

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC v
 All Rights Reserved

Table of Contents (Detailed)

Chapter 1 Test-Driven Development... 1
Test-Driven Development... 3
Functional Tests .. 4
Unit Tests .. 5
Test Automation.. 6
Rules for TDD... 7
Implications of TDD... 8
Simple Design... 9
Refactoring.. 10
Regression Testing.. 11
Test List .. 12
Red/Green/Refactor .. 13
Using the Unit Testing Framework .. 14
Testing with Unit Testing Framework.. 15
Unit Testing Framework Test Drive ... 16
IQueue Interface and Stub Class... 17
Test List for Queue ... 18
Demo: Testing QueueLib.. 19
A Second Test ... 22
More Queue Functionality .. 23
TDD with Legacy Code .. 24
Acme Travel Agency Case Study ... 25
Acme Example Program... 26
Lab 1 ... 27
Summary ... 28

Chapter 2 Visual Studio Unit Testing Fundamentals.. 33
Structure of Unit Tests .. 35
Assertions.. 36
Assert Example ... 37
Unit Testing Framework ... 39
Lab 2A .. 40
Unit Testing Framework Namespace.. 41
Assert Class... 42
Assert.AreEqual() ... 43
More Assert Methods.. 44
CollectionAssert Class.. 45
StringAssert Class... 46
Test Case... 47
Test Methods... 48
Test Class .. 49
Test Runner... 50

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vi
 All Rights Reserved

Command Line Test Runner... 51
Ignoring Tests ... 52
Demo: Multiple Test Classes .. 53
Using the Ignore Attribute .. 55
Test Initialization and Cleanup ... 56
Test Initialization Example... 57
Class Initialization and Cleanup ... 58
Running Test Initialization Example .. 59
Lab 2B... 60
Summary ... 61

Chapter 3 More about Unit Testing Framework... 71
Expected Exceptions... 73
Queue Example Program .. 74
Enqueue and Dequeue... 75
Tests for Enqueue and Dequeue ... 76
ToArray() .. 77
Test of ToArray().. 78
Exception Settings .. 79
Lab 3A .. 80
Custom Asserts ... 81
Custom Assert Example.. 82
Implementing a Custom Assert... 84
Running Custom Assert Example... 85
Playlists ... 86
Debugging Unit Tests ... 88
Running Selected Tests... 89
Running Tests at the Command Line.. 90
MSTest.exe Command Line Options.. 91
Refactoring.. 92
Collection Class Implementation.. 93
Testing the New Version .. 95
Lab 3B... 96
Summary ... 97

Appendix A Learning Resources .. 107

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 1
 All Rights Reserved

Chapter 1

Test-Driven Development

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 2
 All Rights Reserved

Test-Driven Development

Objectives

 After completing this unit you will be able to:

 Explain the principles of test-driven development or
TDD.

 Describe the main types of tests pertaining to TDD:

 Functional tests, also known as customer tests

 Unit tests, also known as programmer tests

 Discuss the role of test automation in the development
process.

 Outline the principles of simple design.

 Describe the use of refactoring in improving software
systems and the role of test automation in support of
refactoring.

 Describe the Unit Testing Framework in Visual
Studio.

 Explain the use of TDD in working with legacy code.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 3
 All Rights Reserved

Test-Driven Development

 Test-driven development (TDD) calls for writing test
cases before functional code.

 You write no functional code until there is a test that fails
because the function is not present.

 The test cases embody the requirements that the code
must satisfy.

 When all test cases pass, the requirements are met.

 Both the test cases and the functional code are
incrementally enhanced, until all the requirements
are specified in tests that the functional code passes.

 Functional code is enhanced for two reasons:

 To satisfy additional requirements

 To improve the quality and maintainability of the code, a
process known as refactoring.

 Passing the suite of tests ensures that refactoring has
not caused regression.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 4
 All Rights Reserved

Functional Tests

 The best known type of tests is functional tests, which
verify that functional requirements of the end system
are satisfied.

 Such tests are also called customer tests or acceptance tests.

 They are customer-facing tests.

 Functional tests are run against the actual user
interface of the running system.

 Functional tests may either be run manually by
human testers, or they may be automated.

 Typical automation is to capture keystrokes and
mouse movements, which can then be replayed.

 Various commercial test automation tools exist.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 5
 All Rights Reserved

Unit Tests

 Unit tests are tests of specific program components.

 They are programmer-facing and are also called
programmer tests.

 Because there is no specific user interface for
program components, testing requires some kind of
test harness.

 This test harness must either be written specifically for the
program, or a general purpose test harness may be used.

 Besides the test harness, specific test cases must be
written.

 Because these tests are programmer-facing, it is
desirable if the tests can be specified in a familiar
programming language.

 It is especially desirable if the test cases can be written in the
same programming language as the functional code.

 In this course we will write both functional code and
test code in C#.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 6
 All Rights Reserved

Test Automation

 A key success factor in using TDD is a system for test
automation.

 Tests must be run frequently after each incremental
change to the program, and the only way this is
feasible is for the tests to be automated.

 There are many commercial and open source test
automation tools available.

 A particular effective family of test automation tools
are the unit test frameworks patterned after the
original JUnit for Java:

JUnit Java

NUnit
Visual Studio Unit Testing Framework

.NET

cppUnit C++

PHPUnit PHP

PyUnit Python

Test::Unit Ruby

JsUnit JavaScript

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 7
 All Rights Reserved

Rules for TDD

 Kent Beck, the father of eXtreme Programming (XP),
suggested two cardinal rules for TDD:

 Never write any code for which you do not have a failing
automated test.

 Avoid all duplicate code.

 The first rule ensures that you do not write code that
is not tested.

 And if you provide tests for all your requirements, the rule
ensures that you do not write code for something which is not
a requirement.

 The second rule is a cardinal principle of good
software design.

 Duplicate code leads to inconsistent behavior over a period of
time, as code is changed in one place but not in a duplicated
place.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 8
 All Rights Reserved

Implications of TDD

 TDD has implications for the development process.

 You design in an organic manner, and the running code
provides feedback for your design decisions.

 As a programmer you write your own tests, because you
can’t wait for someone in another group to write frequent
small tests for you.

 You need rapid response from your development
environment, in particular a fast compiler and a regression
test suite.

 Your design should satisfy the classical desiderata of highly
cohesive and loosely-coupled components in order to make
testing easier. Such a design is also easier to maintain.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 9
 All Rights Reserved

Simple Design

 Your program should both do no less and no more
than the requirements demand.

 No less, because otherwise the program will not meet the
functional requirements.

 No more, because extra code imposes both a development
and a maintenance burden.

 You may find the following guidelines1 useful:

 Your code is appropriate for its intended audience.

 Your code passes all its tests.

 Your code communicates everything it needs to.

 Your code has the minimum number of classes that it needs.

 Your code has the minimum number of methods that it needs.

1 Test-Driven Development in Microsoft .NET by James V. Newkirk and Alexei A. Vorontsov.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 10
 All Rights Reserved

Refactoring

 The traditional waterfall approach to software
development puts a great deal of emphasis on upfront
design.

 Sound design is important in any effective methodology, but
the agile approach emphasizes being responsive to change.

 The no more principle suggests that you do not make
your program more general than dictated by its
current requirements.

 Future requirements may or may not come along the lines
you anticipate.

 The pitfall of incremental changes is that, if not
skillfully done, the structure of the program may
gradually fall apart.

 The remedy is to not only make functional changes,
but when appropriate to refactor your program.

 This means to improve the program without changing its
functionality.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 11
 All Rights Reserved

Regression Testing

 A pitfall of refactoring is that you may break
something.

 A natural inclination is to follow the adage, “if it’s not
broken, don’t fix it.”

 But as we said, incremental changes to a program
may lead to a deterioration of the program’s quality.

 So do go ahead and make refactoring improvements
to your program, but be sure to test thoroughly after
each change.

 Run the complete test suite to ensure that there has
been no regression.

 As part of program maintenance, whenever you fix a
bug, add a test to the test suite to test for this bug.

 Thus your test suite becomes gradually more and more
robust, and you can have increased confidence that indeed
your refactoring improvements will not break anything.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 12
 All Rights Reserved

Test List

 TDD begins with a test list.

 A test list is simply a list of tests for a program component or
feature, expressed in ordinary English.

 The test list describes the program component’s
requirements unambiguously.

 The test list provides a precise definition of the
completion criteria.

 The requirements are met when all the tests in the test list
pass.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 13
 All Rights Reserved

Red/Green/Refactor

 You implement the tests in the test list by a process
that is sometimes called Red/Green/Refactor.

 You work in small, verifiable steps that provide immediate
feedback2.

1. Write the test code.

2. Compile the test code. It should fail, because there is not yet any
corresponding functional code.

3. Implement enough functional code for the test code to compile.

4. Run the test and see it fail (red).

5. Implement enough functional code for the test code to pass.

6. Run the test and see it pass (green).

7. Refactor for clarity and to eliminate duplication.

8. Repeat from the top.

 Working in small steps enables you to immediately
detect mistakes, and to see where the mistake
occurred.

 You will rarely need the debugger!

2 William Wake, Extreme Programming Explored.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 14
 All Rights Reserved

Using the Unit Testing Framework

 The Unit Testing Framework in Visual Studio
provides an automated unit test facility for .NET
languages such as C#.

 The framework comes with Visual Studio, including the free
Visual Studio Community 2015.

 Visual Studio 2012 introduced a pluggable architecture for
test frameworks, enabling integration with third-party test
frameworks such as NUnit.

 It uses red (X) and green (check mark) to indicate
failing and passing tests.

 The example shows the results of running a test suite for a
Queue component, with Dequeue method not implemented.

 The example is in Chap01\MyQueue\NoDequeue.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 15
 All Rights Reserved

Testing with Unit Testing Framework

 The diagram3 illustrates how programmers doing
TDD typically work using the Visual Studio Unit
Testing Framework.

1. Write a test case that will fail because functional code is not yet
implemented (test first).

2. Run, and you will get red.

3. Fix the functional code and run again until you get green.

4. Keep writing test cases that will fail, implement the functional
code, and get green.

5. At any point you may refactor for code improvements, and you
need to make sure that you still get green.

6. When you can’t think of any more tests, you are done!

3 This diagram is reproduced by permission of the author, Scott Ambler. See
http://www.agiledata.org/essays/tdd.html.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 16
 All Rights Reserved

Unit Testing Framework Test Drive

 Let’s illustrate TDD by a simple example.

 Don’t worry about the details of using the Unit Testing
Framework but focus on the conceptual process of TDD.

 Our program component is a FIFO (first-in, first-out)
queue.

 The Count property returns number of elements in queue.

 New items are inserted at the rear of the queue by the
Enqueue() method.

 Items are removed from the front of the queue by the
Dequeue() method.

 A method ToArray() returns all the items in the queue, with
the front item at index 0.

 We’ll go through the following steps:

1. Specify a .NET interface and provide a class with a stub
implementation of the interface.

2. Create our test list, which is the specification of requirements.

3. Implement our first test and see it fail.

4. Implement the test code required to make the first test pass.

5. Implement the second test and see it fail.

6. Implement the test code to make the second test pass.

7. Repeat until all the tests pass.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 17
 All Rights Reserved

IQueue Interface and Stub Class

 See the QueueLib class library project in the solution
Demos\MyQueue, backed up in Chap01\MyQueue\Step0.

namespace QueueLib
{
 interface IQueue
 {
 int Count { get;}
 void Enqueue(int x);
 int Dequeue();
 int[] ToArray();
 }
 public class MyQueue : IQueue
 {
 public MyQueue(int size)
 {
 }
 public int Count
 {
 get
 {
 return -1;
 }
 }
 public void Enqueue(int x)
 {
 }
 public int Dequeue()
 {
 return 0;
 }
 public int[] ToArray()
 {
 return null;
 }
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 18
 All Rights Reserved

Test List for Queue

1. Create a queue of capacity 3 and verify Count is 0. (All
subsequent tests will also create a queue of capacity 3.)

2. Enqueue a number and verify that Count is 1.

3. Enqueue a number, dequeue it, and verify that Count is 0.

4. Enqueue a number, remember it, dequeue a number and verify
that the two numbers are equal.

5. Enqueue three numbers, remember them, dequeue them, and
verify that they are correct.

6. Dequeue an empty queue and verify you get an underflow
exception.

7. Enqueue four numbers and verify you get an overflow
exception.

8. Enqueue three numbers, get an array of numbers in queue and
verify it is correct.

9. Enqueue two numbers, dequeue them. Enqueue three numbers,
get an array of numbers in queue and verify it is correct.

10. Enqueue two numbers, dequeue them. Enqueue three
numbers, remember them, dequeue them, and verify that they
are correct.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 19
 All Rights Reserved

Demo: Testing QueueLib

1. Open the MyQueue solution in Demos\MyQueue. Build the
solution, which at this point consists only of a class library.

2. Add a new test project QueueTest to the solution.

3. Change the name of the file UnitTest1.cs in the new project to
QueueTests.cs.

4. Edit the supplied stub test method.

[TestMethod]
public void T01_Empty()
{
 MyQueue que = new MyQueue(3);
 Assert.AreEqual(0, que.Count);
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 20
 All Rights Reserved

Demo: Testing QueueLib (Cont’d)

5. Build the solution. You will get a compile error, because the
MyQueue class cannot be found by the test project.

6. In the QueueTest project add a reference to the QueueLib
project.

7. In QueueTests.cs add a using statement to import the
QueueLib namespace.

using QueueLib;

8. Build the solution. Bring up the Test Explorer window from the

menu Test | Windows | Test Explorer.

9. Click Run All. The test fails! Select the failed test in Text
Explorer, and you will see details at the bottom of the window.

10. The failure was expected, because we only have stub code for
the implementation of the Queue.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 21
 All Rights Reserved

Demo: Testing QueueLib (Cont’d)

11. Add code to MyQueue.cs to implement the Count property.

 public class MyQueue : IQueue
 {
 private int count;
 public MyQueue(int size)
 {
 count = 0;
 }
 public int Count
 {
 get
 {
 return count;
 }
 }
 ...

12. Rebuild the solution and run the test again. Now the test

passes, showing green.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 22
 All Rights Reserved

A Second Test

13. Add a second test to QueueTests.cs.

 [TestMethod]
 public void T02_EnqueueOne()
 {
 MyQueue que = new MyQueue(3);
 que.Enqueue(17);
 Assert.AreEqual(1, que.Count);
 }

14. Build the solution. Run all the tests. The first test passes

(green), but the second test fails.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 23
 All Rights Reserved

More Queue Functionality

15. Add the following code to your MyQueue class.

 public class MyQueue : IQueue
 {
 private int count;
 private int[] data;
 private int front;
 private int rear;
 public MyQueue(int size)
 {
 count = 0;
 data = new int[size];
 front = 0;
 rear = -1;
 }
 public int Count
 {
 get
 {
 return count;
 }
 }
 public void Enqueue(int x)
 {
 rear += 1;
 data[rear] = x;
 count += 1;
 }
 ...

16. Run the tests again. Now both tests will pass (Step 1).

17. You could continue adding tests and functionality until the
Queue is fully implemented and tested. We’ll do that later. At
this point we just want you to have a general idea of how unit
testing in Visual Studio works.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 24
 All Rights Reserved

TDD with Legacy Code

 Our Queue example illustrates test-driven
development with a brand new project, with tests
developed before the code.

 But often, you may have existing legacy code and may
wish to start employing TDD going forward.

 In this case you have a fully operational system, and you will
begin by writing a test suite for the existing system.

 Then as new features are to be added, you will first add
appropriate tests to the test suite.

 As bugs are discovered, you will also add test cases to the
test suite to reproduce the failure.

 As code is refactored, you will run the entire test suite to
ensure that there is no regression.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 25
 All Rights Reserved

Acme Travel Agency Case Study

 The Acme Travel Agency has a simple customer
management system to keep track of customers who
register for its services.

 Customers supply their first and last name and email
address. The system supplies a customer ID.

 The following features are supported:

 Register a customer, returning a customer id.

 Unregister a customer.

 Obtain customer information, either for a single customer or
for all customers (pass the customer id, and for customer id
of –1 return all customers).

 Change customer’s email address.

public interface ICustomer
{
 int RegisterCustomer(string firstName,
 string lastName, string emailAddress);
 void UnregisterCustomer(int id);
 Customer[] GetCustomer(int id);
 void ChangeEmailAddress(int id,
 string emailAddress);
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 26
 All Rights Reserved

Acme Example Program

 The Acme Customer Management System comes as a
solution with two projects.

 See CaseStudy\Acme\Step0.

 The solution contains a class library project AcmeLib and a
Windows Forms client program AcmeClient.

 To create unit tests, we will add a third project,
AcmeTest, so as not to perturb the released class
library, AcmeLib.

 See CaseStudy\Acme\Step1.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 27
 All Rights Reserved

Lab 1

Testing the Customer Class

In this lab, you will begin the Acme Travel Agency case study by
implementing simple tests for the Customer class. You are
provided with starter code that provides implementation of classes
Customer and Customers in a class library. You are also provided
with a GUI client program. Your job is to create a third project for
testing the Customer class with the Unit Testing Framework and
to provide simple tests. You will exercise your tests using Visual
Studio.

Detailed instructions are contained in the Lab 1 write-up at the end
of the chapter.

Suggested time: 45 minutes

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

UnitCs Chapter 1

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 28
 All Rights Reserved

Summary

 Test-driven development (TDD) calls for writing test
cases before functional code.

 The test cases embody the requirements that the code
must satisfy.

 There are two main types of tests pertaining to TDD:

 Functional tests, also known as customer tests

 Unit tests, also known as programmer tests

 Test automation is essential in TDD because many
tests have to be frequently run.

 Simple design dictates that your program should both
do no less and no more than the requirements
demand.

 Refactoring provides continuous improvements in a
software system, and automated tests ensure that no
regression occurs.

 The Unit Testing Framework in Visual Studio 2008
simplifies writing and running tests in a .NET
environment.

 TDD can drive a new project from start to finish, and
it can also be used with legacy projects.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

