Windows Communication
Foundation Using C#

Student Guide

Revision 4.7

Obiject Innovations Course 4153

Windows Communication Foundation Using C#
Rev. 4.7

Student Guide

Information in this document is subject to change without notice. Companies, names and data used
in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Object

" s .‘VAH 0 Ns ™ js a trademark of Object Innovations.

Authors: Robert J. Oberg, Julian Templeman and Ernani Junior Cecon
Copyright ©2015 Object Innovations Enterprises, LLC All rights reserved.

Object Innovations
877-558-7246
www.objectinnovations.com

Published in the United States of America.

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC ii
All Rights Reserved

Table of Contents (Overview)

Chapter 1 WCF Essentials

Chapter 2 Addresses and Bindings
Chapter 3 Service Contracts

Chapter 4 Instance Management
Chapter 5 Data Contracts

Chapter 6 More about Service Contracts
Chapter 7 Handling Errors

Chapter 8 WCF Security

Chapter 9 WCF Routing

Appendix A Learning Resources
Appendix B Hosting in 11S 7.5

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC

All Rights Reserved

Directory Structure

e Install the course software by running the self-
extractor Install WcfCs_47.exe.

e The course software installs to the root directory
C:\OIC\WCcfCs.

— Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02 and so

on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

— The Demos directory is provided for performing in-class
demonstrations led by the instructor.

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC iv
All Rights Reserved

Table of Contents (Detailed)

Chapter 1: WCF ESSENTIAIS.ccciiiieiieie et 1
WAL IS WECF ...ttt et e e te e sae e e be e beeete e saeeenes 3
WVCF SEIVICESvveuieitieitieite et ee sttt te et e st e s s e ste e st e s be e te e st e sseesaeesaesse e teenaesneesneeneennes 4
SEIVICE OFIBNTALIONveevieie ettt et e et e sb e e ste e e e sreesteeneeaneenreas 6
WCF aNd WED SEIVICEScoueiiiiiiiieieeie ettt sttt sbe e 7
WECE @NA WED AP ...ttt et nre e nre e 8
WECE S ABC it bbbt 9
Address, BIinding, CONLIACE...........ccceiieiiiieceece s 10
EXamMpPle = HEHO WCEot 11
HOSTING SEIVICES ...iviiiinieieete it b ettt ettt 12
DEemMO — HEIIO WG ...ttt ae e nne s 13
A SEIVICE COMIIACE. ... ciiiiiiiiitiee ettt e sre et e et e e s e e e s re e te et e sraesteaseesraenreeneens 15
Visual STUAIO WECE TESE HOSE. ..ot 16
WECF TESE CHIBNT ... ittt e e nteenaesre e reenaeaneenee s 17
Closing the Test HOSt Manuallycccieoiiiieiiiecc e 19
SBIT-HOSTING ..ottt et et nre e s 20
SEIVICEBHOSE CIASS 1iuvttiaetieiieie ettt ettt ne e esbe e nne e 21
HOSE LITE CYCIE ...k ettt bbbt 22
LAY O T o 3 USSR 23
CRANNEIS. ... e e et e e st e et e e s be e teeseeabeeteeneenreeneeenes 24
Demo — A Clent fOor HEHHO WECE ...ttt 25
CRANNEIFACTONY ...t s ettt nb et nre s 26
RUNNING the EXAMPIE ..ottt ns 27
BaSE AGUIESS. ...ttt ettt et ettt et e e e b e teer e te et e e aae e re e e nre e be e e e nre s 29
Base AdAress EXAMPIE ...ttt st 30
O T S DSOS SUSROPOPR 31
(@00 1 T U T o I 1 TS N S PSS 32
SIMPHTIEd HOSt COUB.......eoiiceieitieie e eade e e e ae et ere e enes 33
ProXy INIHAIIZATIONovieiieee e et b e 34
Metadata EXCRANGE......cvoiiiiiiie e bbbt 35
Metadata EXchange EXampPle.........cov oottt 36
2= (Y7 o] £SO SRR USRS 37
A SEIVICE 1N @ BIOWSEN ...ttt e e b ettt 38
Proxy DemO — SVCULIL........oviiiiiiiie e b e 39
Proxy Demo — Visual StUAIO PrOXYcccveiiiieiieiisiese e sastasns e s 41
Standard ENAPOINTSccviiiieeiicce e ta e e bt e e nne e 43
7. oI PO SOP SRS 44
WECF ATCNITECTUIE ...ttt e st esbeaneenreeteanee s 45
ServiceHost and ChannelFaCOry..........ccoiviieiieniec e 47
Service Contexts and INSTANCES.civeiiiic e 48
SUMIMAIY ...ttt ettt e e b e e s bt e bt e e st e e bt e eab e et e e eee e e be e sabeebeeanneebeesnraennes 49

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC Y

All Rights Reserved

Chapter 2: Addresses and BiNAINGScooeiveieiieiieie e 55

AGAIESSES ...ttt bbb bbbttt bbbt 57
B I =101 010 PP RPOPRPPPRRPPS 58
BINGINGS ..ottt bt et b et e nreas 59
Message Exchange Patterns (IMEPS)ccooiiiiiiiiiiiiieiee s 60
S TTo1 T] 1Y/ STS 61
(08 pToTo XY oo - W =11 1o |1 T [OOSR 62
HT TP BINGINGS ..ttt ettt ettt sb e e e 63
TCP and Named Pipe BINGINGScooiiriiiiieieieiese et 65
MSMQ BINGINGS.....eeitieiieieiieie ettt e e esreesteenaesreeteaneenres 66
WebSocket and UDP BiNAINGS........ccoviiieiiiiiiic s se e s sne e 67
Importance of BaSiCHUPBINAINGcc.ooviiiiiiiie e 68
Demo — ASMX Web Service CHENT.........ccvviieiiiiesie e 69
WOrking With ENAPOINTS ...cciuviiiiiiiie et 74
Default Endpoints and BiNdiNgScccvoiiiiiieie e 75
Default Endpoints EXAMPIE i i 76
HEIPEI IMBINOMS. ...ttt ettt 77
ServiceDesCrIPIION ClaSSicueiuiiiiiie ittt e e sreeneeenes 78
[V UL L o] (=l =T | 0T T] £ USRS 79
Multiple Endpoints Configuration FIle........c.ooioiiiiiiiii s 81
Multiple ProtoCol EXamPIE.........ooiiiiieitiie it 82
SIMPIE HOSE COUB ... iecr ettt ie e s ettt et e s ra e teere e teenaesneesneeneennes 83
LD 2 bbbt bbb e e s 84
SUMIMAIY ..ttt h etttk e kb et e e e sh e e e e d b2 a8 e e e st e et e e eseeebeeemseebeeanneebeennnaennes 85
Chapter 3: SErVICE CONTIACTES.coiii et ekbe e sd bbb enae e 93
Service Contracts at Class LEVEIiciuiiiiiieiee it 95
Service Contracts at Interface LeVelooii i 96
Benefits of Interface Level Definitionccciiiiiiiie it 97
A Service With MUIIple CONIACESc.ecveieeiisic it 98
ServiCECONTTACLATIITDULEeiuieeieie e skt e 100
ServiceContract Attribute EXaMPIEooviiiiiiiie it 101
ATIIDULES 1N WSDL ...ttt ettt sne e e dnn e nne e 103
VIBWING WSDL FIES.....ceiieiieiieie ettt sad st ada e e s 104
CONEIACE INNEIITANCE. ... eivi et e e Sttt ne e 105
Operation OVEITOAINGcc.eouiiieiieie et e see s ne e ee ek 108
Enabling Operation OVErloadingcceoueiiiiiiiiiieieieese e s e e 109
Operation OVerloading ClHENT..........cuiiiieieie et aiae e eae e nneas 110
LD B A bbbt Rt 111
(.10 JRC] = TSRS PP VSRR 112
SUMMEBIY .ttt bbbt a bt e bt e b e e b e b e R e nne s 113
Chapter 4: Instance ManagemeNT ..o 123
BERAVIOIS ... et ae e 125
LAY (O = 1= 4 Y o] SR 126
ConfigUIING BENAVIOIS.eciiiieiiecie ettt te e snaenne s 127
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vi

All Rights Reserved

Configuring Behaviors IN COUEcoouiiiiiiiieiie e 128

WCF INStanCiNg MOTEIS ..o 129
Per-Call INStANCING ...c.veiveiieeiecie et e st e e e e sreenneeraene e 130
Per-Session INStANCINGccviiiie ettt e e sresrn e re e e e 131
SeSSIONS AN TNIEAUINGc.veivieiiieiiiie e et nreas 132
SINGIEtON INSTANCING ..ot 133
WHICh MOTEI 10 USE? ... 134
PerSesSiON EXAMPIE.........ccviiiiie ettt sre e ste e e nreenee s 135
PerCall EXAMPIEooiieeieeee ettt sttt nee s 138
SINGIEtON EXAMPIE ... 139
WiINdowSs FOrmMS WCEF CHENTSoiiiiiiiieiesie st 140
LD 4 ettt bbbt e et r e 141
SUMIMAIY ettt ettt b e e et e e e be e e s bt e e he e e st e e ehe e e mb e e ebeeanbeesrneenbeearneas 142
Chapter 5: Data CONTIaCTSc.viiiiieiieieeie ettt sbe e e re e 147
Data CONIACES. ...ciuee ittt ettt ettt e b e et e rn e e bt e s nn e e b e e snneenne e e 149
Data Contract EXAMPIE ...ciiii it 150
Data Contract DemMONSIIALIONecviiiiesiieieeiie ettt sr e e enee e 151
XSD TOr D@ CONIACT........eiiuereeieiiesiore bbbttt bbbt 154
CHENTDEIMO ...ttt sbe et b ettt e et ettt e st beeneeneeneenes 156
F N £ T T O TSP PPR PP 158
ATITAY 1N XML SCNEMAL .. it iriieie it 159
F N\ T (0} A SR 160
(C1- T Tl O] [Tox (o] T e O o RO TURSPRRR 161
Generic Collection in XML SCREMAcciiiiinneesiir i 162
Generic COHECTION 1N PIOXYcooiiiiiiiiiiieieie i sb et 163
LD DA bRttt bbbt 164
Enumerations in Data CONTIACEScuuiiie it 165
Enumeration Data Contract EXamMPIE ...ttt 166
EMPIoyee CHIENt PrOgram........coviiiieieieeseeses kit bbbt 167
VT T T a0 (= (o] 1o RS S 168
Serialization INWCF ..ottt bbb a i e 169
Serialization IN INET ..o sttt bt 170
Serialization EXAMPIEc.ooiie e bbb 171
SOAP SEHAHZATION ... e bbb 172
DataContract SErialiZatioN..........cccoiiiiiiiieiere e r e e enis 173
JSON SeraliZAION.....ccueiiiieiecie e san e et enes 175
USING XIMISEIIANIZET ..o et 176
XMISEraliZer EXAMPIE........ooieieeececeee et ab e et nne s 178
I (o] AT aTo I L USSP ST 180
VT T[] 1 [0 PSPPSR 182
New and MiSSING MEMDETScoiiiiiiiie s 183
Versioning DeMONSIIAtIONccueiieriiie e e e e ens 184
NEeW Client OF OlU SEIVICE.......cciiieieie e 186
ROUNG T 1ttt ettt et e bt se e s reenbeeneesreenne e 187
REQUITED MEMIDETS ...t 188
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vii

All Rights Reserved

(101 = 7SRRI 190
SUMIMIATY ..ttt ekt e ekt e ek bt e et b e e et e e e sab et e asbe e e nnb e e e nbb e e e nbbeeenbneeantneeas 191
Chapter 6: More about Service CONTIaCESccceevieiieiieie e 201
Versioning ServiCe CONTIACEScoeiiiiiieieierie s 203
Versioning EXAMPIE........cov i 204
VEISION L SEIVICEeivieiieieite ittt sttt bbbt et bbb nne e 205
VEISION 2 SBIVICEcuiitieii ettt sttt sttt sttt s et e e b e st e sbe e nbe st e sbe e beeneenre e 206
INEW OPEIALIONS ...ttt bbbttt b e bbbt b e e 207
VEISION 3 SEIVICE ...ttt ettt b bbbt e bbb bt 208
Version 1 CHent / VErsion 3 SEIVICEccvuiereieiiiesceeseeie e 209
Version 2 Client / VErSION 2 SEIVICEoiveiieieiie ettt 210
Version 3 CHENt / VErsion 3 SEIVICEccueiiereiieieesie e sie et e e 211
Message EXChange PatternS...........coveueiiereereeieseesie e see e ee et ae e e sae s ne e 212
T [V L= =T] YRS 213
ONBWWAY itttk etttk ettt et e bttt e e he e et e e e b e e et e e e ae e et e e e he e e bt e ehbeenbeeenbeenbeeanneas 214
ONEWAY EXAMPIE ...ttt 215
D TH 0] = TSR 216
(08 11| o Yo & J SRS 217
INVOKING @ CalIDACK 1 .iiiiie et 218
Callback 0N the CHIENT. ..ottt nneas 219
ASYNCNIONOUS PIOXIESiiiiiiisiieiiieieeieste e der e sieeste st sae e steeteaseesraesaeeneesreenseaneesneeneas 220
Threading ConSIAErAtiONSciiiuiiieeiee it e s et s sbe et e e sreeste e raesre e e sreesreeneanes 221
Task-Based ASYNCNroN0US PAttBIMoiiiiiiiineaesiine e e et ses 223
TaSK-BASEA CHIBNT......cceiiieie ittt ee e b sde sttt te e sre e teaneesneeeas 224
WVEBDSOCKELS. ...ttt bbb bbb bttt b e bbbt 225
LD B . R Rkttt bbb e et e e 226
SUMIMAIY ..ottt b f et e et e e ebe e e s e e ane e s R e e eneeeneeadbe e e nbeennneebeeaneeas 227
Chapter 7: HANAIING EXTOrS ..o sttt 235
Errors in Distributed SYStEMSoouviiiiiece et sbb e 237
Errors in .NET and WOCE ..o i it ar et ab e 238
Demo OFf WCF Error BENAVIOKccvoiieiecie ettt e 239
LT AV ot I o] UV O oo o SR 241
CHENT COUR ...t ettt faasb e bbb abbe e 242
Client EXCeption HaNGIING.......oiiiiiiieiieie e e i 243
Exception Handling DEMO.........coiiiiieieie et 244
o LU L (=T] o] oo SR 246
FAUIES ... et bbb nrg e nenn s 247
Exception Details IN FaUILSooooiiiiiicc e e 248
EXCEPLION DELAIISc.eiiiiiiiiiciee e 249
Exception Settings WINUOW...........c.coveiiiieiieiice e 251
EXCeption DetailsS DEMOc..cviiiiiiieie ettt nne e 252
FAUIT CONIIACES ...ttt ettt be e beenbe et nre e 254
Fault ContraCt EXAMPIEoouiiiiieie s 255
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC viii

All Rights Reserved

Fault Contract EXample — CHENTocviiiiiiiieeee e 256

CUSTOM FAUILS ..ottt e ene e nbeebe e e sreees 257
FaUted ChanNEIS.......c.oviiiiei bbb 258
LD 7 bbb bbb e e e 259
SUMIMAIY ...ttt etttk et be e e R b e e e b e e e s bt e Re e e s e e e ehe e e mbeeabeeanbeesrneenbeearneas 260
Chapter 8: WECE SECUTITYooviiie ettt sttt et st nre e 269
SEIVICES ANA SECUIILYeuviiieieie ettt te e e sae et e sreesteeeesneenreas 271
SECUNItY ASPECLES OF SEIVICES......c.eiiiieiiiieii e 272
THANSTET SECUITEY ...ttt bbbttt b b e 273
TrANSPOIT SECUITTYveiveeieeie ettt ettt e e e et e st e s ra et e eneenteeseaneesneeneas 274
Scenarios for TranSPOrt SECUMILYccveiieiiiie e 275
Configuring TranSPOIT SECUNILYcoveiieiieiieie st 276
Transport SECUNtY EXAMPIEooiiiiiiiee e 277
Host’s Security CONFIGUIALIONcoiveiieiieiecie e 278
Client’s Security Configuration ccu.......c.ceiveiiiieiic e 279
MESSAGE SECUNLY ..t aiiieeeteesbe et e e ssee st et st be e e b e sbeesee s st et eebeeseesbeenbeenaesreenne e 280
SCenarios TOr MESSAGE SECUNILYiiuerieiieieierie sttt 281
Configuring IMESSAGE SECUITLY........ec.viiieiieeieieesieeeesee e eee s e e sreeae e sreeeeereesseeneesneesreas 282
Other SECUTILY MOTESccvviueeiieeciiene ettt et e sre et e e s teenteenaenneas 283
(00T () 0% 1T SRR TRTTRTRPRTS 284
(O Lo 1 =] o 0 SRS 285
MaNAgING CertifiCALES......ioiiireieiieie e st e e et e e nreeneesreenne e 286
(=] o1 0] (T B =1 v 1] S SO ST 290
Client Certificate CoNfIQUIatION i ueieeiee it siie et e 292
Sending CredentialSooioiiiiisi e 295
USErname CredentialS ..ottt 296
USErName EXAMPIEooiiiieieiiece ettt st be e te e sraenreenne e 297
.1 oI O U s P TPRPSPRRRR 300
SUMMEBIY .St b et b bt et e st £ bbb e nne s 301
Chapter 9: WCF ROUTINGc..oiiiiiiiiiieieieie s abese b s ane ek 313
WECF ROULING SEIVICE ...ttt et frr et e bt nes 315
Protocol Bridging EXamMPIe ..o 316
Service Contract and IMpPIeMENtatioN.........cccooveiiiieiie e b s e e 317
Service CONfIQUIALIONc.vciiiic et st et are e s ab s 318
HOSEING the SEIVICE ..o et nne e 319
CHENT APPHICALION ...ttt b et 320
ConfiguriNg the ROULETeoivieiecie ettt ek e b eneeanaesnee e 321
RUNNING the EXAMPIE......ocicecee e s arn e 323
Router ConfigUIation FlEooioiii e e e 324
ROULING CONEFACTSovieeee bbbt 327
MESSAQE FIITEIS ...ttt e e ste e reenne e 328
EndpointName MesSage Filter.........oooviiiiiiiiicc e 329
EndPointName Router Configuration............cooieiiiiiiiiene e 330
Incoming Endpoints and the CHENT ... 332
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC iX

All Rights Reserved

ErrOr HANGIING ..ottt 333

Backup LISt EXAMPIE ... 334
Running Backup LiSt EXAMPIEccoooiiiiiicccese e 335
WCF ROULING SCENAIIOSvvevieiieeieciteste et ste et sttt steete e sraestesneesteenteaneesnaennas 336
1o SRS PRPSPSRRP 339
SUMMEBIY .ttt bt bt e bt e bt e et e be b e e nne s 340
AppendixX A: Learning RESOUICES.........ccuiiiiiiiiieiisesesiee et 351
Appendix B: HOSING IN TIS 7.5 ..ot 355
INternet INFOrmMAatioN SEIVICEScoiiiiiiiiiieieee et 356
INSTAIIING TIS 7.5 ..ot ne 357
WCF WITN IS 7.5 .ottt 358
INET FrameWOorK VEISION.......ccuiiiiieiieie ettt ee et sae e e ssesneesseenneens 359
REGISIENNG ASP.INET ...ttt nreenaeanaenne e 362
DEMO = HEIIO WECFoioiiiiiiieiee ettt bbb 363
A SEIVICE CONMIACT . ciiii ittt ittt ettt ettt st esbe b e sbe e beeneesre e 365
A WeDSITE TOr The SEIVICEcieeie e 366
WCF Service TemPIate........oiiiieeie sttt 368
Service CoNfIQUIALION ..o et 369
Referencing the Class LiDrary ... 370
Examining the Service in the BrOWSETccc.oiiiiiiiiieicee e 371
WV CE ClIBNTS. ...ttt ekttt ettt b bbbttt ettt na e bbbt 372
CreatiNng WECF CHENTS.......iiciieie et e s et sta et e e e sreeste e e sneesneennas 373
Demo — A Client for HEllO WCF ...t 374
Service as an 1S APPIICALION. ... oo 378
Converting to an APPHCALION........c.ciii ettt sre e teeae e e 379
Configuring as an APPLICALION vt 380
MOVING @ WECF SOIUTION ...ttt st bR et 381
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC X

All Rights Reserved

WcfCs Chapter 1

Chapter 1

WCF Essentials

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 1
All Rights Reserved

WcfCs Chapter 1

WCF Essentials

Objectives

After completing this unit you will be able to:

Explain how WCF unites and extends existing
distribution technologies.

Explain the concepts of address, binding, contract
and endpoint.

Describe how WCF services can be hosted

Create a simple self-hosted WCF service configured
via code.

Implement a client of a WCF service using a Channel
Factory.

Use a configuration file to configure a service.
Configure a service to export metadata.

Use metadata to automatically generate a proxy for a
service.

Understand the WCF architecture and runtime.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 2

All Rights Reserved

WcfCs Chapter 1

What Is WCF?

e Windows Communication Foundation (WCF) is a
new service-oriented programming framework for
creating distributed applications.

— It was previously known as ‘Indigo’ and is part of .NET 3.0
and higher.

e WCF is designed to provide one mechanism for
building connected applications:

— Within-app domains
— Across app domains

— Across machines

e WCF builds upon and extends existing ways of
building distributed applications:

— ASMX Web services, .NET Remoting, COM, MSMQ.

e All these do the same basic job (connecting elements
in distributed applications) but they are very
different at the programming level, with complex
APIls and interactions.

— WCF provides one model for programming distributed
applications. Developers only need to learn one API.

e WCF leverages existing mechanismes.

— Ituses TCP, HTTP and MSMQ for transport.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 3
All Rights Reserved

WcfCs Chapter 1

WCF Services

e \When using WCF, you create and consume services.

— A service comprises a set of related operations, which the
programmer sees as method calls.

e Services are described by metadata, which clients can
use to determine what operations are available, and
how the service can be contacted.

— Metadata for WCF services is similar to the WSDL used by
web services.

e Clients and services exchange messages.

— A client (which can be another service) communicates with a
WCF service by sending and receiving messages. WCF was
designed to use SOARP as its messaging mechanism, and
SOAP messages can be sent using a number of transports.

— Using SOAP does not imply that WCF communication is
inefficient; efficient binary encodings are employed
whenever possible.

— More recently, REST services over HTTP have been
retrofitted to WCF through the REST starter kit.

e WCF supports several transports out of the box.
— TCP, HTTP, HTTPS and MSMQ.

— Custom transports can be added.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 4
All Rights Reserved

WcfCs Chapter 1

WCF Services

o WCF supports the WS-* family of Web service
protocols.

— The WS-* family of protocols have been developed by
various bodies (including OASIS and W3C) to provide
features such as security, transactions and reliable messaging
to web services.

e WCEF is very good at interop.

— Support for a wide range of transports, encodings and the
WS-* protocols means that WCF services can interoperate
with a wide range of platforms and technologies, including
J2EE and web services using WS-* protocols.

e WCF provides a foundation for service orientation.

— WCF helps developers write distributed applications in which
loosely coupled services are called by clients and one
another.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 5
All Rights Reserved

WcfCs Chapter 1

Service Orientation

Service orientation is characterized by four concepts.

Boundaries are explicit

— The boundary between client and service is explicit and
highly visible, because calls are made via SOAP messages.
There is no pretending — as there is in DCOM and Java’s
RMI - that you are simply playing with a remote object, and
can thus ignore the cost of remoting.

Services are autonomous

— Services are independent entities that each have their own life
cycle; they may have been developed completely
independently of one another. There is no run-time making
sure that services work well together, and so services must be
prepared to handle failure situations of all sorts.

Share schemas and contracts, not classes

— Services are not limited to implementation in OO languages,
and so service details cannot be provided in terms of classes.
Services should share schemas and contracts, and these are
typically described in XML.

Use policy-based service compatibility

— Services should publish their requirements (i.e. requiring
message signing or HTTPS connections) in a machine
readable form. This can be used at runtime to ensure
compatibility between service and client.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 6
All Rights Reserved

WcfCs Chapter 1

WCF and Web Services

Even though it uses SOAP messaging, WCF is more
than simply another way of writing Web services.

— WCEF can be used to write traditional Web services, as well
as more sophisticated services that can use the WS-*
protocols. But the design of WCF means that it provides a far
more general solution to distribution than Web services.

WCF can use several transports.

— Webservices tend to use HTTP or HTTPS, while WCF is
configured to use TCP, HTTP, HTTPS and MSMQ. It is also
possible to-add new transports, should the need arise.

WCF can work throughout the enterprise.

— WOCEF services can be hosted in-process, by a Windows
Service or 11S. Message exchange will be optimized to use
the most efficient method for exchanging data for a particular
scenario.

WCEF is good at interop.

— WOCF services can interoperate with a number of different
platforms and technologies.

WCEF is highly customizable.

— It is possible to customize almost every part of WCF, adding
or modifying transports, encodings and bindings, and
plugging in new ‘behaviors’ that affect the way WCF
services work.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 7
All Rights Reserved

WcfCs Chapter 1

WCF and Web API

e A recent approach to creating distributed
applications is ASP.NET Web API*.

— ASP.NET Web API is a framework for building and
consuming HTTP services.

— Itis built into ASP.NET and can be used by both Web Forms
and MVC applications, as well as used standalone.

— Relying on standard HTTP, Web API facilitates creating
services that can reach a wide variety of devices.

— Visual Studio 2013 provides templates that facilitate creating
Web API services.

— Web API does not dictate a particular architectural style, but
it is a great platform for implementing RESTful Web
services.

e Web API was designed from the ground up to work
with HTTP and thus has almost universal reach to
many devices.

e WCF, although it can interoperate with many
platforms, does not have this universal reach.

e WCF has extensive support of WS-* and can run
over many protocols besides HTTP.

! Web API is covered in the Object Innovations course 4147, ASP.NET Web API Essentials Using C#.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 8
All Rights Reserved

WcfCs Chapter 1

WCF = ABC

. : D
Client Service
4 4
] = an endpoint
4 ' ?
= address Where?
. J
{ \ ’)
= binding How?
\ J
{ \ 7
= contract What
\ J
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 9

All Rights Reserved

WcfCs Chapter 1

Address, Binding, Contract

An address defines where a service can be found.

— It will often be an HTTP address, although other addressing
schemes are supported.

A binding defines how a service can be contacted

— ViaHTTP, TCP, MSMQ or some custom mechanism.

A contract defines what a service can do.

— In terms of method calls, their arguments and return types.

e A combination of an address, a binding and a
contract is called an endpoint.

— A service can expose more than one endpoint, and endpoint
data can be made available to clients in the form of metadata.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 10
All Rights Reserved

WcfCs Chapter 1

Example — Hello WCF

e A contract defines a set of operations that a service
supports.

— Define a contract as an interface decorated with the
ServiceContract attribute.

— Decorate operations with the OperationContract attribute.

[ServiceContract]
public interface IHello

{
[OperationContract]

string SayHello(string name);

}

e A service class implements the interface.

— And so it has to implement all the operations defined in the

contract.
public class Hello : IHello
{
public string SayHello(string name)
{
return "Hello, " + name;
+
+

e Note that this code says nothing about how the client
communicates with the service.

— Itis only the 'C' of the service 'ABC'.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 11
All Rights Reserved

WcfCs Chapter 1

Hosting Services

There are four ways to host a WCF service.

Self-hosting in an EXE.

— Use any type of EXE: Console application, Windows
application (Windows Forms or WPF), or Windows Service.

— Need to manage service lifecycle yourself.

Hosting in HS.

— IS will manage the service lifecycle for you, starting the
service when the first request comes in.

— You can only use HTTP and port 80.

— Configure the service using a .svc file.

Hosting in Windows Process Activation Service
(WAS).

— WAS is a feature that is part of Vista, Windows 7 and above,
and Windows Server 2008 and above.

— Similar advantages to hosting in IS, but you can use other
transports and ports as well.

— WAS also uses .svc files.

e Hosting in Windows Server AppFabric.

— This new hosting engine, available on Windows 7 & above &
Windows Server 2008 R2 & above, is optimized for hosting
WCF and WF (Windows Workflow Foundation) services.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 12
All Rights Reserved

WcfCs Chapter 1

Demo — Hello WCF

o We’ll create a “Hello WCF” service that is self-
hosted.

e Our solution will have three projects:
— A class library implementing the service
— A console application that hosts the service.
— A console application that invokes the service

1. Run Visual Studio 2015 as Administrator®. Create a new blank
solution HelloWCF in the Demos folder.

I* Recent

.MET Framework 4.5.2 « Sortby: Default v am := || 5earch Installed Templ o~
4 Installed
T N m Blank Solution visual Studio Solutions Craste s empty solston containing no
I Visual C++ projects
B Visual F#
SCL Server
PowerShel
I JavaScript
Python
TypeScript
4 Other Project Types
Visual Studio Selutions
Samples

Type: Visual Studio Solutions

hd
¢ Online Click here to go online and find templates.
MName: [Hellowcr |
Location: C:\0ICNetCs\DemosY - Browse,.. |
Solution: Create new solution -
Solution name: /| Create difectory for selution
[[] Add to source control
oK I Cancel |

2. In Solution Explorer, right-click over the solution and choose
Add | New Project.

2 When working with WCF on Windows Vista and above it is important to always run Visual Studio as
Administrator. If you forget, you’ll encounter strange errors!

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 13
All Rights Reserved

WcfCs Chapter 1

Demo — Hello WCF (Cont’d)

3. From the WCF project types choose the WCF Service Library
template. Enter HelloL.ib as the name of your new project.

Add New Project 2x
I Recent NET Framework 4.5.2 = Sortby: Default »| i° i=|| search Installed Templ O -
4 Installed c* Type: Visual C=

" pr WCF Service Library Visual C#
4 Visual C#

A project for creating a host-independent

b Windows c#) o) WCF service dass library (.dll)
Vich @ WCF Service Application Visual C#
Android 3
Cloud pr WCF Workflow Service Application Visual C#
i0s -
Reporting @ Syndication Service Library Visual C#
Silverlight
Test
WCF
Workflow
B Visual Basic
b visual C++
b Visual F#
S0 Server &
¢ Online Click here to go online and find templates.
MName: [HelloLib] |
Location: C:\OICNetCs\Demos \HelloWCF - Browse... |

0K I Cancel |

4. Change the name of the file Servicel.cs to HelloService.cs, and
IServicel.cs to IHelloService.cs. Say Yes to renaming all
references in the project to the corresponding code element.

5. Examine the contents of these files, which include comments
and starter code for both a Service Contract and also a Data
Contract.

6. Examine also the file App.config. The renaming was not
perfect, as under the <baseAddresses> tag there is still use of
Servicel. There is actually a reason for this, as we’ll see when
we make us of the test programs WcfSvcHost.exe and
WocfTestClient.exe.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 14
All Rights Reserved

WcfCs Chapter 1

A Service Contract

7. Edit IHelloService.cs to include only a simple service contract
IHelloService with one method, SayHello().

namespace HelloLib

{
[ServiceContract]
public interface IHelloService
{
[OperationContract]
string SayHello(string name);
}
}

8. Edit HelloService.cs to implement the service contract.

namespace HelloLib

{
public class HelloService : IHelloService
{
public string SayHello(string name)
{
return "Hello: " + name;
+
}
+

9. Build the service library project.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 15
All Rights Reserved

WcfCs Chapter 1

Visual Studio WCF Test Host

e To test the service we need both a host and a client
program.

o We will implement both, but first let’s look at tools
provided with Visual Studio.

— There is a test host WcfSvcHost.exe and a test client
WcfTestClient.exe.

— Both are located in’:
\Program Files\Microsoft Visual Studio 14.0\Common7\IDE

— This folder is already on the path of the Visual Studio
command prompt.

e A WCF Service Library project created using Visual
Studio is set up to invoke the test host and test client
automatically.

— Look at the Debug tab of the project’s properties.

Start Options

Command line arguments: Jdient: "WefTestClient.exe” =]

— Also, “Enable the Visual Studio hosting process” is checked.

— When you build and run the class library, the test host will
run, and then the test client will start.

® In 64-bit Windows the top-level folder is Program Files (x86).

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 16
All Rights Reserved

WcfCs Chapter 1

WCF Test Client

1. Build the class library project. A bubble will be displayed at the
bottom of your screen indicating that WfcSvcHost has started.

= Your service(s) have been hosted,

,ﬁ,-, WcfSwcHost
Click here to view detailed infarmation.

-
]

2. WcfTestClient will now start, and it has automatically
connected to the test host for your service library. A tree view of
service projects has been populated with your service project.

_Iix
File Tools Help
EH My Service Projects Start Page |
=@ http://localhost:8733/Design
EI'E IHelloService (BasicHttpE
""" @ Saytichl) To add a service:
. ~ayhellofsyncy . Select “Add Service™ from the File menu or the contest menu of the "My Service Projects”
[Config File ~Enter the service metadata address in the input area, and click "OK"
Totest a service operation:
. Double click the operation you want to test from the tree on the left pane
. A new tab page will appear on the right pane
. Enter the value of parameters in the Request Area of the right pane
. Click "Invaoke™ button
K i
Service added successfully.

3. Double-click on the SayHello() method.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 17
All Rights Reserved

WcfCs Chapter 1

WCF Test Client (Cont’d)

4. You will see a form in which you can enter values for the
parameters to SayHello().

5. In our case there is only one parameter. Enter a value for the
name and click Invoke. After a few seconds you should see the
response. (You may click OK to the security warning and select
not to see the warning anymore.)

-ipix
File Tools . Help
E|H My Service Projects SayHello |
E-=@ hitp://localhest:8733/Design_
=-*% IHelloService (BasicHttpE | Request
----- @ E?YH'_E"DQ ~ Mame | Value | Type
P ~E OV Fobnert System.Stri
[Config Fil name | n | ystem. String
RSl I~ Start a new proxy Invoke |
Mame | Value | Type |
(retum) |"He|||:|: Robnert™ |Systen1.5tring
1| | _'I Formatted | XML
Service invocation completed.

6. This concludes our quick test. Close the test client by File | Exit
or by clicking the I, Normally the test host will also close.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 18
All Rights Reserved

WcfCs Chapter 1

Closing the Test Host Manually

o A pitfall may be that an instance of WCF Service
Host remains running when you don’t think it is.

— To check for this, display the hidden icons from the task bar.

hn:m hidden i |n:n:|ns
4:10 PM
=
U = TGy

— “You may see an icon for WCF Service Host.

g B &

=t 1
WCF Service Host

&

Customize...

— Right-click over the icon and choose Exit from the context
menu.

7. The program at this point is saved in
ChapO01\HellowCF\LibraryOnly.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 19
All Rights Reserved

WcfCs Chapter 1

Self-Hosting

o Next we will add a console application that will host
our service.

1. Right-click over the solution and choose Add | New Project.

2. From the Windows group choose Console Application. Assign
the name Host and click OK.

3. Add a Project reference to HelloLib and a Framework reference
(under Assemblies) to System.ServiceModel. Import these two.

using System.ServiceModel;
using HelloLib;

4. Provide this code in Main().

using (ServiceHost host = new ServiceHost(
typeof(HelloService)))
{

host.AddServiceEndpoint(
typeof(lHelloService),
new BasicHttpBinding(),
"http://1ocalhost:8000/Hel loService');
host.Open();

Console._WriteLine(
"Press ENTER to terminate service host'');
Console.ReadLine();

5. Right-click on the Host project and choose Set as Startup
Project from the context menu.

6. Build and run to make sure you get a clean compile and no
runtime errors for the host. Press the ENTER key and exit. The
project is saved in HelloWCF\LibraryAndHost.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 20
All Rights Reserved

WcfCs Chapter 1

ServiceHost Class

e The ServiceHost is used to implement a host.

— In self-hosting you instantiate an instance of ServiceHost
directly.

— 1IS and WAS use ServiceHost on your behalf.

¢ The main constructor requires a service type and
Zero or more base addresses.

public ServiceHost(
Type serviceType,
params Uri[] baseAddresses

)

e Our example illustrated the simplest case with no
base addresses specified.

ServiceHost host = new ServiceHost(
typeof(HelloService))

— Endpoints must then supply an absolute URI for an address.

host.AddServiceEndpoint(
typeof(lIHelloService), // contract
new BasicHttpBinding(), // binding
"http://1ocalhost:8000/HelloService’);
// address

— Note the “ABC” of address, binding and contract for the
endpoint.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 21
All Rights Reserved

WcfCs Chapter 1

Host Life Cycle

e A service host life cycle is controlled by calls to
Open() and Close().

— Open() allows calls into the host, which are processed by
worker threads.

— Close() gracefully exits the host, refusing new calls to the
host but allowing calls in progress to complete.

— The CloseTimeout property (10 seconds by default) specifies
the length of time the host will wait for the calls in progress
to complete before shutting down anyway.

e The C# using statement facilitates managing the
host’s life cycle.

— ServiceHost implements the IDisposable interface. Exiting a
using block, either through normal program flow or via an
exception, will call the Dispose() method, which in turn calls
Close().

using (ServiceHost host = new ServiceHost(...

{
ﬁéét-Open();

Console._WriteLine(
"Press ENTER to terminate service host');
Console.ReadLine();

}

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 22
All Rights Reserved

WcfCs Chapter 1

WCF Clients

e As in all common distribution technologies, clients
interact with services through proxies.

— The proxy hides details of the communication mechanism
being used from the client code.

— The proxy implements the same interface as the service, so
that the client can use exactly the same calls.

e Proxies are created using metadata provided by the
service.

— Note that the page shown in the previous page gives
instructions for generating a proxy.

e The ABC (address, binding, contract) information
provided by the service can be used to construct a
proxy that

— Knows where to contact the service.

— Implements code to use the appropriate communication
mechanism (eg. HTTP versus TCP).

— Implements the operations defined in the service interface.
e There are two approaches to creating proxies:
— “On the fly” using the ChannelFactory class.

— Auto-generate in advance by using a tool such as SvcUtil.exe
or by adding a Service Reference in Visual Studio.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 23
All Rights Reserved

WcfCs Chapter 1

Channels

e Channels are used for communication between clients
and services in WCF.

Client Endpoints : Service
—>0—
LO_ Proxy Dispatcher
l 7y

Protocol Protocol
Channel (s) Channel (s)
Transport Transport

Channel = == =— = = P channel

e Client code creates a proxy.

— The client often uses a ChannelFactory object to create the
proxy. The proxy sends messages through the channel stack
to the Dispatcher, which makes a call to-an endpoint on the
service.

e Service code often uses ServiceHost objects to manage
WCF services.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 24
All Rights Reserved

WcfCs Chapter 1

Demo — A Client for Hello WCF

o \We’ll create a console client.

1. Add a third project to the solution, another Console Application.
Specify Client as the name of your new project.

2. Add a reference to the System.ServiceModel assembly and
import the corresponding namespace”.

3. Provide the IHelloService service contract definition.

using System.ServiceModel;

namespace Client

{

[ServiceContract]
public interface IHelloService

{
[OperationContract]

string SayHello(string name);

}

class Program

{

static void Main(string[] args)

{

* A shortcut for importing a namespace is to place the mouse cursor over an unrecognized symbol and press
Ctrl+Dot. Select using ... from the context menu. You may also right-click over the unrecognized symbol
and select Quick Action from the context menu.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 25
All Rights Reserved

WcfCs Chapter 1

ChannelFactory

4, Provide the following code in Main(). This initialize a proxy
object as an instance of the ChannelFactory class. It is based
on an endpoint that is compatible with the endpoint in the
service.

EndpointAddress ep = new EndpointAddress(
"http://1ocalhost:8000/HelloService™);
IHelloService proxy =
ChannelFactory<IlHelloService>.CreateChannel (
new BasicHttpBinding(), ep);

5. Provide the following code to use the proxy object to call the
SayHello() method of the service and display the result. Exit the
client program when the user presses the ENTER Kkey.

string result = proxy.SayHello(''"ChannelFactory™);
Console._WriteLine(result);

Console._WriteLine(

"Press ENTER to terminate client');
Console.ReadLine();

6. Delete the App.config files from each project, because they are
not used now.’

7. Build the solution, now consisting of three projects.

® The configuration file was used in the service library project to enable generation of metadata, which was
used by the test host and test client. We will discuss configuration files and metadata shortly.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 26
All Rights Reserved

WcfCs Chapter 1

Running the Example

e One way to run the example is manually to first start
the host and then start the client.

— Right-click over the project and select Debug | Start new
instance from the context menu.

o Alternatively, you can configure the solution to
automatically run the two projects, starting the host
first.

— Right-click over the solution and select Set StartUp Projects
from the context menu. Choose an action of Start for both
Host and Client. Move the Host up to top position.

Solution "HelloWCF' Property Pages ed |
Configuration; I {fA ﬂ Plabfarm; I* j Configuration Manager. .. |
[l Common Properties " Current selection
Startup Project ' Single startup praject
Project Dependencies I_'“' ﬂ
Debug Source Files —
Code Analysis Settings f+ Multiple startup projects:
Configuration Properties Praject I Action I + |
Host Start
Client Start ll
HellaLib MNone

oK I Cancel Apply

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 27
All Rights Reserved

WcfCs Chapter 1

Running the Example (Cont’d)

Output from Host:

Press ENTER to terminate service host

Output from Client:

Hello: ChannelFactory
Press ENTER to terminate client

— Terminate first the client and then the host.

— The'solution is saved in HelloWCF\ChannelFactory.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 28
All Rights Reserved

WcfCs Chapter 1

Base Address

e Our next example illustrates specifying a base
address for the http:// addressing scheme.

Uri httpBaseAddress =
new Uri(""http://localhost:8000/"");
using (ServiceHost host = new ServiceHost(
typeof(HelloService), // service type
httpBaseAddress)) // base address

e Inadding an endpoint we now specify a relative
address.

host.AddServiceEndpoint(
typeof(lHelloService), // contract
new BasicHttpBinding(), // binding
"HelloService™); // relative address

// complete address is
// http://1ocalhost:8000/HelloService

— See ChapO01\HelloWCF\BaseAddress.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 29
All Rights Reserved

WcfCs Chapter 1

Base Address Example

e \We’ve just seen an alternative way of specifying the
address for an endpoint.

— The service host has one or more base addresses, and
endpoints are specified using relative addresses.

host.AddServiceEndpoint(
typeof(lHelloService), // contract
new BasicHttpBinding(), // binding
"HelloService'); // relative address

// complete address is

// http://localhost:8000/HelloService

e We instrument the host code to display all the base
addresses before calling Open().

ShowBaseAddresses(host.BaseAddresses);

static void ShowBaseAddresses(
ReadOnlyCollection<Uri> addresses)
{

Console._WriteLine(''Base Addresses:™);
foreach (Uri addr in addresses)
Console._WriteLine(" {0}",
addr .OriginalString);

}

e The client program is identical, because we’ve not
changed the contract, address and binding.

e Here is the output from running the host:

Base Addresses:
http://1localhost:8000/
Press ENTER to terminate service host

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 30
All Rights Reserved

WcfCs Chapter 1

Uri Class

e The Uri class encapsulates a uniform resource
identifier (URI) and provides easy access to the parts
of the URI.

e Common properties include:

AbsolutePath Absolute path of the URI

IsAbsoluteUri Is the URI instance absolute?

LocalPath Local operating system representation of
a file name

OriginalString The original URI string that was passed
to the Uri constructor

PortNumber Port number of the URI

Scheme Scheme name of the URI (e.g. file, ftp,

http, https, net.pipe, net.tcp, etc.)

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 31
All Rights Reserved

WcfCs Chapter 1

Configuration Files

e In WCF there are always two options for supplying
configuration information:

— In code, like we’ve done so far.

— In configuration files such as App.config and Web.config.

¢ As an example, the file App.config in the Host project
provides the same configuration information as the
WCFHello\BaseAddress code example.

— See WCFHello\Config for the complete example.

<?xml version="1.0" encoding="utf-8" ?>

<configuration>
<system.serviceModel>
<services>
<service name="HelloLib.HelloService'>
<endpoint

address=""Hel loService"
binding=""basicHttpBinding"
contract="HelloLib.IHelloService'" />
<host>
<baseAddresses>
<add baseAddress=
"http://localhost:8000/" />
</baseAddresses>
</host>
</service>
</services>
</system.serviceModel>
</configuration>

— Again we specify the address by the combination of a base
address and a relative address.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 32
All Rights Reserved

WcfCs Chapter 1

Simplified Host Code

o \When we have configuration specified in a
configuration file, the host code becomes simpler.

static void Main(string[] args)

{
using (ServiceHost host = new ServiceHost(
typeof(HelloLib.HelloService)))
{
host.Open();
ShowBaseAddresses(host.BaseAddresses);
Console.WritelLine(
"Press ENTER to terminate service host');
Console.ReadLine();
host.Close();
+
+

e The last three examples all-had identical client code®;
we did not change the contract, binding and address,
only how it was described.

— HelloWCF\ChannelFactory
— HelloWCF\BaseAddress
— HelloWCF\Config

® We made one small change in the client: the name used in the greeting message identifies the example.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 33
All Rights Reserved

WcfCs Chapter 1

Proxy Initialization

e Up until now we’ve been creating a proxy directly by
using a channel factory.

e This approach makes several assumptions:
— You know the endpoint address.
—You have a copy of the server contract definition.

— You know the required protocols or binding configurations.

o If you are developing both the service and the client,
these are reasonable assumptions.

e But in the world of distributed computing when you
need to talk to a service you don’t own, these are not
reasonable assumptions.

e When you don’t own both the client and the service
sides, a more effective approach is to generate the
proxy automatically from metadata exported by the
service.

— The metadata enables you to “know” the things you need to.

— The process of constructing a proxy is automated through the
use of tools.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 34
All Rights Reserved

WcfCs Chapter 1

Metadata Exchange

e Metadata can be exported by a service through a
special endpoint, known as a metadata exchange
endpoint.

e This endpoint enables the generation of a proxy and a
configuration file in the client project.

e To support this metadata exchange you need to do
two things:

— Add the metadata exchange endpoint to the host
configuration.

— Enable the metadata exchange behavior.

e A metadata exchange (mex) endpoint, like other
endpoints, requires an address, a binding, and a
contract.

— For the address you need the base address for the selected
binding protocol (we’re using http exclusively in this
chapter).

— The contract is the predefined IMetadataExchange.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 35
All Rights Reserved

WcfCs Chapter 1

Metadata Exchange Example

e We illustrate metadata exchange with a new variation
of our HelloWCF example.

— See HelloWCF\SvcUtil. Here is the host’s configuration file,
with changes indicated in bold.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<services>
<service
behaviorConfiguration=""serviceBehavior"
name=""HelloLib.HelloService">
<endpoint
address=""HelloService"
binding=""basicHttpBinding"
contract="HelloLib.IHelloService" />
<endpoint brnding="mexHttpBinding"
contract=""IMetadataExchange'/>
<host>
<baseAddresses>
<add
baseAddress=""http://localhost:8000/'" />
</baseAddresses>
</host>
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name="serviceBehavior'>
<serviceMetadata httpGetEnabled="True'"/>
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>
</configuration>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 36
All Rights Reserved

WcfCs Chapter 1

Behaviors

e A behavior affects the service model locally, on either
the service side or client side.

— A behavior is not part of the metadata and does not affect the
contract. They are not shared between service and client.

— Rather they have a local effect on how the service model
processes messages.

e Service behaviors exist for metadata, debugging,
security, serialization and throttling.

e Client behaviors exist for debugging, security,
serialization, timeouts, and routing.

e A new <behaviors> element is provided in the
configuration file.

— A behavior has a name.

— This name is used by the behaviorConfiguration attribute of
the <service> element to tie a service to a behavior’.

— Client behaviors work in a similar manner in the
configuration file.

e Behaviors can also be specified in code.

" This use of the behaviorConfiguration attribute is optional in WCF 4.0.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 37
All Rights Reserved

WcfCs Chapter 1

A Service in a Browser

o A nice feature of WCF is that it enables viewing
useful information about the service in a browser.

— Point the browser to the base address.

— For our example the base address is http://localhost:8000/.

,é' HelloService Service - Internet Explorer - 0| x|
@T‘:; ' I::-J_; http:/ localhost:2000 ,'Dj 4 :g HelloService Service e | | {'n} :ﬁ: {:}

HelloService Service ~

You have created a service.

To test this service, you will need to create a client and use it to call the service. You can do this
using the svcutil.exe tool from the command line with the following syntax:

svcutil.exe http://légalhost:B8000/ ?wadl

You can also access the service description as a single file:

http://localhost:8000/?3ingleWsdl

This will generate a configuration file and a code file that contains the client class, Add the two
files to your client application and use the generated client class to call the Service. For example:

C#

class Test

{
static void Main()
{
HelloServiceClient client = new HelloServieeClient():
/f Use the "client' wvariaeble to call operatigpms on the serv:
/f RAlways close the client.
client.Close ()
H
} Lo
< >

— This useful page tells you how to create and use a proxy in
your client program. (If no metadata exchange, you would
see nice instructions for implementing it.)

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 38
All Rights Reserved

WcfCs Chapter 1

Proxy Demo — SvcUtil

S.

The AutoProxy folder in the Demos directory contains
starter code.

— Itis a copy of HelloWCF\Config with App.config modified
to support metadata exchange, as we have seen.

. Build the starter solution.
. Start the host.
. Point your browser to http://localhost:8000/ and verify that the

information about HelloService shown on the previous page is
displayed. Note the instructions.

. Bring up a Visual Studio command prompt and navigate to the

Demos\AutoProxy folder.

Enter this command (note that it is not case sensitive):

svcutil.exe http://localhost:8000/?wsdl

6.

There should be created files HelloService.cs and
output.config.

. Copy these files down to the Client folder. Rename

output.config to App.config. (If App.config already existed,
you should edit the configuration information from
output.config into it.) Add the files to the Client project.

. Terminate the host and rebuild the solution.

. In Program.cs in the Client project remove the using statement

importing the namespace System.ServiceModel. (It is now only
needed in the proxy that was generated. You still need a
reference to the assembly, though.)

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 39

All Rights Reserved

WcfCs Chapter 1

Proxy Demo — SvcUtil (Cont’d)

10. Remove the interface definition.

11. Remove the first two statements in Main() setting up an
endpoint and initializing a proxy from a channel factory.

12. Examine the file HelloService.cs and note that the proxy
class is HelloServiceClient.

13. Provide the following code to initialize the proxy and to close
it when done. Again we’ll follow the pattern of the C# using
statement.

static void Main(string[] args)

{

using (HelloServiceClient proxy =
new HelloServiceClient())
{

string result = proxy.SayHello("SvcUtil™);
Console._WriteLine(result);

Console._WriteLine(
"Press ENTER to terminate client");
Console.ReadLine();

}
}

14. Build the solution. Start the host and then the client. You
should see this output from the client:

Hello: SvcUtil
Press ENTER to terminate client

15. Terminate the client and then the host. The completed demo
Is saved in HelloWCF\SvcUTtil. The invocation of svcutil.exe is
done in a small batch file MakeProxy.bat

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 40
All Rights Reserved

WcfCs Chapter 1

Proxy Demo — Visual Studio Proxy

e Continue in the AutoProxy folder from the previous
demo.

1. In the Client project delete the files HelloService.cs and
App.config.

2. Start the host outside of Visual Studio. (Right-click over the file
Host.exe in the bin\Debug folder and choose Run as
Administrator from the context menu.)

3. In Visual Studio right-click over References in Client project
and choose Add Service Reference. For the address enter
http://localhost:8000/ and click Go. Expand the tree so that you
can see the contract. Leave the namespace as it is. Click OK.

To see a list of available services on a spedfic server, enter a service IURL and dick Go. To browse far
available services, dick Discover.

j Go || Discower |v|

Services: Operations:

4 (%) =8 HelloService @ SayHelo
T

1 service(s) found at address ‘http:flocalhost: 3000/,

MNamespace:

ISEWin:EREferenu:E 1

Advanced... | QK I Cancel |

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 41
All Rights Reserved

WcfCs Chapter 1

Proxy Demo — VS Proxy (Cont’d)

4. Terminate the host.

5. In Solution Explorer, observe the new files in the Client project.
You can see all files by clicking the Show All Files button &,
The important new files are Reference.cs and app.config.

4 Client

b Properties

[=B References

4 1wl Service References

] %‘1 ServiceReference 1
I:I@ configuration.swcnfo
|:I® configuration?1.svcnfo
33 HelloService.wsdl
|:|® item. disco
& item.xsd
&3 itemL.xsd
] EI@ Reference.svomap

b i:bin
b i obj

P ©* Program.cs

6. Examine Reference.cs. The proxy class is HelloServiceClient
and the namespace is Client.ServiceReferencel. (\We could
have changed the namespace when we generated the service
reference.)

7. All we need to do to use the preceding client program is to
import the namespace.

using Client.ServiceReferencel;

8. Build the solution. Test by starting the host and then the client.
The completed demo is saved in HelloWCF\VSProxy.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 42
All Rights Reserved

WcfCs Chapter 1

Standard Endpoints

e An endpoint for metadata exchange almost always
has exactly the same elements.

— To obviate the need for repetitive configuration, WCF 4.5
provides several standard endpoints.

— See the simplification in HelloWCF\StandardEndpoints.

<configuration>
<system.serviceModel>
<standardEndpoints>
<mexEndpoint>
<standardEndpoint />
</mexEndpoint>
</standardEndpoints>
<services>
<service name="HelloLib.HelloService'">
<endpoint address=""HelloService"
binding=""basicHttpBinding"
contract=""HelloLib. IHelloService"
/>

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior>
<serviceMetadata httpGetEnabled="True"/>
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>
</configuration>

— Other standard endpoints are available for discovery,
workflow and web.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 43
All Rights Reserved

WcfCs Chapter 1

Lab 1

Creating a Simple Service and Client

In this lab, you will use Visual Studio 2015 to create a simple
WCF service that is self-hosted. The metadata exchange endpoint
Is implemented with the help of starter code provided by Visual
Studio. You will create a simple Console client program. Create
the proxy by adding a Service Reference using Visual Studio. You
will-also experiment with changing the binding from
basicHttpBinding to wsHttpBinding.

Detailed instructions are contained in the Lab 1 write-up at the end
of the chapter.

Suggested time: 50 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 44
All Rights Reserved

WcfCs Chapter 1

WCF Architecture

o Services and clients exchange SOAP messages.

— But they are not limited to text format; they can be sent in
binary if that is more efficient.

e Channels abstract the communication process.

— Channels can be composed, so that the output from one
channel acts as the input to another.

— There are two types of channel.

e Transport channels implement transport mechanisms

— Such as HTTP and TCP/IP.

e Protocol channels implement elements of the SOAP-
based messaging protocol

— For example, the security channel implements SOAP
security.

— The channel stack can be specified in configuration files or in
code.

e Behaviors extend or modify service and client
operation

— For example, whether metadata is published, or
authentication is required.

— Behaviors can be specified in configuration or code.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 45
All Rights Reserved

WocfCs

WCF Architecture

Chapter 1

o The following diagram illustrates the overall
architecture of WCF.

— We looked at this diagram earlier in the chapter when we
created a simple proxy using the ChannelFactory class.

Client Endpoints) Service
»O—

O— Proxy Dispatcher
Protocol Protocol

Channel (s) Channel (s)

Transport Transport
Channel = = == = = P| Channel

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 46

All Rights Reserved

WcfCs Chapter 1

ServiceHost and ChannelFactory

e ServiceHost is used on the server side.

— A ServiceHost is used to host services in code (ie. Self-
hosted services). The ServiceHost creates a
ServiceDescription object, which consists of a type
(implementing the service), a collection of behaviors (which
control how the service behaves) and descriptions of one or
more endpoints.

— The WCF runtime uses the ServiceDescription to build the
channel stack and configure the endpoints.

e ChannelFactory is used on the client side.

— A ChannelFactory creates a ClientDescription. This consists
of a collection of behaviors, and one endpoint. There is no
need for a type, because clients don’t implement service
contracts.

— The WCF runtime uses the ClientDescription to build the
channel stack and proxy.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 47
All Rights Reserved

WocfCs

Chapter 1

Service Contexts and Instances

o Each .NET host process can contain one or more app
domains, and each app domain may contain zero or

more ServiceHosts.

— Within a ServiceHost, service instances live in contexts; a
WCF context is similar to a COM+ (Enterprise Services)
context or a .NET context-bound object, in that it provides an
environment in which service instances live.

— Properties and methods on the context allow the developer to
control the behavior of the service instance, especially with
respect to concurrency and object lifetime. A context can
host at most one instance of a service object, so it is possible
to have empty contexts.

Host Process
AppDomain
O_ ServiceHost
Context Empty
O— Context
Service
C)" Object
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC

All Rights Reserved

48

WcfCs Chapter 1

Summary

o WCF unifies a number of existing technologies for
creating distributed applications.

e WCF services are defined by addresses, bindings and
contracts.

e \WWCF services can be hosted in 11S or WAS, or they
can be self-hosted.

— We will use self-hosting throughout this course.

e WCF services and clients can be configured in code
or via XML configuration files.

e You can implement a client of a WCF service using a
Channel Factory.

e A WCF service can be configured to export metadata,
which can be used to automatically generate a proxy
for a service.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 49
All Rights Reserved

WcfCs Chapter 1

Lab 1

Creating a Simple WFC Service and Client

Introduction

In this lab, you will use Visual Studio 2015 to create a simple WCF service that is self-
hosted. The metadata exchange endpoint is implemented with the help of starter code
provided by Visual Studio. You will create a simple Console client program. Create the
proxy by adding a Service Reference using Visual Studio. You will also experiment with
changing the binding from basicHttpBinding to wsHttpBinding.

Suggested Time: 50 minutes
Root Directory: OIC\WcfCs

Directories: Labs\Labl (do your work here)
Chap01\SimpleMath (answer)

Part 1: Create the Service Library

1. Start Visual Studio 2015 as Administrator. Create a new blank solution SimpleMath.

2. Add a new project MathL.ib to your solution using the WCF Service Library
template.

3. Rename the file IServicel.cs to IMath.cs and the file Servicel.cs to MathService.cs.

4. In the files IMath.cs and MathService.cs, delete the starter code except for the
namespace imports and the declaration of the MathLib namespace.

5. Inthe file IMath.cs, provide the following simple service contract IMath.

namespace MathLib
{
[ServiceContract]
public interface IMath
{
[OperationContract]
int Add(int x, int y);
[OperationContract]
int Subtract(int x, int y);
}
}

6. In the file MathService.cs, provide the following implementation:

namespace MathLib

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 50
All Rights Reserved

WcfCs Chapter 1

{
public class MathService : IMath
public int Add(int x, int y)
{
return x + y;
}
public int Subtract(int x, int y)
{
return x - y;
}
}
}

7. Edit App.config to make sure the service name is MathLib.MathService and the
contract MathLib.IMath. (Visual Studio should have done this rename for you when
you changed the names of the files.)

8. Build and run the solution. This should start up both the test host and the test client.
Exercise both Add and Subtract.

Part 2: Create the Host

1. Add anew Console Application Host to your solution.

2. Add a reference to the MathLib project and the System.ServiceModel assembly.
3. In Program.cs import the namespaces System.ServiceModel and MathL.ib.

4. Provide code in Main() to initialize and open a ServiceHost object.

static void Main(string[] args)

{
using (ServiceHost host = new ServiceHost(
typeof(MathService)))
{
host.Open();
Console._WriteLine("'Press ENTER to terminate service host"™);
Console.ReadLine();
}
}

5. Copy the App.config file from the MathL.ib project to the Host project and add it to
the Host project. (You can do this by drag and drop in Solution Explorer.) Edit the base
address. Note that we will go with the empty string for the contract address, so we
provide a complete URI for the base address. You can delete App.config from MathL.ib.

<system.serviceModel>
<services>
<service name="'MathLib.MathService'>
<endpoint address=""" binding="basicHttpBinding"
contract="MathLib. IMath">
<identity>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 51
All Rights Reserved

WcfCs Chapter 1

<dns value=""localhost" />
</identity>
</endpoint>
<endpoint address="mex" binding="mexHttpBinding"
contract=""1MetadataExchange" />
<host>
<baseAddresses>
<add baseAddress="http://localhost:8000/MathService" />
</baseAddresses>
</host>
</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior>
<I-- To avoid disclosing metadata information,
set the value below to false and remove the metadata endpoint
above before deployment -->
<serviceMetadata httpGetEnabled="True'/>
<I-- To receive exception details in faults for debugging
purposes, set the value below to true. Set to false before
deployment to avoid disclosing exception information -->
<serviceDebug includeExceptionDetaillnFaults="False" />
</behavior>
</serviceBehaviors>
</behaviors>
</system.serviceModel>

6. Build the solution. Test that the host will start up.

Part 3: Implement the Console Client

1. Add a new Console project Client to your solution.

2. Run the host as Administrator outside of Visual Studio. Verify that it has been
correctly implemented by pointing your browser to
http://localhost:8000/MathService. You should see a page for the MathService
service. Copy this URI into the clipboard.

3. Inthe Client project right-click over References and choose Add Service Reference.
4. Paste the URI (http://localhost:8000/MathService) into the Address: text box.

5. Click Go. Expand the tree to show the IMath contract.

Address:
Ihtu:u:fﬂncalhust:BEIEIEI;'TV‘IaﬁWSEWin:E j Go | | Discover |v|
Services: Operations:
=l (%)] MathService i Add
5 WwSubtract
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 52

All Rights Reserved

WcfCs Chapter 1

6. Click OK.
7. Close the host.
8. - In Program.cs import the namespace Client.ServiceReferencel.

9. Implement a simple test program to assign values to integer variable x and y and
invoke both methods of the contract through the proxy.

class Program

{
static void Main(string[] args)
{
int x = 7;
inty =5;
using (MathClient proxy = new MathClient())
{
int sum = proxy.Add(x, y);
Console WriteLine('Sum of {0} and {1} is {2}", X, y, sum);
int diff = proxy.Subtract(x, y);
Console _WriteLine(''Difference of {0} and {1} is {2}",
X, Yy diff);
}
Console . WriteLine("'Press ENTER to terminate client');
Console.ReadLine();
}
}

10. Configure the properties of the solution for multiple startup projects (Host and
Client) with Host starting first.

% Multiple startup projects:

Project | Action ll
Host Start Rd

Client Start il
MathLib Mane

11. Build and run the solution. Verify the output.

Sum of 7 and 5 is 12
Difference of 7 and 5 is 2
Press ENTER to terminate client

12. Close the client and then the host.

13. Now let’s try using a different binding. Edit App.config in the Host project to call for
wsHttpBinding.

<service name=""MathLib.MathService'>
<endpoint address=""" binding="wsHttpBinding"
contract="MathLib. IMath'>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 53
All Rights Reserved

WcfCs Chapter 1
14. Rebuild and run the solution. The host will startup fine, but you will hit a protocol
exception in the client.

! ProtocolException was unhandled >

Content Type textfuml; charset=utf-8 was not supported by service http:/flocalhost: 3000 MathService.
The dient and service bindings may be mismatched.

15. There is a helpful error message that the client and service bindings may be
mismatched. Terminate debugging.

16. If the host is closed, run it again as Administrator outside of Visual Studio.
17.In the Client project delete the Service Reference.
18. Add a Service Reference using the same procedure we used before.

a. Run the host as Administrator outside of Visual Studio.

b. Inthe Client project right-click over References and choose Add Service
Reference.

c. Enter the URI http://localhost:8000/MathService into the Address: text
box.

d. Click Go. Expand the tree to show the IMath contract. (You could omit
expanding the tree — this part is simply to build confidence you have the
right service.)

Address:
Ihttp:fﬂDEa'hDSt:SDUDIME'H'ISEFWEE j Go | | Discover |v|
Services: Operations:
= @ %] MathService wadd
ol [Math WSubtract
e. Click OK.

19. Close the Host.

20. Rebuild and run the solution. Now it should work again!

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 54
All Rights Reserved

WcfCs Chapter 8

Chapter 8

WCF Security

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 269
All Rights Reserved

WcfCs Chapter 8

WCF Security

Objectives

After completing this unit you will be able to:

Understand the security aspects of services.

Explain the difference between Transport and
Message security.

Configure WCF services and clients to communicate
over a secure channel.

Work with certificates to use more security features
from WCF.

Understand how to send credentials from a client to a
service.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 270

All Rights Reserved

WcfCs Chapter 8

Services and Security

o So far we’ve discussed WCF services without taking
security concerns in consideration.

e Securing distributed services is about securing
communication among different software entities.

— The scenarios involved are somewhat similar to traditional
client-server applications, but with some nuances that will be
covered throughout this chapter.

e For example, very frequently we are not able to rely
on the medium where the message is being
transmitted to ensure confidentiality.

— Third party software could have access to the messages
exchanged between client and service.

— So it is imperative that actions are taken to ensure that only
client and service can read those messages.

e Several security aspects must be considered when
defining how you will secure a service.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 271
All Rights Reserved

WcfCs Chapter 8

Security Aspects of Services

Confidentiality

— The transmissions should be kept safe in such a way that
parties other than the intended receiver are not able to read or
understand the content.

Integrity

— The receiver should be assured that the transmission contents
were not changed on its way from the sender.

Authentication

— This involves identifying both ends (service and client) in the
communication channel.

Authorization

— Once identified, the service must know whether the client is
entitled to execute an operation or not.

Impersonation

— The service might be required in some cases to perform
operations on behalf of the client.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 272
All Rights Reserved

WcfCs Chapter 8

Transfer Security

o WCF offers a number of options for securing the
information exchanged between a WCF service and a
client.

— Securing the information on its way from the server to the
client is about taking care of two security aspects already
mentioned: integrity and confidentiality.

— This foundational aspect of security is called transfer
security.

e We can configure a WCF service to work with the
following security modes: Transport, Message,
Mixed, Both and None.

e Choosing a security mode requires analysis of the
specific implementation scenario.

— Each mode has characteristics that are suitable for different
types of scenarios.

— We will see some examples in this chapter that will help you
decide on the security mode to be used for some of the most
popular WCF implementation scenarios.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 273
All Rights Reserved

WcfCs Chapter 8

Transport Security

e The Transport security mode delegates the security-
related work on the communication to the transport
layer of the network.

— Security is handled by the communication protocol, such as
HTTPS or TCP.

e It provides integrity, confidentiality and
authentication.

— Integrity and confidentiality exist because transport security
encryptsall communication between service and client, so no
one can read the messages without the encryption key.

— Since the client’s credentials are contained in the encrypted
message, a good level of authentication is also achieved.

e Itisa quick way of implementing security, and no
processing is done on the application layer.

— For this reason, Transport security has also the best
performance among the security modes.

e The negotiation of encryption details between client
and service is done automatically by the
communication protocol within the binding used.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 274
All Rights Reserved

WcfCs Chapter 8

Scenarios for Transport Security

e Since all the processing is done on the transport layer,
it is the best approach to use when a WCF service
communicates with a non-WCF client.

e Transport security is great for intranet scenarios,
where both service and client are on the same
network.

— The reason for this is that reliance on the transport layer
means that this security mode can only guarantee transfer
security point-to-point.

— Therefore, Transport security scenarios must consider service
and client connecting directly with each other, with no
intermediaries.

e Transport Security works with all bindings except
WSFederationHttpBinding and WSDualHttpBinding.

e \When you use the following bindings, Transport
Security will be enabled by default if you don’t
specify it in the configuration:

— NetTcpBinding

— NetPeerTcpBinding

— NetNamedPipeBinding
— NetMsmgBinding

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 275
All Rights Reserved

WcfCs Chapter 8

Configuring Transport Security

e The most practical way of setting up security in a
WCF application is through the configuration file.

— Security configuration can also be set up through code,
although it is more cumbersome due to the large number of
properties.

e Typically, this is how the configuration looks like:

<system.serviceModel>

<bindings>
<netTcpBinding>
<binding name="Secured">
<security mode="Transport'>
<transport
clientCredential Type="Windows"
protectionLevel="EncryptAndSign"

/>
</security>
</binding>
</netTcpBinding>
</bindings>
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 276

All Rights Reserved

WcfCs Chapter 8

Transport Security Example

o Let’s see a simple example of a client and a service
running on Transport security.

— Open the solution in the Transport folder in the chapter
directory.

e Build the solution and run the host and the client
separately’.

— Verify that the communication between client and service is
working by typing a name and clicking the Greet button. You
should see a hello message back from the service in the
screen.

e Now let’s take a look at how these applications are set
up to communicate securely.

— Open App.config on the Host project.

— The first to notice on this file when compared to the others
we have been dealing with is that the service endpoint has the
bindingConfiguration property explicitly set.

<service behaviorConfiguration="serviceBehavior"
name=""HelloLib_Hello">
<endpoint address=""Hello"
binding=""netTcpBinding" name='"netTcp"
contract=""HelloLib.IHello"
bindingConfiguration=""Secured" />

! Make sure that you have allowed access through a fire wall before exercising the client.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 277
All Rights Reserved

WcfCs Chapter 8

Host's Security Configuration

e The next different thing about this configuration file
Is the <bindings> section.

— It'includes details on security configuration for the binding.

— Note that the binding configuration here has the same name
set on the endpoint bindingConfiguration property.

<netTcpBinding>
<binding name="'Secured'>
<security mode="Transport'>
<transport clientCredentialType="Windows"
protectionLevel="EncryptAndSign" />
</security>
</binding>
</netTcpBinding>

e Notice the values used for clientCredential Type and
protectionLevel properties.

— The clientCredential Type property is set to Windows, which
means that the identity that is running the application process
will be sent as a credential.

— The protectionLevel property is set to EncryptAndSign,
which means that the service will encrypt the message
contents and also append an encrypted checksum
representing its “signature” to each message. This provides
integrity, privacy and authenticity in the communication.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 278
All Rights Reserved

WcfCs Chapter 8

Client’s Security Configuration

o The configuration on the client is just a bit different
from the other examples we’ve seen.

<netTcpBinding>
<binding name=""netTcp"” closeTimeout="00:01:00"

transfterMode=""Buffered'>
<security mode="Transport'>
<transport clientCredentialType="Windows"
protectionLevel="EncryptAndSign"/>
</security>
</binding>
</netTcpBinding>

e Basically, what we see in the client is a configuration
that must match the security configuration from the
service.

— If you try to set the client with Message security and the
service with Transport security, an exception will be raised at
runtime when a service method is first called.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 279
All Rights Reserved

WcfCs Chapter 8

Message Security

o \When using Message security, the whole message
exchanged between service and client is encrypted.

e This security mode doesn’t rely on the transport
layer, since message encryption happens on the
application as a WCF feature.

e Security is provided end to end, since only client and
server can read the contents of the encrypted
message.

e The use of Message security may introduce a
performance hit due to the overhead of encrypting
and decrypting messages.

— This was not a concern when using Transport security as this
work was delegated to the Transport layer.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 280
All Rights Reserved

WcfCs Chapter 8

Scenarios for Message Security

e Since this transfer mode provides security end to end,
it is ideal for Internet scenarios.

—In those scenarios, the client and the server are far away from
each other so that the message may travel through unknown
intermediaries.

—Hence, ensuring that only the service and the intended client
can read messages from each other is imperative.

e Message Security works with all bindings except
NetNamedPipeBinding.

e \When you use the following bindings, Message
Security will be enabled by default if you don’t
specify it in the configuration:

— WSHLttpBinding
— WSFederationHttpBinding
— WSDualHttpBinding

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 281
All Rights Reserved

WcfCs Chapter 8

Configuring Message Security

e This is how the typical configuration for Message
security would look like on the service side:

<system.serviceModel>

<bindings>
<netTcpBinding>
<binding name="Secured'>
<security mode="‘Message'>
<message
clientCredential Type="Windows" />
</security>
</binding>
</netTcpBinding>
</bindings>

e The solution in the Message folder in the chapter
directory contains an example that is very similar to
the one shown for Transport security.

— The only differences are the Message setting for the security
mode, as shown above, and the corresponding change also in
the client configuration file.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 282
All Rights Reserved

WcfCs Chapter 8

Other Security Modes

e Mixed

— This setting makes WCF use Transport security for
confidentiality, integrity and authentication, and also uses
Message security to allow sending credentials.

— With this option, we can take advantage of the performance
of Transport security and the configuration flexibility of
Message security.

— The downside is that we are limited by the Transport security
constraints, such as only ensuring security from a point-to-
point perspective.

e Both

— With this mode, both Transport and Message security are
used.

— Using this option will result in processing overhead, since
security features will be enabled on both the transport and
application layers.

e None
— With this setting, all security features from WCF are turned
off.
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 283

All Rights Reserved

WcfCs Chapter 8

Certificates

e In order to explore other security scenarios in WCF,
we will need to use certificates.

e For the purposes of this course, we will create and
install test certificates.

— In areal world scenario, normally the certificates are
purchased from a certificate authority such as VeriSign.

e The idea behind the use of certificates for service and
client communication works as follows:

— Assume that there is a Company A which hosts a service and
a Company B which has a client application that consumes
that service.

— Company A purchases a certificate and installs it on the
machine that runs the service. Then, Company A sends an
exported version of that certificate to Company B, which in
turn installs that certificate as “trusted” on the machine that
runs the client.

— Similarly, Company B purchases a certificate and installs it
on the machine that runs the client. Then, Company B sends
an exported version of that certificate to Company A, which
in turn installs that certificate as “trusted” on the machine
that runs the service.

e This approach is often called “peer trust”.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 284
All Rights Reserved

WcfCs Chapter 8

Certificate Demo

o Let’s illustrate how to generate test certificates and
use them in a sample WCF application.

— For the sake of simplicity, we will do this demo considering
that both service and client are running on the same
computer. However, the process will be very similar in case
you want to run it with service and client on separate
computers.

— Note that you must complete at least Steps 1 through 11 in
order to run the supplied solutions for both the Certificate
exampleand also the following UserNameCredential
example, as'well as the lab.

1. Open a Visual Studio 2015 command prompt, running as
Administrator, and navigate to the folder Demos\Certificate in
the course directory.

2. Run the batch file Cert.bat.

— This batch file creates test certificates for the service
(OIWCFService.cer) and for the client (OIWCFClient.cer).

— Note that the test certificate must be generated on the
computer that will run the application that will use the
certificate to represent itself.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 285
All Rights Reserved

WcfCs Chapter 8

Managing Certificates

3. In order to manage the certificates mentioned on this chapter,
you will need to create a MSC Console with the Certificates
snap-in. You can create this by following these steps:

— Using the Visual Studio 2015 command prompt that you
have running, type “mmc” and click OK.

— On the empty MMC Console that opens, click File, and then
Add/Remove Snap-in...

Add or Remove Snap-ins x|

‘fou can select snap-ins for this console from these available on your computer and configure the selected set of snap-ins. For
extensible snap-ns, you can configure which extensions are enabled.

Available snap-ins: Selected snap-ins:
Snap-n | Vendor | -] Console Root Edit Extensions... |
- ActiveX Control Microsoft Cor...
Auﬂ'u:urizaﬁu:un Manager Microsoft Cor... Eamnys |
[l Certificates Microsoft Cor...
H Component Services Microsoft Cor... Mave Up |
_'Ll,,‘ Computer Managem... Microsoft Cor...
= Device Manager Microsoft Cor... [fowe Down |
=4 Disk Management Microsoftand... = Add > |
@ Event Viewer Microsoft Cor...
| Folder Microsoft Cor...
_’ Group Policy Object ... Microsoft Cor...
@, IP Security Monitor Microsoft Cor...
.g IP Security Policy Ma... Microsoft Cor...
|ZLink to Web Address Microsoft Cor...
& | ocal Users and Gro... Microsoft Cor... ﬂ el
Description:
The Certificates snap-in allows you to browse the contents of the certificate stores for yourself; a service, or a computer,

0K I Cancel |

— Select “Certificates”, then click Add, select the option
“Computer account”, and click Next. Leave selected: snap-
in will manage the local computer, and click Finish and OK.

— You can save this MMC Console for your future use. Go to
File, then Save As..., and create a msc file on your desktop.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 286
All Rights Reserved

WcfCs Chapter 8

Certificate Demo (Cont’d)

4. Verify that the certificates are installed on the computer by
opening the Certificates snap-in and navigating to
Personal\Certificates.

— Both OIWCFService and OIWCFClient are listed.

™= Consolel - [Console Root\Certificates (Local Computer)\Personz = ||:||i|
File Acton View Favorites Window Help | =5 =|
& %™ B8|lc=H
| Console Root Issued To = | Issued By Actions
=GP Certificates (Local Computer) ollocalhost localhost | Certificates 4 |
=) [Personal lomweFClient Root Agency _
| Certificates] OIWCFService Root Agency More Actions #
Trusted Root Certification Authorities
| Enterprise Trust

| Intermediate Certification Authorities
| Trusted Publishers

| Untrusted Certificates

| Third-Party Root Certification Authorities
| Trusted People

| Smart Card Trusted Roots

| Trusted Devices 4 | | Ll

|Persnna| store contains 3 certificates. | |

HEHEHEHERNBEEA

— Both the service and the client have their certificates in store
to be used when communicating with each other.

— However, we still need to configure the service certificate to
be trusted by the client application, and the client certificate
to be trusted by the service.

5. Right-click the OIWCFService certificate, point to All Tasks,
click Export..., and then click Next.

6. Say no to the option of exporting the certificate with the private
key and click Next.

7. Keep the default format for the certificate (DER encoded binary
X.509) and click Next.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 287
All Rights Reserved

WcfCs Chapter 8

Certificate Demo (Cont’d)

8. Choose a file name and location for the exported version of the
certificate, click Next and then click Finish. Repeat steps 5 to 8
for the OIWCFClient certificate.

9. On the Certificates Snap-in, right-click the Trusted People
folder, point to All Tasks, click Import..., and then click Next.

10.. Put in the path to the exported version of the OIWCFService
certificate you saved at step 8 and click Next.

11. The next screen shows that the certificate will be saved at the
Trusted People store, which is what we want, so click Next, and
then Finish. Repeat steps 9 to 11 for the exported version of the
OIWCFClient certificate.

e Now that we have the necessary certificates properly
set up, let’s work on the host and client configuration.

12. Open the solution in the Demos\Certificate folder and run
both the host and the client to make sure they are working

properly.

— On the client, you should see a greeting message when you
type your name and click the Greet button.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 288
All Rights Reserved

WcfCs Chapter 8

Certificate Demo (Cont’d)

13. Open the App.config file on the Host project. You will
notice that it is set to use Message security, with Windows
credential type. Change it to use Certificate credential type
instead.

<binding name='"Secured">
<security mode="'Message''>
<message clientCredentialType=""Certificate' />

</security>
</binding>

14. Build and run the host under the debugger. You will hit an
exception, which is pretty much unclear.

— It is very common in WCF that the exceptions are wrapped in
multiple layers, so commonly you can find out more details
on what happened behind the scenes by digging into the
exception’s InnerException property.

— You can do that by clicking the View Detalil... link in Visual
Studio when the exception is displayed to see the real issue.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 289
All Rights Reserved

WcfCs Chapter 8

Exception Detalls

Exception snapshot:

B System.InvalidOperatio {"The ChannelDispatcher at 'net. tep:fflocalhost: 800 1/Hello’ with contract(s) "\ THello}™ is unab |
[System.InvalidOper {"The ChannelDispatcher at ‘'net. top:/flocalhost: 8001 Helo’ with contract(z) '\ THello\™ is unab
Data {System.Collections. ListDictionaryInternal}
HelpLink null
B InnerException {"The ChannelDispatcher at 'net. top:/flocalhost: 3001 Hello’ with contract(s) '\ IssueAndReney
[System.InvalidO) {"The ChannelDispatcher at 'net. tep:fflocalhost:8001/Hello’ with contract(s) '\ IssueAndReney

Data {System, Collections, ListDictionaryInternal} (I
HelpLink null

ylyl= (= a=nlis sl " The service certificate is not provided. Specify a service certificate in ServiceCredentials. 7}
Message The ChannelDispatcher at 'net. top: /localhost: 500 1/Hello' with contract(s) "IssueAndRenewse
Source System.ServiceModel -

— The real issue is that the certificate to be used by the service
was not provided.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 290
All Rights Reserved

WcfCs Chapter 8

Certificate Demo (Cont’d)

15. Let’s add the configuration that solves this issue by
specifying a service certificate in the App.config file in the
Host project.

<behavior name=''serviceBehavior'>
<serviceMetadata httpGetEnabled=""true" />
<serviceCredentials>
<clientCertificate>
<authentication
certificateValidationMode="PeerTrust"
revocationMode=""NoCheck"/>
</clientCertificate>
<serviceCertificate findValue="0IWCFService"
storeLocation=""LocalMachine"
storeName=""My"*
X509FindType=""FindBySubjectName" />
</serviceCredentials>
</behavior>

— The clientCertificate node is specifying how the certificates
sent by clients should be validated, meaning basically that the
service will look for the client’s certificate in the Trusted
People store to see whether it should be accepted or not.

— The serviceCertificate element specifies search parameters
that indicate where to find the certificate to be used by the
service on the local store.

16. Build and run the host. Now the service should be started
normally, using the proper certificate.

17. You can now stop the service. You are now at Step 1. A copy
of this solution at this point is saved in Certificate\Stepl in the
project directory.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 291
All Rights Reserved

WcfCs Chapter 8

Client Certificate Configuration

e Now let’s add the certificate configuration to the
client.

1. Open the app.config file on the HelloWin project. You will
notice that it is set to use Message security, with Windows
credential type. Change it to use Certificate credential type
instead.

<binding name="Secured"™ closeTimeout="00:01:00"
openTimeout=""00:01:00" ...

<security mode="Message'>
<message clientCredentialType=""Certificate"
algorithmSuirte="Default" />
</security>
</binding>

2. As we learned when configuring the server, we also need to
“tell” the client how to find its certificate in the Local Computer
store. You can do that by adding a behavior configuration to the
config file, which should include the clientCredentials
configuration element.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 292
All Rights Reserved

WcfCs Chapter 8

Client Certificate Configuration
(Cont’d)

<system.serviceModel>

<behaviors>
<endpointBehaviors>
<behavior name=""clientBehavior'>
<clientCredentials>
<clientCertificate
findvValue="0IWCFClient"
storeLocation=""LocalMachine"

storeName=""My""'
X509F1ndType="FindBySubjectName" />
<serviceCertificate>
<authentication
certificateValidationMode=
"PeerTrust"
revocatronMode=""NoCheck"/>
</serviceCertificate>
</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>
</system.serviceModel>

— Note that the roles of clientCertificate and serviceCertificate
elements are inverted when compared to the configuration on
the service side. Here, the clientCertificate element is used to
find the client certificate and the serviceCertificate is used to
configure how the certificate sent by the service should be

validated.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 293
All Rights Reserved

WcfCs Chapter 8

Client Certificate Configuration
(Cont’d)

3. Specify the behaviorConfiguration property on the service
endpoint to point to the configuration created on the previous
step.

<endpoint address="..." name="netTcp"
binding="netTcpBinding"
contract=""ServiceReferencel. lHello"
bindingConfiguration="netTcp"
behaviorConfiguration=""clientBehavior'>
</endpoint>

4. Build and run the host and the client, type in a name and click
the Greet button. You will hit an exception saying that the
identity check failed for the outgoing message. That can be
fixed by specifying a DNS identity for the service endpoint on
the client side.

<endpoint address=...
<identity>
<dns value=""0IWCFService"/>
</i1dentity>
</endpoint>

5. Build and run the host and the client, type in a name and click
the Greet button. Now your WCF solution secured using
certificates works perfectly! You are now at Step 2.

e A copy of this solution is saved in Certificate\Step?2
folder in the chapter directory.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 294
All Rights Reserved

WcfCs Chapter 8

Sending Credentials

e In some scenarios, you may be interested in passing
credentials from the client to the service.

— For example, you may want to implement authorization by
giving some clients permission to execute a given operation,
but not to others.

e Here are some alternatives to achieve that:

— Windows credentials: the client can pass a windows
credential to the service (by default, the one that is running
the client’s process).

— ASP.NET Role Provider: you can use the role provider
shipped with .NET to authorize users into the service
methods.

— Custom user name validation: you can implement a custom
class that will check the username and password from the
client at the service.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 295
All Rights Reserved

WcfCs Chapter 8

Username Credentials

o Let’s see asimple example that passes a username
and a password to a WCF service.

— Open the solution in the UserNameCredential folder in the
chapter directory.

e Build and run the host and the client. Type a message
on the client and click on the Greet button.

— On the server console a message is displayed indicating that
the client was able to call the service, which also included the
username.

Press ENTER to terminate the service host
Method SayHello called by user "oi-

e Now let’s see how this was implemented.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 296
All Rights Reserved

WcfCs Chapter 8

Username Example

e Open App.config on the Host project. On the binding
configuration, the client credential type is set to
UserName.

<binding name="Secured'>
<security mode="Message''>
<message clientCredentialType=""UserName"/>
</security>
</binding>

e \When using UserName as the client credential type,
WCF still requires that a certificate is provided in the
communication between client and server.

— The reason for that is that a username and password pair
allows implementing authorization, but not authentication.

e Now let’s take a look at the serviceCredentials
element in the service behavior configuration.

<serviceCredentials>
<userNameAuthentication
customUserNamePasswordVal idatorType=
"Host.CustomUserNameVal idator, Host'
userNamePasswordVal idationMode=""Custom' />
<clientCertificate>
<authentication
certificateValidationMode=""PeerTrust"
revocationMode=""NoCheck"/>
</clientCertificate>
<serviceCertificate findValue="0OIWCFService"
storelLocation=""LocalMachine" storeName=""My"
X509FindType=""FindBySubjectName" />
</serviceCredentials>

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 297
All Rights Reserved

WcfCs Chapter 8

Username Example (Cont’d)

e The usernameAuthentication element informs that a
custom class was provided to validate credentials.

— Let’s take a look at this class by opening
CustomUserNameValidator.cs in the Host project.

public class CustomUserNameValidator :
UserNamePasswordVal idator
{

public override void Validate(
string userName, string password)
{

if (null == userName || null == password)

{
}

iIf ((userName == "oi1" &&
password == ""io'"))
{

throw new ArgumentNullException();

throw new SecurityTokenException(
"Unknown username or incorrect password');

}
}
}

e For the sake of simplicity, this example just validates
a hardcoded username and password.

— You could extend this approach to use potentially any custom
credentials provider.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 298
All Rights Reserved

WcfCs Chapter 8

Username Example (Cont’d)

e Providing credentials on the client side is very simple.
— Open Forml.cs on the HelloWin project.

— Note that the client credentials are provided
programmatically when the service proxy is created.

HelloClient proxy = new HelloClient();

proxy.ClientCredentials.UserName.UserName "or™
proxy.ClientCredentials.UserName.Password 10"
txtResponse.Text = proxy.SayHello(txtName.Text);

e Finally, if you want to get information about the
identity of the client at the service side, you can use
the ServiceSecurityContext class.

— See Hello.cs in the HelloLib WCEF library for an example.

Console._WriteLine(String.Format(
"Method SayHello called by user *"{0}"",
ServiceSecurityContext.Current.Primaryldentity.Name

));

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 299
All Rights Reserved

WcfCs Chapter 8

Lab 8

Custom User Credentials and Authorization

In this lab you will improve an unsecured contact manager
application adding security configuration, certificates support and a
custom username validation mechanism. You will also implement
authorization by making sure only a specific user can access a
given method.

o
John Smith Add |
Remove |
First Name ||'.,.'|E,r._Ir Modify |
Last Name IJ.:,,—,ES — Credentials —
User
Street <987 Oak
Lser
City II"-"IarIban:u Password
State ||'.,.'|;_~.| IHH
Zip |D1234 Set |

Detailed instructions are contained in the Lab 8 write-up at the end
of the chapter.

Suggested time: 90 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 300
All Rights Reserved

WcfCs Chapter 8

Summary

e Securing services is about securing the
communication between different software entities.

e Implementing service security involves aspects such
as confidentiality, integrity, authentication and
authorization.

e Transport and Message security modes are available
to be used in WCF services depending on the
application scenario.

e Most of the security configuration of a WCF service
can be done in the config file.

e Using certificates to implement security allows us to
also implement other security mechanisms, such as
username credentials.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 301
All Rights Reserved

WcfCs Chapter 8

Lab 8

Custom User Credentials and Authorization

Introduction

In this lab you will improve an unsecured contact manager application adding security
configuration, certificates support and a custom username validation mechanism. You
will also implement authorization by making sure only a specific user can access a given
method.

_io/x]
John Smith Add |
Remove |
First Name IMar._.r Modify |
Last Mame IJ,:,,-,ES — Credentials —
|zer
street 987 Oak
Iuser
City IMarII:u:un:u Password
State ||'.,.'|,r.~,. IHH
Zip |[:-1234 Set |

Suggested Time: 90 minutes

Root Directory: OIC\WcfCs

Directories: Labs\Lab8\ContactMgr (do your work here)
Chap08\ContactMgr\Step0 (starter code backup)
Chap08\ContactMgr\Stepl (answer to part 1)
Chap08\ContactMgr\Step2 (answer to part 2)
Chap08\ContactMgr\Step3 (answer to part 3)

Part 1: Modify Security Configuration

1. Open the starter solution. There are three projects: a service library, a host, and a
Windows client program. Build the solution and start the host. Then start the
Windows client. You will be able to Add, Remove and Modify contacts. A user
interface is provided for credentials, but there is no code yet.

2. On the service library project, open the file ContactManager.cs. Notice the
implementation of the service methods for adding, removing and modifying a contact.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 302
All Rights Reserved

WcfCs Chapter 8

3. Since we want to support UserName credentials in this application, let’s configure it
to work with certificates first. Open the file App.config in the Host project.

4. Add a binding configuration section indicating that the Message security mode will
be used and that the client credential type will be Certificate. Remember to give a
name to this binding configuration so you can refer it in the endpoint in the next step.

</services>
<bindings>
<netTcpBinding>
<binding name="'Secured">
<security mode="'Message''>
<message clientCredentialType="Certificate'/>
</security>
</binding>
</netTcpBinding>
</bindings>
</system.serviceModel>

5. On the endpoint definition, specify the name of the binding configuration you just
created.

<endpoint address="Hello" binding="netTcpBinding"
name=""netTcp" contract=""ContactLib. IContactManager"
bindingConfiguration="Secured"/>

6. Now, add configuration to a reference to the OIWCFService certificate, which was
created previously in this chapter. You should also add configuration for the client
certificate to be validated using the PeerTrust mode, and the revocation mode should
be set to NoCheck.

<serviceMetadata httpGetEnabled=""true"/>
<serviceCredentials>
<clientCertificate>
<authentication certificateValidationMode="PeerTrust"
revocationMode=""NoCheck"'/>
</clientCertificate>
<serviceCertificate fFindvValue="OIWCFService"
storeLocation="LocalMachine' storeName="My"
X509FindType=""FindBySubjectName' />
</serviceCredentials>
</behavior>
</serviceBehaviors>

7. Run the host project to ensure the host can be started with no configuration errors.

8. Now let’s configure security for the client to support certificates. Open the file
app.config on the ContactWin project.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 303
All Rights Reserved

WcfCs Chapter 8

9. On the binding configuration section, modify the security mode to Message. Remove
the transport security node, since we are using message security for this application,
and then change the client credential type to Certificate on the message node.

<bindings>
<netTcpBinding>
<binding ...

<security mode=""Message''>
<message clientCredentialType="Certificate” />
</security>
</binding>
</netTcpBinding>
</bindings>

10. Add a behavior configuration section indicating that client credential used will be a
certificate. You should also add configuration for the service certificate to be
validated using the PeerTrust mode, and the revocation mode should be set to
NoCheck. Remember to give a name to this behavior configuration so you can refer
it in the endpoint in the next step.

<behaviors>
<endpointBehaviors>
<behavior name='"'Secured">
<clientCredentials>
<clientCertificate findvalue="OIWCFClient"
storeLocation="LocalMachine' storeName="My"
X509FindType=""FindBySubjectName'/>
<serviceCertificate>
<authentication certificateValidationMode="PeerTrust"
revocationMode=""NoCheck" />
</serviceCertificate>
</clientCredentials>
</behavior>
</endpointBehaviors>
</behaviors>
</system.serviceModel>

11. Specify the name of the newly created behavior configuration within the endpoint
definition.

<endpoint address="net.tcp://localhost:8001/Hello"
binding="netTcpBinding" bindingConfiguration="netTcp"
contract=""ServiceReferencel. IContactManager"
name=""netTcp" behaviorConfiguration="Secured">

12. To complete the certificate configuration on the client, you must set up the DNS
identity of the service so that the service certificate can be properly validated. In order
to do this, add a dns configuration element to the identity configuration of the
endpoint with the value OITWCFService, since this is assumed to be the DNS name
used by the service that owns the OIWCFService certificate. You can also remove the
userPrincipalName configuration which was added by default by WCF when

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 304
All Rights Reserved

WcfCs Chapter 8

creating that configuration file, which won’t be needed in our scenario. Here is how
the endpoint configuration should look like after your changes:

<endpoint address="net.tcp://localhost:8001/Hello"
binding="netTcpBinding"” bindingConfiguration="netTcp"
contract="ServiceReferencel. lContactManager"
name=""netTcp" behaviorConfiguration="Secured">
<identity>
<dns value="0OIWCFService'/>
</identity>
</endpoint>

13. Run the host and then the client. Try to do any operation (Add, Remove or Modify) to
ensure the security configuration you’ve just done didn’t break the communication
between the service and the client. You are now at Step 1.

Part 2: Implement Username Credentials Support

1. In this part, we will slightly modify the configuration we just implemented to use
Username credentials, which requires that the client and the service are properly set
up with certificates first. In this lab we won’t use any existing credentials provider
like ASP.NET Role Provider or Windows Authentication. We will implement a
simple custom username authentication class just for illustration purposes, which you
can easily extend to use other custom authentication providers. Let’s start by adding a
new class file to the host project, by right-clicking the project and selecting Add, then
New Item... and then the Class template. Provide CustomUserNameValidator.cs as
the file name and click OK.

2. We can implement a custom username validator in WCF by extending the
UserNamePasswordValidator class from the System.ldentityModel.Selectors
namespace. Before using this namespace, you must add a reference to
System.ldentit