az Learning RESOUICES.........cccciiiiiiiiiesisiesese et 479
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC xii

All Rights Reserved

WpfCs Chapter 1

Chapter 1

Introduction to WPF

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 1
All Rights Reserved

WpfCs Chapter 1

Introduction to WPF

Objectives

After completing this unit you will be able to:

Discuss the rationale for WPF.

Describe what WPF is and its position in the .NET
Framework 4.6.

Give an overview of the main features of WPF.

Describe the role of the fundamental Application and
Window classes.

Implement a “Hello, World” Windows application
using WPF.

Create, build and run simple WPF programs using
Visual Studio 2015.

Use simple brushes in your WPF programs.

Use panels to lay out Windows that have multiple
controls.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 2

All Rights Reserved

WpfCs Chapter 1

History of Microsoft GUI

o WPF is an extremely sophisticated and complex
technology for creating GUI programs.

e \Why has Microsoft done this when Windows Forms
and Web Forms in .NET are relatively new
themselves?

e Tounderstand, let’s take a look back at various
technologies Microsoft has employed over the years
to support GUI application development:

— Windows 1.0 was the first GUI environment from Microsoft
(ignoring OS/2, which is no longer relevant), provided as a
layer on top of DQS, relying on the GDI and USER
subsystems for graphics and user interface.

— Windows has gone through many versions, but always using
GDI and USER, which have been enhanced over the years.

— DirectX was introduced in 1995 as a high-performance
graphics system, targeting games and other graphics-
intensive environments.

— Windows Forms in .NET used a new enhanced graphics
subsystem, GDI+.

— DirectX has gone through various versions, with DirectX 9
providing a library to use with managed .NET code,

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 3
All Rights Reserved

WpfCs Chapter 1

Why WPF?

e The various technologies support development of
sophisticated graphics and GUI programs, but there
are several different, complex technologies a
programmer may need to know.

e The goal of Windows Presentation Foundation is to
provide a unified framework for creating modern
USEr experiences.

— It is built on top of .NET, providing all the productivity
benefits of the large .NET class library.

e Benefits of WPFE include:

— Integration of 2D and 3D graphics, video, speech, and rich
document viewing.

— Resolution independence, spanning mobile devices and 50
inch televisions.

— Easy use of hardware acceleration when available.

— Declarative programming of objects in the WPF library
through a new Extensible Application Markup Language, or
XAML.

— Easy deployment through Windows Installer, ClickOnce, or
by hosting in a Web browser.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 4
All Rights Reserved

WpfCs Chapter 1

When Should | Use WPF?

e DirectX can still provide higher graphics
performance and can exploit new hardware features
before they are exposed through WPF.

— But DirectX is a low-level interface and much harder to use
than WPF.

o WPF is better than Windows Forms for applications
with rich media, but what about business applications
with less demanding graphics environments?

— Initially, WPF lacks some Windows Forms controls.

— But future development at Microsoft will be focused on WPF
rather than Windows Forms, so the long range answer is
clearly to migrate to WPF development.

— Visual Studio 2015 provides strong tool support for WPF.

e Is WPF a replacement for Adobe “Flash” for Web
applications with a rich user experience?

— Viewing rich WPF Web content requires Windows and .NET
Framework 3.0 or higher.

— Microsoft Silverlight, a small lightweight subset of the WPF
runtime, does offer a significant alternative to Flash.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 5
All Rights Reserved

WpfCs Chapter 1

WPF and .NET Framework 3.0

e WPF originated as a component of a group of new
NET technologies, formerly called WinFX and later
called .NET Framework 3.0.

e It layers on top of NET Framework 2.0.

Windows Windows Windows Windows
Presentation Communication Workflow
: . . CardSpace
Foundation Foundation Foundation (WCS)
(WPF) (WCF) (WF)
NET Framework 2.0
Windows ASP.NET ADO.NET
Forms

Base Class Libraries

Common Language Runtime

e WPF provides a unified programming model for
creating rich user experiences incorporating Ul,
media and documents.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 6

All Rights Reserved

WpfCs Chapter 1

.NET Framework 4.0/4.6

e The .NET Framework 3.5 added a number of
important features beyond those of .NET 3.0.

— Notable was integration with the tooling support provided by
Visual Studio 2008.

— Language Integrated Query (LINQ) extends query
capabilities to the syntax of the C# and Visual Basic
programming languages.

— Enhancements to the C# programming language, largely to
support LINQ.

— Integration of ASP.NET AJAX into the .NET Framework.
e NET 3.5 still layered on top of the .NET 2.0 runtime.

e NET 4.0/4.6 provides a new runtime and many new
features, such as:

— New controls and other enhancements to WPF.

— New bindings, simplified configuration and other
enhancements to WCF.

— A dynamic language runtime supporting dynamic languages
such as IronRuby and IronPython.

— ASP.NET MVC 6 for Web development.
— A new programming model for parallel programming.

— And much more!

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 7
All Rights Reserved

WpfCs Chapter 1

Visual Studio 2015

e Visual Studio 2015 provides effective tooling support
for .NET Framework 4.6.

— Early support for WinFX involved add-ons to Visual Studio,
but now there is a fully integrated environment.

¢ Visual Studio 2015 has a new IDE with an attractive
new graphical appearance.

— VS 2015 is implemented using WPF.

e [eatures in Visual Studio 2015 include:

— Improvements in the Integrated Development Environment
(IDE), such as better navigation and easier docking.

— Automatic settings migration from earlier versions of Visual

— Multi-targeting to .NET 2.0, .NET 3.0, .NET 3.5, .NET 4.0,
NET 4, .NET 4.5.1, NET 4.5.2 and .NET 4.6.

e There are many project templates, including:
— WPF projects
— WCF projects
— WF projects
— Reporting projects

e There are a number of designers, including
WPF/Silverlight Designer, an object/relational
designer, and a workflow designer.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 8
All Rights Reserved

WpfCs Chapter 1

Visual Studio Community 2015

o A noteworthy aspect of Visual Studio 2015 is a strong
free Communnity version of the tool.

e In this course we will rely on Visual Studio
Community 2015.

— It supports multiple language development (C#, Visual Basic,
and C++).

— It supports the creation of WPF projects.

— It also supports unit testing.

New Project 2lx
I Recent NET Framework 4.5.2 ~ Sortby: Default ~| 12" |i=|| Search Installed Templ O ~
4 Installed

C# e - Vi #
S | | Windows Forms Application Visual C# Type: Visual CE
4 Templates Windows Presentation Foundation dient

4 V\igual C# application
WPF Application Visual C#
4 Windows

Windows Universal c#
b Windows 8 E Console Application Visual C#
Windows Desktop cx
Web F_] Shared Project Visual C#
)
Android
C#
Cloud Elt‘i! Class Library Visual C#
i0s -
Reporting ot
Class Library (Portable Visual C#
Silverlight fﬁi! il) -
w
b Online Click here to go online and find templates.
MName: WpfaApplication 1
Location: C:\OICYWpfCs'\Demost - Browse... |
Solution name: Wpfapplication 1 Create directory for solution

[] Add to sourcecontrol

OK I Cancel |

e Moreover, the Community edition provides features
present in higher editions, such as support of WCF
and Workflow projects.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 9
All Rights Reserved

WpfCs Chapter 1

Target Framework

e You can specify the version of NET Framework that
your application targets both at the time the project
Is created and later by bringing up the properties for
your project.

— Right-click over the project in Solution Explorer and choose
Properties.

Wpfapplication1 4 ¢ JOETINl Tl MainWindow. xaml.cs
Application
Build
Build Events Assembly name: Default namespace: L&
Debug I'v".n'pFApplicaﬁon 1 I'L"‘.n'pf.ﬁ.pplicaﬁon 1
Resources Target framework: Output type:
Foores NET Framewaork 4.5.2 j IWindnws Application j
. NET Framework 2.0
Settings NET Framework 3.0
NET Framework 3.5 Assembly Information...
Reference Paths NET Framework 3.5 Client Profile |
- MET Framework 4
T MET Framework 4 Client Profile
Security MET Framewark 4.5 2
MET Framework 4.5. 1
Publish NET Framework 4.5.2
MET Framework 4.6 _ ;
Code Analysis Install other frameworks. .. pplication. To embed & custom manifest, first
add It 1o yoUr project and e Ele om e list below.
-
Tran:
| | LI_I

e Many example programs in this course were
originally targeted for an earlier version of the .NET
Framework, but will run fine under .NET 4.5.2/.NET
4.6.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 10
All Rights Reserved

WpfCs Chapter 1

WPF Core Types and Infrastructures

o A great many classes in WPF inherit from one of four
different classes:

— UIElement
— FrameworkElement
— ContentElement

— FrameworkContentElement

e These classes, often called base element classes,
provide the foundation for a model of composing user
interfaces.

e WPF user interfaces are composed of elements that
are assembled in a tree hierarchy, known as an
element tree.

e The element tree is both an intuitive way to lay out
user interfaces and a structure over which you can
layer powerful Ul services.

— The dependency property system enables one element to
implement a property that is automatically shared by
elements lower in the element tree hierarchy.

— Routed events can route events along the element tree,
affording event handlers all along the traversed path to
handle the event.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 11
All Rights Reserved

WpfCs Chapter 1

XAML

o Extensible Application Markup Language (XAML,
pronounced “zammel”) provides a declarative way to
define user interfaces.

e Here is the XAML definition of a simple button.

<Button
FontSize="16"
HorizontalAlignment=""Center"
VerticalAlignment="Center"
>

Say Hello
</Button>

e To see this button displayed, we’ll need some more
program elements, which we’ll discuss later.

e XAML has many advantages, and we’ll study it
beginning in the next chapter.

— Using XAML facilitates separating front-end appearance
from back-end logic.

— XAML is the most concise way to represent user interfaces.

— XAML is defined to work well with tools.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 12
All Rights Reserved

WpfCs Chapter 1

Controls

o WPF comes with many useful controls, and more
should come as the framework evolves:

— Editing controls such as TextBox, CheckBox, RadioButton.
— List controls such as ListBox, ListView, TreeView.

— User information such as Label, ProgressBar, ToolTip.

— Action such as Button, Menu and ToolBar.

— Appearance such as Border, Image and Viewbox.

— Common dialog boxes such as OpenFileDialog and
PrintDialog.

— Containers such as GroupBox, ScrollBar and TabControl.
— Layout such as StackPanel, DockPanel and Grid.

— Navigation such as Frame and Hyperlink.

— Documents such as DocumentViewer.

— WPF 4.5 includes a new Ribbon control that can be used to
customize the Ul for Microsoft Office applications.

e The appearance of controls can be customized
without programming with styles and templates.

e If necessary, you can create a custom control by
deriving a new class from an appropriate base class.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 13
All Rights Reserved

WpfCs Chapter 1

Data Binding

o WPF applications can work with many different
kinds of data:

— Simple objects

— Collection objects

— WPF elements

— ADO.NET data objects
— XML objects

— Objects returned from Web services

e WPF provides a data binding mechanism that binds
these different kinds of data to user interface
elements in your application.

— Data binding can be implemented both in code and also
declaratively using XAML.

— Visual Studio 2015 provides drag and drop data binding for
WPF.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 14
All Rights Reserved

WpfCs Chapter 1

Appearance

o WPF provides extensive facilities for customizing the
appearance of your application.

e UI resources allow you to define objects and values
once, for things like fonts, background colors, and so
on, and reuse them many times.

e Styles enable a Ul designer to standardize on a
particular look for a whole product.

e Control templates enable you to replace the default
appearance of a control while retaining its default
behavior.

e With data templates, you can control the default
visualization of bound data.

e With themes, you can enable your application to
respect visual styles from the operating system.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 15
All Rights Reserved

WpfCs Chapter 1

Layout and Panels

e Layout is the proper sizing and positioning of controls
as part of the process of composing the presentation
for the user.

e The WPF layout system both simplifies the layout
process through useful classes and provides
adaptability of the Ul appearance in the face of
changes:

— Window resizing

— Screen resolution and dots per inch

e The layout infrastructure is provided by a number of
classes:

— StackPanel
— DockPanel
— WorapPanel
— Grid

— Canvas

e The flexible layout system of WPF facilitates
globalization of user interfaces.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 16
All Rights Reserved

WpfCs Chapter 1

Graphics

o WPF provides an improved graphics system.

e Resolution and device-independent graphics: WPF
uses device-independent units, enabling resolution
and device independence.

— Each pixel, which is device-independent, automatically
scales with the dots-per-inch setting of your system.

e Improved precision: WPF uses double rather than
float and provides support for a wider array of colors.

e Advanced graphics and animation support.

— You can use animation to make controls and elements grow,
spin, and fade, and so-on. You create interesting page
transitions, and other special effects.

e Hardware acceleration: The WPF graphics engine is
designed to take advantage of graphics hardware
where available.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 17
All Rights Reserved

WpfCs Chapter 1

Media

o \WPF provides rich support for media, including
images, video and audio.

e WPF enables you to work with images in a variety of
ways. Images include:

— lcons
— Backgrounds

— Parts of animations

e WPF provides native support for both video and
audio.

— The MediaElement control makes it easy to play both video
and audio.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 18
All Rights Reserved

WpfCs Chapter 1

Documents and Printing

o WPF provides improved support in working with text
and typography.

e WPF includes support for three different types of
documents:

— Fixed documents support a precise WYSIWYG
presentation.

— Flow documents dynamically adjust and reflow their content
based on run-time variables like window size and device
resolution.

— XPS documents (XPS Paper Specification) is a paginated
representation of electronic paper described in an XML-
based format. XPS is'an open and cross-platform document
format.

e \WPF provides better control over the print system,
including remote printing and gueues.

— XPS documents can be printed directly without conversion
into a print format such as Enhanced Metafile (EMF), Printer
Control Language (PCL) or PostScript.

e WPF provides a framework for annotations,
including “Sticky Notes.”

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 19
All Rights Reserved

WpfCs

Chapter 1

Plan of Course

e As you can see, Windows Presentation Foundation is

a large, complex technology.

e In a short course such as this one, the most we can do
IS to provide you with an effective orientation to this
large landscape.

e We provide a step-by-step elaboration of the most
fundamental features of WPF and many small,
complete example programs.

e We follow this sequence:

Rev. 4.7

In the rest of this chapter we introduce you to several, small
“Hello, World” sample WPF applications.

The second chapter introduces XAML.
The third chapter covers a number of simple WPF controls.
We discuss layout in more detail.

We then cover common user interface features in Windows
programming, including dialogs, menus and toolbars.

Resources and dependency properties are discussed.

The course concludes with chapters on data binding and
styles and interop with Windows Forms.

Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

20

WpfCs Chapter 1

Application and Window

e The two most fundamental classes in WPF are
Application and Window.

— A WPF application usually starts out by creates objects of
type Application and Window.

— For an example, see the file Program.cs in the folder
FirstWpf\Step1 in the chapter directory for Chapter 1.

using System;
using System._Windows;

namespace FirstWpfT

{
public class MainWindow : Window
{
[STAThread]
static void Main(string[] args)
{
Application app = new Application();
app-Run(new MainWindow());
+
public MainWindow()
{
Title = "Welcome to WPF (Code)";
width = 288;
Height = 192;
+
+
+

e A program can create only one Application object,
which is invisible. A Window object is visible,
corresponding to a real window.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 21
All Rights Reserved

WpfCs Chapter 1

FirstWpf Example Program

e Our example program has the following features:

— Import the System.Windows namespace. This namespace
includes the fundamental WPF classes, interfaces, delegates,
and so on, including the classes Application and Window.

— . Make your class derive from the Window class.

— Provide the attribute [STAThread] in front of the Main()
method. This is required in WPF and ensures interoperability
with COM.

— In Main(), instantiate an Application object and call the
Run() method.

— Inthe call to Run() pass a new instance of your Window-
derived class.

— In the constructor of your Window-derived class, specify any
desired properties of your Window object. We set the Title,
Width and Height.

e Build and run. You’ll see:

1ol x]
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 22

All Rights Reserved

WpfCs Chapter 1

Demo — Using Visual Studio 2015

e Although you can compile WPF programs at the
command-line, for simplicity we will use Visual
Studio 2015 throughout this course.

— To make clear all the details in creating a WPF application,
we’ll create our sample program from scratch in the Demos
directory.

1. Use the New Project dialog (File | New Project) to create a new
WPF Application called FirstWpf in the Demos directory.

2. In Solution Explorer, delete the files App.xaml and
MainWindow.xaml.

Solution Explorer - 1 x
ARICES-S VR = RIS
Search Solution Explorer (Cirl4;) P~

m'__| Solution 'FirstWpf (1 praject)
4 FirstWpf

B Properties

[+ =B References
1|l"__'| App.config
b B App.xaml ‘

b B MainwWindow.xaml

3. Add a new code file Program.cs to your project.

4. Enter the code shown two pages back. If you like, to save
typing, you may copy/paste from the FirstWpf\Step1 folder.

5. Build and run. You are now at Step 1. That’s all there is to
creating a simple WPF program using Visual Studio 2015!

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 23
All Rights Reserved

WpfCs Chapter 1

Creating a Button

6. Continuing the demo, let’s add a button to our main window.
Begin with the following code addition.

public HelloWorld()

{
Title "First WPF C# Program;
width = 288;
Height = 192;

Button btn = new Button();
btn.Content = *Say Hello";
btn.FontSize = 16;

Content = btn;
}

7. Build the project. You’ll get a compile error, because you need
an additional namespace, System.Windows.Controls.

using System;
using System.Windows;
using System.Windows.Controls;

8. Build and run. You’ll se the button fills the whole client area of
the main window.

9. Add the following code to specify the horizontal and vertical
alignment of the button.

btn.HorizontalAlignment =
HorizontalAlignment.Center;
btn.VerticalAlignment = VerticalAlignment.Center;

10. Build and run. Now the button will be properly displayed,
sized just large enough to contain the button’s text in the
designated font.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 24
All Rights Reserved

WpfCs Chapter 1

Providing an Event Handler

11. Continuing the demo, add the following code to specify an
event handler for clicking the button.

btn.Click += ButtonOnClick;

Content = btn;
}

void ButtonOnClick(object sender, RoutedEventArgs
args)

{
}

MessageBox.Show(''"Hello, WPF", "Greeting');

12. Build and run. You will now see a message box displayed
when you click the “Say Hello” button

Ce
o=} =131 x|

Say Hellc-l

Greeting |

Hella, WPF

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 25
All Rights Reserved

WpfCs Chapter 1

Specifying Initial Input Focus

13. You can specify the initial input focus by calling the Focus()
method of the Button class (inherited from the UIElement
class).

btn_.Focus();

14. Build and run. The button will now have the initial input
focus, and hitting the Enter key will invoke the button’s Click
event handler. You are now at Step 2.

e Note that specifying the focus programmatically in
this manner is deprecated, because it violates
accessibility guidelines.

— When run for the visually impaired, setting the focus will
cause the text of the button to be read out.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 26
All Rights Reserved

WpfCs Chapter 1

Complete First Program

o See FirstWpf\Step2.

using System;
using System.Windows;
using System.Windows.Controls;

namespace FirstWpfT

{

public class MainWindow : Window
{
[STAThread]
static void Main(string[] args)
{
Application app = new Application();
app-Run(new MainWindow());

public MainWindow()

{
Title "Welcome to WPF (Code)';
Width 288;
Height = 192;

Button btn = new Button();
btn.Content = "Say Hello";
btn.FontSize = 16;
btn.HorizontalAlignment =
HorizontalAlignment.Center;
btn.VerticalAlignment =
VerticalAlignment.Center;

btn.Click += ButtonOnClick;

// Setting focus is deprecated for
// violating accessibility guidelines
btn_.Focus();

Content = btn;

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 27
All Rights Reserved

WpfCs Chapter 1

Complete First Program (Cont’d)

void ButtonOnClick(object sender,
RoutedEventArgs args)

MessageBox.Show(**Hello, WPF',
"Greeting'');
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 28

All Rights Reserved

WpfCs Chapter 1

Device-Independent Pixels

e The Width and Height properties for the main
window are specified in device-independent pixels (or
units).

— Each such unit is 1/96 inch.

— Values of 288 and 192 thus represent a window that is 3
inches by 2 inches.

e If you get a new monitor with a much higher
resolution, the window will still be displayed with a
size of 3 inches by 2 inches.

e Note that this mapping to inches assumes that your
monitor is set to its “natural” resolution.

— Any differences will be reflected in a different physical size.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 29
All Rights Reserved

WpfCs Chapter 1

Class Hierarchy

o The key classes Application, Window and Button all
derive from the abstract class DispatcherObject.

Object
DispatcherObject (abstract)
Application
DependencyObject
Visual (abstract)
UlIElement
FrameworkElement
Control
ContentControl
Window
ButtonBase
Button

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 30
All Rights Reserved

WpfCs Chapter 1

Content Property

o The key property of Window is Content.

— The Content property also applies to all controls that derive
from ContentControl, including Button.

e You can set Content to any one object.

— This object can be anything, such as a string, a bitmap, or any
control.

— In our example program, we set the Content of the main
window to the Button that we created.

Button btn = new Button();

Content = btn;

o We will see a little later how we can overcome the
limitation of one object to create a window that has
multiple controls in it.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 31
All Rights Reserved

WpfCs Chapter 1

Simple Brushes

e You may specify a foreground or background of a
window or control by means of a Brush.

— We will look at the simplest brush class, SolidColorBrush.

e You can specify a color for a SolidColorBrush in a
couple of ways:

— By using the Colors enumeration.

— By using the FromRgb() method of the Color class.

e The program SimpleBrush illustrates setting
foreground and background properties.

public SimpleBrush()
{
Title "Simple Brushes';
wWidth = 288;
Height = 192;
Background = new SolidColorBrush(Colors.Beige);

Button btn = new Button();

btn.Background = new SolidColorBrush(
Color.FromRgbh(0, 255, 0));

btn.Foreground = new SolidColorBrush(
Color.FromRgbh(0, 0, 255));

Content = btn;

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 32
All Rights Reserved

WpfCs Chapter 1

Panels

o As we have seen, the Content of a window can be set
only to a single object.

e What do we do if we want to place multiple controls
on a window?

e \We use a Panel, which is a single object and can have
multiple children.

e Panel isan abstract class deriving from
FrameworkElement. There are several concrete
classes representing different types of panels.

UIElement
FrameworkElement

Panel (abstract)
Canvas
DockPanel
Grid
StackPanel
UniformGrid
WrapPanel

e Rather than specify precise size and location of
controls in a window, WPF prefers dynamic layout.

— The panels are responsible for sizing and positioning
elements.

— The various classes deriving from Panel each support a
particular kind of layout model.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 33
All Rights Reserved

WpfCs Chapter 1

Children of Panels

e Panel has a property Children that is used to store
child elements.

— Children is an object of type UIElementCollection.

— UlElementCaollection is a collection of UIElement objects.

e There is a great variety of elements that can be stored
in a panel, including any kind of control.

e You canadd a child element to a panel via the Add()
method of UlElementCollection.

StackPanel panel = new StackPanel();
Button btnGreet = new Button();

panel .Children.Add(btnGreet);

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 34
All Rights Reserved

WpfCs Chapter 1

Example — TwoControls

o The example program TwoControls illustrates use of
a StackPanel, whose children are a TextBox and a
Button.

— See Step2.

— We provide a beige brush for the panel to help us see the
extent of the panel in the window.

1o

|Bob

Say Hellol x|

Hello, Bob

— The program also illustrates various automatic sizing features
of WPF.
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 35

All Rights Reserved

WpfCs Chapter 1

TwoControls — Code

o The TwoControls class derives from Window in the
usual manner.

e A private member txtName is defined in the class,
because we need to reference the TextBox in both the
constructor and in the event handler.

class TwoControls : Window
{
[STAThread]
static void Main(string[] args)
{
Application app = new Application();
app-Run(new TwoControls());

}

private TextBox txtName;

public TwoControls()

{
Title = "Two Controls Demo';
Width = 288;
const Int MARGINSIZE = 10;

e A StackPanel is created and the Content of the main
window is set to this new StackPanel.

StackPanel panel = new StackPanel();
Content = panel;

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 36
All Rights Reserved

WpfCs Chapter 1

Automatic Sizing

o Only the width of the main window is specified.

e The height of the main window is sized to its content,
which is a panel containing two controls.

public TwoControls()
{

Title = "Two Controls Demo';
Width = 288;
const int MARGINSIZE = 10;

StackPanel panel = new StackPanel();
Content = panel;

SizeToContent = SizeToContent.Height;

panel .Background = Brushes.Beige;
panel .Margin = new Thickness(MARGINSIZE);

— Note that we are specifying a brush for the panel, and we are
specifying a margin of 10 device-independent pixels.

e The TextBox specifies its width and horizontal
alignment, and also a margin.

txtName = new TextBox();

txtName.FontSize = 16;

txtName.HorizontalAlignment =
HorizontalAlignment.Center;

txtName._Margin = new Thickness(MARGINSIZE) ;

txtName _Width = Width / 2;

panel .Children._Add(txtName) ;

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 37
All Rights Reserved

WpfCs Chapter 1

TwoControls — Code (Cont’d)

o The Button also specifies its horizontal alignment and
a margin.

Button btnGreet = new Button();
btnGreet.Content = "'Say Hello";
btnGreet.FontSize = 16;
btnGreet_Margin = new Thickness(MARGINSIZE);
btnGreet.HorizontalAlignment =
HorizontalAlignment.Center;
btnGreet.Click += ButtonOnClick;
panel.Children.Add(btnGreet);

e Both the TextBox and the Button are added as
children to the panel.

txtName = new TextBox();
panel .Children._Add(txtName) ;
Button btnGreet = new Button();

panel .Chi Idren.Add(btnGreet)

e The Click event of the Button is handled.

btnGreet.Click += ButtonOnClick;
panel .Children.Add(btnGreet);
+
void ButtonOnClick(object sender,
RoutedEventArgs args)

MessageBox.Show("*Hello, " + txtName.Text,
"Greeting™);
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 38

All Rights Reserved

WpfCs Chapter 1

Lab 1

A Windows Application with Two Controls

In this lab you will implement the TwoControls example program
from scratch. This example will illustrate in detail the steps needed
to create a new WPF application using Visual Studio, and you will
get practice with all the fundamental concepts of WPF that we’ve
covered in this chapter.

Detailed instructions are contained in the Lab 1 write-up at the end
of the chapter.

Suggested time: 30 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 39
All Rights Reserved

WpfCs Chapter 1

Summary

e The goal of Windows Presentation Framework is to
provide a unified framework for creating modern
USer experiences.

e WPF is a major component of the .NET Framework.
— In .NET 3.0/3.5, it is layered on top of .NET Framework 2.0.
— In.NET 4.0/4.6 there is a new 4.0 runtime.

e The most fundamental WPF classes are Application
and Window.

e You can create, build and run simple WPF programs
using Visual Studio.

e You may specify a foreground or background of a
window or control by means of a Brush.

e You can use panels to lay out Windows that have
multiple controls.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 40
All Rights Reserved

WpfCs Chapter 1

Lab 1

A Windows Application with Two Controls

Introduction

In this lab you will implement the TwoControls example program from scratch. This
example will illustrate in detail the steps needed to create a new WPF application using
Visual Studio 2013, and you will get practice with all the fundamental concepts of WPF
that we’ve covered in this chapter.

Suggested Time: 30 minutes

Root Directory: OIC\WpfCs

Directories: Labs\Labl (do your work here)
Chap01\TwoControls\Stepl (answer to Part 1)
Chap01\TwoControls\Step2 (answer to Part 2)

Part 1. Create a WPF Application with a StackPanel

In Part 1 you will use Visual Studio to create a WPF application. You will go on to create
a StackPanel that has as children a TextBox and a Button. This first version does not
provide an event handler for the button. Also, it does not handle sizing very well!

1. Use Visual Studio to create a new WPF application TwoControls in the Lab1 folder.
2. In Solution Explorer, delete the files App.xaml and MainWindow.xaml.
3. Add a new code file Program.cs to your project.

4. In Program.cs enter the following code, which does the minimum of creating
Application and Window objects.

using System;
using System.Windows;
using System._Windows.Controls;

namespace TwoControls
class TwoControls : Window

[STAThread]

static void Main(string[] args)

{
Application app = new Application();
app-Run(new TwoControls());

}

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 41
All Rights Reserved

WpfCs Chapter 1

public TwoControls()
{
}

}

5. Build and run. You should get a clean compile. You should see a main window,
which has no title and an empty client area.

6. Add the following code to the TwoControls constructor.

public TwoControls()

i
Title
Width

"Two Controls Demo';
288;

}

7. Buildand run. Now you should see a title and the width as specified.

8. Now we are going to set the Content of the main window to a new StackPanel that we
create. To be able to visually see the StackPanel, we will paint the background with a
beige brush, and we’ll make the Margin of the StackPanel 10 device-independent
pixels.

public TwoControls(Q)

{

Title = "Two Controls Demo™;

Width = 288;

const int MARGINSIZE = 10;

StackPanel panel = new StackPanel();

Content = panel;

panel .Background = Brushes.Beige;

panel .Margin = new Thickness(MARGINSIZE);
}

9. Build. You’ll get a compiler error because you need a new namespace for the
Brushes class.

10. Bring in the System.Windows.Media namespace. Now you should get a clean build.
Run your application. You should see the StackPanel displayed as solid beige, with a
small margin.

11. Next we will add a TextBox as a child of the panel. Since we will be referencing the
TextBox in an event-handler method as well as the constructor, define a private data
member txtName of type TextBox.

private TextBox txtName;
12. Provide the following code to initialize txtName and add it as a child to the panel.
txtName = new TextBox();

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 42
All Rights Reserved

WpfCs Chapter 1

txtName.FontSize = 16;

txtName.HorizontalAlignment = HorizontalAlignment.Center;
txtName._Width = Width / 2;

panel .Children_Add(txtName);

13. Build and run. Now you should see the TextBox displayed, centered, at the top of the
panel.

14. Next, add code to initialize a Button and add it as a child to the panel.
Button btnGreet = new Button();
btnGreet.Content = "Say Hello";
btnGreet.FontSize = 16;

btnGreet.HorizontalAlignment = HorizontalAlignment.Center;
panel .Children.Add(btnGreet);

15. Build and run. You should now see the two controls in the panel. You are now at
Stepl.

Part 2. Event Handling and Layout

In Part 2 you will handle the Click event of the button. You will also provide better
layout of the two controls.

1. First, we’ll handle the Click event for the button. Provide this code to add a handler
for the Click event.

btnGreet.Click += ButtonOnClick;

2. Provide this code for the handler, displaying a greeting to the person whose name is
entered in the text box.

void ButtonOnClick(object sender, RoutedEventArgs args)
{

}

3. Build and run. The program now has its functionality, but the layout needs improving.

MessageBox.Show(*'"Hello, " + txtName.Text, "Greeting');

4. Provide the following code to size the height of the window to the size of its content.

SizeToContent = SizeToContent._Height;

5. Build and run. Now the vertical sizing of the window is better, but the controls are
jammed up against each other.

6. To achieve a more attractive layout, provide the following statements to specify a
margin around the text box and the button. You have a reasonable layout (Step2).

txtName._Margin = new Thickness(MARGINSIZE);

btnGreet.Margin = new Thickness(MARGINSIZE);

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 43
All Rights Reserved

WpfCs Chapter 9

Chapter 9

Resources

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 307
All Rights Reserved

WpfCs Chapter 9

Resources

Objectives

After completing this unit you will be able to:

e Understand what resources are and how you can use
them throughout the application.

e Take advantage of using logical resources, a new type
of resource supported by WPF.

e Use resources from XAML and from procedural
code.

e Understand the difference between the
StaticResource and DynamicResource markup
extensions.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 308
All Rights Reserved

WpfCs Chapter 9

Resources in .NET

e Resources are parts of a program that aren’t code.

e You can think of resources as images, fonts, audio
files and video files.

e Resources can even be just a collection of strings.

— ‘This is often used to add multi-language support to an
application.

— Instead of writing a literal directly into the code, you just
make a reference to a string in a resource file.

— Then you can use .NET framework classes to load different
resource files foreach culture / language.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 309
All Rights Reserved

WpfCs Chapter 9

Resources in WPF

e The core .NET resources system is supported by
WPF.

e Additionally, WPF supports a number of new
features.

e There are two types of resources in WPF: binary
resources and logical resources.

— Binary resources are common items like images or audio
files.

— Logical resources can be any arbitrary .NET object.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 310
All Rights Reserved

WpfCs Chapter 9

Binary Resources

e Binary resources are everything that was known as
resources in .NET framework so far.

o WPF stores compiled XAML files as binary resources
behind the scenes.

e This type of resources can be put into two categories:

— Localizable resources which can be different depending on
culture.

— Language-neutral resources that do not depend on culture.

e A typical way of defining a resource is to add the file
to the Visual Studio project and set a build action for
it.

Properties * I x
MISC18.ICO File Properties -
=
B Advanced
Build Action Resource |-
Copy to Quiput Directory [None =
Custom Tool Compile
Custom Tool Mamespace Content
E Misc Embedded Resource

File Mame ApplicationDefinition
Full Path Page
CodeAnalysisDictionary

Resource

SplashSoreen
DesignData

— By doing this, the resource will be packaged into the project
assembly.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 311
All Rights Reserved

WpfCs Chapter 9

Loose Files as Resources

e An alternative to this is to use the Content build
action.

Properties - Il
MISC18.IC0 File Properties

=5

B Advanced
Build Action Content

Copy always
Custom Tool Do not copy
Custom Tool Mamespace

E Misc Copy if newer

— But if you do so, you should change the Copy to Output
Directory property to “Copy always” or “Copy if newer”,
because the resource won’t be embedded in the assembly.

— As the resource will be a loose file in the output directory,
you can easily update the file without needing to rebuild or
deploy the application again.

e You can still use a resource that has not been added
to the project (despite this being not satisfactory).

— You can reference the resource using the full path.

<Button Margin=""10"">
<Image
Source=""c:\OIC\Data\Graphics\MISC20.1CO"/>
</Button>

o It’s still possible to reference a resource
programmatically.

— This is useful when the resource is generated at run-time.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 312
All Rights Reserved

WpfCs Chapter 9

Binary Resources Example

e Examine the code in the CalculatorResources folder in
the chapter directory.

— There is a StackPanel with four buttons.

— The buttons have an image as their content, referenced as a
relative path inside the project.

<Button Margin=""10"
Name=""btnAdd"
Click="btnAdd _Click">
<Ilmage Source='‘Graphics/MISC18.1C0"/>

</Button>

— The images were added to the project, with the build action
set to Resource and they are not copied to the output
directory. (They are embedded within the assembly.)

Solution Explorer - I x
@B e--agH F -
Search Solution Explorer (Ctrl+;) P~

n:]'__| Solution 'CalculatorResources' (1 project)
4 CalculatorResources
b & Properties
=B References
4 Graphics
| MISC18.1CO
MISC19.1CO
MISC20.1CO
MISC21.ICO
1|l"__'| app.config
b LY App.xaml
B LN MainWindow,xaml

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 313
All Rights Reserved

WpfCs Chapter 9

Logical Resources

e Logical resources are a new type of resource specific
to WPF.

e Any .NET object can be a logical resource.

e The object must be stored and named in a resources
property (that is a collection) to be used along the
code.

— The resources property can be set locally in a XAML element
or in a higher scope.

— The code below defines a Resources property in the Window
element, with three different SolidColorBrush objects.

<Window x:Class=""SimpleBrush._.MainWindow""
>
<Window.Resources>
<SolidColorBrush
X :Key="windowBackgroundBrush'>Beige
</Soli1dColorBrush>
<SolidColorBrush
X:Key="buttonBackgroundBrush'>LightGreen
</SolidColorBrush>
<Soli1dColorBrush
X :Key="buttonForegroundBrush''>Blue
</SolidColorBrush>
</Window.Resources>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 314
All Rights Reserved

WpfCs Chapter 9

Logical Resources (Cont’'d)

e The resources defined in the Window element are
visible to any element that is below the Window in the
element’s tree hierarchy.

— The x:Key property defines a name under which the resource
will be visible to other elements.

— “The resource is referenced using the StaticResource markup
extension, which is responsible for finding the resource.

<Button Name="‘btnSayHello"
FontSize="16"
HorizontalAlignment=""Center"
VerticalAlignment="Center"
Background="{StaticResource

buttonBackgroundBrush}"
Foreground=""{StaticResource

buttonForegroundBrush}™
Click="BtnSayHello_Click">

e \We’ll see more on the StaticResource markup
extension later in this chapter.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 315
All Rights Reserved

WpfCs Chapter 9

Logical Resources Demo

o We’ll illustrate the use of logical resources with the
solution in the Demos\SimpleBrush folder, backed up
In SimpleBrush\Stepl in the chapter directory.

1. Build and run the SimpleBrushXaml solution. You’ll see a
simple window with just one button as the content.

o]

Saylﬂe"o|

2. In the XAML code, the button and the window have some color
formatting defined directly in the element’s syntax.

<Window

Title="Simple Brushes" Height='"192" Width="288"

Background=""Beige'>

<Button Name="'btnSayHello"
FontSize="16"
HorizontalAlignment=""Center"
VerticalAlignment="Center"
Background=""LightGreen"
Foreground=""Blue"’
Click="BtnSayHello Click">

Say Hello
</Button>
</Window>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 316
All Rights Reserved

WpfCs Chapter 9

Logical Resources Demo (Cont’d)

3. We have seen before that the colors used as background and
foreground are brushes. Add these Brush objects to the
Window’s resource collection.

<Window

Background="Beige'>
<Window.Resources>
<SolidColorBrush
X -Key="windowBackgroundBrush''>Beige
</Sol1dColorBrush>
<SolidColorBrush
X :-Key="buttonBackgroundBrush'>LightGreen
</Soli1dColorBrush>
<SolidColorBrush
X:Key="buttonForegroundBrush'>Blue
</Sol1dColorBrush>
</Window.Resources>

4. Now you can replace the current Background and Foreground
values by a reference to the appropriate resource.

<Button Name="btnSayHello"
FontSize="16"
HorizontalAlignment=""Center"
VerticalAlignment="Center"
Background=""{StaticResource

buttonBackgroundBrush}"
Foreground=""{StaticResource

buttonForegroundBrush}"
Click="BtnSayHello Click'>

Say Hello
</Button>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 317
All Rights Reserved

WpfCs Chapter 9

Logical Resources Demo (Cont’d)

5. Build and run the application. You’ll see that everything sill
works as before, but now the button uses resources for the
background and foreground colors.

6. Now you can replace the Background property value of the
Window element.

<Window

Title="Simple Brushes" Height="192" Width="288"
Background=""{StaticResource
windowBackgroundBrush}'>

7. Build the application and run it in the debug mode (press F5).
You’ll hit an exception because windowBackgroundBrush isn’t
defined yet. (Notice that the resources are defined after this code
section.)

8. As a workaround, we can change the way we set the Window’s
Background property. Remove the property from the Window
tag and set this property after the resources are defined.

<Window

Title="Simple Brushes" Height="192" Width="288">
<Window.Resources>
<SolidColorBrush
X :Key="windowBackgroundBrush''>Beige
</Soli1dColorBrush>

</Window.Resources>
<Window.Background>
<StaticResource
ResourceKey=""windowBackgroundBrush"/>
</Window.Background>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 318
All Rights Reserved

WpfCs Chapter 9

Logical Resources in Code

9. Build and run the application. Now the application is using
resources defined in XAML for brushes.

— The application is saved at this point in the
SimpleBrush\Step2 folder in the chapter directory.

— Going further, we can change this application to still use
resources, but in procedural code.

10. Continuing with the demo, open the code-behind file
MainWindow.xaml.cs.

11. Add the three brushes as resources just before the
InitializeComponent() call.

public MainWindow()
{

this.Resources.Add("*'windowBackgroundBrush',
new SolidColorBrush(Colors.Beige));

this.Resources.Add(*'buttonBackgroundBrush',
new SolidColorBrush(Colors.LightGreen));

this.Resources.Add("'buttonForegroundBrush',
new Soli1dColorBrush(Colors.Blue));

InitializeComponent();

}

12. Now you can remove the Window.Resources tag from the
XAML, as the resources are already defined in the code-behind
file.

13. Build and run the application, and note that everything still
works as before. The resources are being defined
programmatically, but accessed through XAML.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 319
All Rights Reserved

WpfCs Chapter 9

Logical Resources in Code (Cont’d)

14. Now we’ll change the code to set the properties accessing the
resources programmatically. Do this just after the
InitializeComponent() call.

public MainWindow()
{
this.Resources.Add(*'windowBackgroundBrush®,
new Soli1dColorBrush(Colors.Beige));
this.Resources.Add(*'"buttonBackgroundBrush®,
new SolidColorBrush(Colors.LightGreen));
this.Resources.Add("'buttonForegroundBrush™,
new -Sol1dColorBrush(Colors.Blue));

InitializeComponent();

this.Background = (Brush)this.FindResource(
"windowBackgroundBrush');
btnSayHello.Background =
(Brush)this.FindResource(
"buttonBackgroundBrush™) ;
btnSayHello.Foreground =
(Brush)this.FindResource(
"buttonForegroundBrush™) ;

}

15. Remove the Background and Foreground properties from
the Button tag, and the Window.Background tag.

16. Build and run the application. Everything works fine as
before, using resources defined and accessed programmatically!

e The application is saved at this point in the
SimpleBrush\Step3 folder in the chapter directory.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 320
All Rights Reserved

WpfCs Chapter 9

Static Resources

o As seen before, the StaticResource markup extension

looks for a resource using a key, passed as a
parameter.

<Button Name="‘btnSayHello"
Background=""{StaticResource

buttonBackgroundBrush}"
Foreground=""{StaticResource

buttonForegroundBrush}"

</Button>

e This key corresponds to an x:Key parameter of a
resource defined somewhere in the application.

e The resource can be defined within many scopes in
the application. It can be defined:

— Inside any element’s resource property.
— In the resource property of any parent element.

— In the resource property of the Application object.

e The StaticResource markup extension will look for
the resource following the order above, and if not
found, it throws an InvalidOperationException.

— Hence, we can improve the sharing capability of a resource if

we define it in the root element.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

321

WpfCs Chapter 9

Dynamic Resources

e The StaticResource markup extension, seen in the
previous page, applies the resource only once
(actually, in the first time it’s needed).

e If we use the DynamicResource markup extension
instead, we’re telling WPF that we want the resource
to be applied every time it changes.

— Hence, it’s important to consider an overhead on looking for
resource updates.

e StaticResource can be used almost anywhere in the
code, and DynamicResource can only be used to set
dependency property values.

— Dependency properties were discussed in the preceding
chapter.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 322
All Rights Reserved

WpfCs Chapter 9

DynamicResource Example

o See SimpleBrushDynamic in the chapter directory for
a DynamicResource usage example.

— The first think to notice is that we can set a property using
DynamicResource even if the resource will be defined later
in the code. We’ve already seen that this is not possible when
using StaticResource.

<Window

Background=""{DynamicResource
windowBackgroundBrush}'>
<Window.Resources>
<SolidColorBrush
X :Key="windowBackgroundBrush'>Beige
</Soli1dColorBrush>

</Window.Resources>

e The example contains two buttons, and its
Background and Foreground properties are set to the
same resources, but one uses StaticResource and the
other uses DynamicResource.

e Additionally, there is a ComboBox that changes the
resource buttonBackgroundBrush.

e Build and run the application.

— Notice that when you change the color of the
SolidColorBrush resource using the ComboBox, only the
button that uses DynamicResource has its Background
updated.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 323
All Rights Reserved

WpfCs Chapter 9

Lab 9

Adding Some Colors to the Calculator

In this lab you will use your knowledge on resources to create a
colorful version of the Calculator program. You are provided with
a starter solution that uses some brushes directly referenced in each
element’s properties, and there are buttons that use full path for its
images. You will define resources for the brushes and configure

the images as binary resources in the project.

_ioix
Operand 1 4
Operand 2 3
= X #
Answer 9

Detailed instructions are contained in the Lab 9 write-up at the end
of the chapter.

Suggested time: 30 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 324
All Rights Reserved

WpfCs Chapter 9

Summary

e Resources are parts of a program that aren’t code.

e Logical resources are a new type of resources
supported by WPF, and it can store any .NET object.

e Resources can be used from XAML and from
procedural code.

e You can use the StaticResource and
DynamicResource markup extensions to reference a
resource.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 325
All Rights Reserved

WpfCs Chapter 9

Lab 9

Adding Some Colors to the Calculator

Introduction

In this lab you will use your knowledge on resources to create a colorful version of the
Calculator program. You are provided with a starter solution that uses some brushes
directly referenced in each element’s properties, and there are buttons that use full path
for its images. You will define resources for the brushes and configure the images as
binary resources in the project.

_inix
Operand 1 4
Operand 2 5
= X #
Answer: 8

Suggested Time: 30 minutes
Root Directory: OIC\WpfCs

Directories: Labs\Lab9\CalculatorColors (do your work here)
Chap09\CalculatorColors\Stepl = (backup of starter code)
Chap09\CalculatorColors\Step2 - (answer to Part 1)
Chap09\CalculatorColors\Step3 (answer to Part 2)

Part 1. Using Binary Resources

1. Build and run the starter program. Notice that this is exactly the Calculator program
that you know, but the design was changed a bit to use some color brushes.

2. Examine the file MainWindow.xaml. You will find four buttons, with images that
are references using full path.

<Button Margin=""10"
Name=""btnAdd"
Click="btnAdd_Click'>
<Image Source="C:\OIC\Data\Graphics\MISC18_1C0"/>
</Button>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 326
All Rights Reserved

WpfCs Chapter 9

3. This is not a good practice. Copy the image files from the OIC\Data folder to a new
Graphics directory inside the project folder and add them to the project.

n'__| Solution 'CalculatorColors' (1 project)
4 CalculatorColors
b S Properties
=B References
[MIsc18.ICO
[} MIsC13.1cO
MISC20.ICO
MISC21.1CO
9'] app.config
b DY App.xaml
BN MainWindow. xaml

4. Now, change the references to the images to the new relative path inside the project.
Do this for the four images.

<Button Margin=""10"
Name=""btnAdd"
Click="btnAdd_Click">
<Image Source="'Graphics/MI1SC18.1C0O"/>
</Button>

5. Build and run your application. You’ll see that the images are shown correctly as
before, but now they are references as binary resources inside the project.

6. Close the application window and show the properties of the MISC18.1CO file.

Properties = 01 x
MISC18.ICO File Properties -

=

B Advanced
Build Action Resource ;I
Copy to Output Director Do not copy
Custom Tool
Custom Tool Mamespace
B Misc
File Mame MISC15.1CO

Full Path C:\OIC\WpfCs'Demos\Caloul:

Build Action
How the file relates to the buid and deployment
processes,

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 327
All Rights Reserved

WpfCs Chapter 9

7. By default, the image files have the Build Action property set to Resource and the
Copy to Output Directory property set to Do not copy, so this way the files are
embedded to the compiled assembly. You can check this by going to the bin\Debug
folder in the project directory and see that the image files are not there, despite being
correctly shown in the application window. Let’s assume that we want the images to
be easily replaced if necessary, without needing to rebuild the project. To achieve
this, change each image’s properties so that the Build Action is set to Content and the
Copy to Output Directory is set to Copy if newer.

8. - Build and run the application. The images are still being shown as expected, but now
you can see them in the Graphics folder that was copied to the bin\Debug folder in
the project directory. This gives you the flexibility we want, if we need to change the
images easily. You are now at step 2.

Part 2. Using Logical Resources

1. Examine the file MainWindow.xaml. Note that the colors used in the interface are
brushes that are directly set in the elements’ properties.

<StackPanel Background=""LightBlue">
<StackPanel Orientation="Horizontal"'>
<Label Margin="'10"
Target="{Binding ElementName=txtOpl}"
Foreground="0live"
>

Operand _1:
</Label>
<TextBox Margin='10"
width="72"

Name=""txtOpl"
BorderBrush="DarkGray""
>
<TextBox.Background>
<LinearGradientBrush StartPoint="1,0" EndPoint=""1,1">
<GradientStop Color="White" Offset="0"/>
<GradientStop Color="LightGray" Offset="1'"/>
</LinearGradientBrush>
</TextBox.Background>
</TextBox>

2. These brushes could be set using resources. Let’s start defining a resource for the root
StackPanel’s Background color. Add a Window.Resources element just before this
StackPanel, and define a new SolidColorBrush for the LightBlue color and assign the
key windowBackground to it.

<Window.Resources>

<SolidColorBrush x:Key="windowBackground' Color="LightBlue'/>
</Window.Resources>
<StackPanel Background="LightBlue">

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 328
All Rights Reserved

WpfCs Chapter 9

3. Now, change the background property to reference the new resource using the
StaticResource markup extension.

<StackPanel Background="{StaticResource windowBackground}'>

4. Build and run the application. Notice that the light blue background is there, but now
referenced as a reusable resource.

5. 'Now let’s do the same with all the labels’ Foreground property and all the textboxes’
BorderBrush property. The key for the labels’ Foreground color should be
textForeground and for the textboxes’ BorderBrush color should be boxBorders.
Don’t forget to replace the references for these properties for all the three labels and
textboxes!

<Window.Resources>
<SolidColorBrush x:Key="‘windowBackground"™ Color="LightBlue"/>
<SolidColorBrush x:Key="textForeground™ Color="Olive'/>
<SolidColorBrush x:Key="boxBorders"™ Color="DarkGray'/>
</Window.Resources>
<StackPanel Background=""{StaticResource windowBackground}'>
<StackPanel Orientation="Horizontal'>
<Label Margin="10"
Target="{Binding ElementName=txtOpl}"
Foreground=""{StaticResource textForeground}"

>
Operand _1:
</Label>
<TextBox Margin=''10"
width="72"

Name=""txtOpl"
BorderBrush="{StaticResource boxBorders}"
>

6. Build the application to check that it’s compiling.

7. Now let’s add the last resource. It’s the gradient used as background in the textboxes.
You can just copy the LinearGradientBrush from one of the textboxes to the
Window.Resources element and add an x:Key property to it. Set the key to
boxGradient.

<Window.Resources>
<SolidColorBrush x:Key="windowBackground'" Color="LightBlue'/>
<SolidColorBrush x:Key="textForeground™ Color="Olive'/>
<SolidColorBrush x:Key="boxBorders'" Color="DarkGray"/>
<LinearGradientBrush x:Key="boxGradient"
StartPoint="1,0"
EndPoint="1,1">
<GradientStop Color="White" Offset="0"/>
<GradientStop Color="LightGray" Offset="1"/>
</LinearGradientBrush>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 329
All Rights Reserved

WpfCs Chapter 9

</Window.Resources>

8. Now you can remove the entire TextBox.Background element from all three
textboxes and include the Background as a property, using the StaticResource markup
extension to reference the newly added boxGradient resource.

<TextBox Margin="10"
width=""72"
Name=""txtOp1"
BorderBrush=""{StaticResource boxBorders}"
Background=""{StaticResource boxGradient}"
>

</TextBox>

9. Build and run your application. Now you are finished improving your application to
use resources correctly!

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 330
All Rights Reserved

