
NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 35
 All Rights Reserved

Chapter 2

NUnit Fundamentals

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 36
 All Rights Reserved

NUnit Fundamentals

Objectives

 After completing this unit you will be able to:

 Describe the general structure of unit tests.

 Outline the features of the NUnit Framework:

 Assertions

 Test Cases

 Test Fixtures

 Test Runners

 Provide for setup and tear down of tests.

 Use the NUnit GUI test tool both standalone and
integrated with Visual Studio.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 37
 All Rights Reserved

Structure of Unit Tests

 As we saw in Chapter 1, unit tests are tests of specific
program components.

 Test code is for internal use only and is separate from
the production code being tested.

 Test code is responsible for doing several things:

1. Set up resources needed for the test.

2. Call the function or method to be tested.

3. Verify that the called function behaved as expected.

4. Clean up after itself.

 For simple tests, no special setup or cleanup may be required,
but steps 2 and 3 are always performed.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 38
 All Rights Reserved

Assertions

 A central requirement of unit tests is that they must
be self-verifying.

 It would be very inefficient to require a separate process or
human intervention to examine the output of the tests to
determine whether or not they passed.

 We need a mechanism to support self-verification.

 This mechanism is called an assertion.

 An assertion is a statement that some condition is true, and a
report will be made if the condition is not true.

 The notion of assertion is common in many
programming languages and frameworks.

 The ANSI C runtime library has an assert() method
that can be used in the C language.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 39
 All Rights Reserved

Assert Example

 A simple example illustrates the C assert() function.

 See Chap02\CMax\Step1.

 This example provides unit tests for a findmax() function
that finds the maximum of three integers.

// CMax.c

#include <stdio.h>
#include <assert.h>

int findmax(int x, int y, int z)
{
 int max = x;
 if (y > x)
 max = y;
 if (z > x)
 max = z;
 return max;
}

int main()
{
 assert(findmax(4, 3, 2) == 4);
 printf("Test 1 passed\n");
 assert(findmax(3, 4, 2) == 4);
 printf("Test 2 passed\n");
 assert(findmax(3, 2, 4) == 4);
 printf("Test 3 passed\n");
 assert(findmax(2, 4, 3) == 4);
 printf("Test 4 passed\n");
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 40
 All Rights Reserved

Assert Example (Cont’d)

 The findmax() function has a bug. The first three tests
pass, but the fourth one fails.

Test 1 passed
Test 2 passed
Test 3 passed
Assertion failed: findmax(2, 4, 3) == 4, file
c:\oic\nunitcs\chap02\cmax\step1\c
max.c, line 24

This application has requested the Runtime to
terminate it in an unusual way.
Please contact the application's support team for
more information.

 Step 2 fixes the bug.

int findmax(int x, int y, int z)
{
 int max = x;
 if (y > max)
 max = y;
 if (z > max)
 max = z;
 return max;
}

 Here is the output:

Test 1 passed
Test 2 passed
Test 3 passed
Test 4 passed

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 41
 All Rights Reserved

NUnit Framework

 Although completely hand-written unit tests using
only primitive library features are feasible, it is not
efficient.

 The NUnit Framework that we introduced in
Chapter 1 provides many features to simplify writing
and running unit tests:

 An Assert class with a variety of methods for testing
assertion conditions.

 A custom attribute [Test] to designate a method as a test
case.

 A custom attribute [TestFixture] to designate a class that
encapsulates a group of test methods sharing a common set
of run-time resources.

 A test runner that automates the running of all the tests.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 42
 All Rights Reserved

Lab 2A

NUnit Tests of Maximum Method

In this lab, you will develop a C# version of the function to find
the maximum of three integers. You will then review use of NUnit
by developing and running test cases.

Detailed instructions are contained in the Lab 2A write-up at the
end of the chapter.

Suggested time: 20 minutes

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 43
 All Rights Reserved

NUnit Assert Class

 The NUnit Framework provides an Assert class with
a number of static methods.

 These helper methods can help you determine whether the
test passed or failed.

 They record failures (when an assertion is false) and errors
(when an unexpected exception occurs).

 Failures and errors are reported through NUnit.

 You won’t see a system-generated exception message as in a
failure of the assert() method of the C runtime library.

 In the nunit.exe tool you will see red with an X displayed,
plus explanatory text.

 When a failure or error occurs, the current test
method is aborted, and execution continues with the
next method in the test fixture.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 44
 All Rights Reserved

Assert.AreEqual()

 There are many overload versions of the AreEqual()
method.

Assert.AreEqual(expected, actual)
Assert.AreEqual(expected, actual, message)

 Typically expected is a hard coded value representing the
value you expect to see.

 actual is the value actually produced by the code that you are
testing.

 The optional parameter message is a string which will be
displayed by NUnit upon failure.

 Any object may be tested for equality.

 The Equals() method of the Object class will be used for
comparison.

 There are special overloads for the built-in data types of int,
uint, decimal, float, and double.

 For float and decimal there is an overload available that
takes a parameter delta that may be used as a tolerance,
specifying how close to equals the result should be.

Assert.AreEqual(expected, actual, delta)

 In Visual Studio you can use Intellisense to see all the
possible overloaded methods.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 45
 All Rights Reserved

More Assert Methods

 There are many other Assert methods, which can be
viewed via Intellisense.

 Many come in pairs with a Not variant, and there is always
an optional string message parameter.

AreNotEqual expected does not equal actual

IsNull
IsNotNull

Given object is null (or is not null)

AreSame
AreNotSame

expected and actual refer (or do not
refer) to the same object

IsTrue Given Boolean condition is true

IsFalse Given Boolean condition is false

Fail Fail the test immediately

Greater expected is greater than actual
(objects implement IComparable)

Less expected is less than actual

IsEmpty
IsNotEmpty

String or collection is (or is not)
empty

Contains expected object is contained in the
actual collection

IsInstanceOfType
IsNotInstanceOfType

actual object is (or is not) of
expected type

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 46
 All Rights Reserved

Test Case

 The fundamental unit of testing with NUnit is a test
case.

 A test case is a programmer test, which is a low-level test
intended to verify behavior at the method or class level.

 A test case is self-validating, having a built-in mechanism to
report success or failure.

 A test case can be automatically discovered by a test runner.

 A test case can be automatically executed by a test runner.

 A test case executes independently of other test cases; one
test case should not produce any side effects that could
change the results from other test cases.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 47
 All Rights Reserved

Test Methods

 In NUnit, test cases are specified by test methods,
which are methods of a test class.

 A test method is marked by the [Test] attribute.

[Test]
public void BiggestFirst()
{
 Assert.AreEqual(Find.Max(4, 3, 2), 4);
}

 A test method must have the following features:

 It is declared as public.

 It is an instance method (not static).

 It returns void.

 It takes no parameters.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 48
 All Rights Reserved

Test Fixture

 In NUnit, test methods are encapsulated in a test
class, called a test fixture.

 The test methods in a test fixture share a common set
of resources.

 The test class is marked with the [TestFixture]
attribute.

[TestFixture]
public class FindTest
{
 [Test]
 public void BiggestFirst()
 {
 Assert.AreEqual(Find.Max(4, 3, 2), 4);
 }
 [Test]
 public void BiggestMiddle()
 {
 Assert.AreEqual(Find.Max(3, 4, 2), 4);
 }
 [Test]
 public void BiggestLast()
 {
 Assert.AreEqual(Find.Max(3, 2, 4), 4);
 }
 [Test]
 public void BiggestMiddleBigLast()
 {
 Assert.AreEqual(Find.Max(2, 4, 3), 4);
 }
}

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 49
 All Rights Reserved

Test Runner

 An essential component of an effective unit testing
system is a facility to automatically run the tests.

 A test runner is a program that automatically
discovers test cases, runs them, and reports on the
results.

 An example of a test runner is the nunit.exe program.

 A test runner uses .NET reflection to dynamically
discover and execute test methods.

 The nunit.exe test runner shows test methods
grouped under test classes in a tree view control.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 50
 All Rights Reserved

Test Case Hierarchy

 The test cases are arranged in a hierarchy,
represented in nunit.exe by the tree view.

 Top node represents the assembly containing the test code.

 Next come nodes for each namespace in the assembly.

 Next come nodes for each text fixture in the namespace.

 The leaf nodes represent test cases.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 51
 All Rights Reserved

Ignoring Tests

 A test case can be made non-runnable by marking it
with the [Ignore] attribute.

[Ignore]
[TestMethod]
public void BiggestMiddle()
{
 Assert.AreEqual(4, Find.Max(3, 4, 2));
}

 This feature may be useful during development to
temporarily disable running certain tests which will
be known to fail.

 The system being tested may have a known bug or have not
yet implemented certain functionality.

 It may also be useful to temporarily disable certain
long-running tests that are known to succeed.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 52
 All Rights Reserved

Test Case Selection

 If you click the Run button in nunit.exe, you will run
all the runnable test cases in the assembly.

 As discussed on the previous page, a test case can be made
non-runnable by marking it with the [Ignore] attribute.

 You can run only the test cases under a particular
node by right-clicking on the node and selecting Run
from the context menu.

 You can run an individual test case in the same way,
or simply by double-clicking on the test case leaf
node.

 The tree view will show all the nodes that are not
selected in gray, and the other nodes according to the
result:

 Green with a check mark if the test case passes

 Red with an X if the test case fails

 Yellow with a question mark if the selected test case is not
run for any reason

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 53
 All Rights Reserved

Demo: Using nunit.exe

 Let’s demonstrate a number of features of the
nunit.exe test runner using an extension of the
CSharpMax program you did in the lab.

 See Demos\CSharpMax, which is backed up in the directory
Chap02\CSharpMax\Step3.

1. Examine the code in Find.cs. In the Find class we’ve added a
method Div().

public static int Div(int x, int y)
{
 return x / y;
}

2. In the FindTest class we’ve marked the second test method

with the [Ignore] attribute.

[TestFixture]
public class FindTest
{
 [Test]
 public void BiggestFirst()
 {
 Assert.AreEqual(Find.Max(4, 3, 2), 4);
 }
 [Test]
 [Ignore]
 public void BiggestMiddle()
 {
 Assert.AreEqual(Find.Max(3, 4, 2), 4);
 }
 ...

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 54
 All Rights Reserved

Demo: Using nunit.exe (Cont’d)

3. We’ve provided a second test class DivTest to test the Div()
method.

[TestFixture]
public class DivTest
{
 [Test]
 public void SimpleDivide()
 {
 Assert.AreEqual(Find.Div(10, 2), 5);
 }
 [Test]
 public void DivideByZero()
 {
 // This does not raise an exception!
 Assert.AreEqual(Find.Div(10, 0), 5);
 }
}

4. Build the class library.

5. Start nunit.exe and do File | Open to load CSharpMax.dll.
Notice the hierarchy of test cases.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 55
 All Rights Reserved

Demo: Using nunit.exe (Cont’d)

6. Click the Run button to run all the runnable test cases in the
assembly.

 In the DivTest class, one test case fails and one succeeds.
Note that an exception causes a method to fail as does an
assertion failure; the result is reported in red, rather than
causing the test runner to abort (as happened earlier in the C
language example we looked at earlier).

 In the FindTest class, three tests cases run (all of which
succeed), and one test case is not run (the one marked by
[Ignore]).

7. Experiment with running selected test cases by right-clicking on
a node and selecting Run from the context menu. You can also
simply double-click a leaf node to run a single test case.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 56
 All Rights Reserved

Coloring Parent Nodes

 A parent node is colored red with an X if any test case
in the subtree fails.

 A parent node is colored yellow with a question mark
if any test case in the subtree does not run.

 A parent tree is colored green with a check mark if
all the test cases in the subtree succeed.

 In our example, remove the [Ignore] attribute from the
BiggestMiddle() method and run again.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 57
 All Rights Reserved

Test Setup and Tear Down

 The NUnit Framework provides custom attributes
that you can use to set up and tear down tests.

 You can ensure that all tests are initialized in the
same manner by means of the [Setup] attribute.

 Place this attribute before a method, which will then be called
prior to the execution of each test in the test fixture.

 You can ensure that all tests are cleaned up in the
same manner by means of the [TearDown] attribute.

 Place this attribute before a method, which will then be called
immediately after the execution of each test in the test
fixture.

[TestFixture]
public class QueueFixture
{
 private MyQueue que;
 private int SizeQueue;

 [SetUp]
 public void SetupQueue()
 {
 que = new MyQueue(SizeQueue);
 Console.WriteLine(
 "Setup up queue of size {0}", SizeQueue);
 }
 [TearDown]
 public void TearDownQueue()
 {
 Console.WriteLine("Tear down queue");
 }
 ...

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 58
 All Rights Reserved

Test Fixture Setup and Tear Down

 The NUnit Framework also provides custom
attributes that you can use to set up and tear down
test fixtures.

 While test setup and teardown are done on a per-method
basis, test fixture setup and teardown are performed on a per-
class basis.

 A method marked with the [TestFixtureSetup] attribute is
called once for the entire test fixture, before any of the test
cases are executed.

 A method marked with the [TestFixtureTearDown]
attribute is called once for the entire test fixture, after all of
the test cases are executed.

[TestFixture]
public class QueueFixture
{
 ...
 [TestFixtureSetUp]
 public void SetupQueueFixture()
 {
 SizeQueue = 3;
 Console.WriteLine("Setup up queue fixture");
 }
 [TestFixtureTearDown]
 public void TearDownQueueFixture()
 {
 Console.WriteLine("Tear down queue fixture");
 }
 ...

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 59
 All Rights Reserved

Test Setup Example

 A version of the tests for our queue class illustrates
test setup and teardown.

 See Chap02\QueueSetup.

 The relevant code for this example was shown on the
previous pages.

 Here is the result of running these tests under NUnit. You can
examine the console output from the Text Output tab.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

NUnitCs Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 60
 All Rights Reserved

Using NUnit with Visual Studio

 Instead of running nunit.exe as a standalone
program, you may find it convenient to start NUnit
from within Visual Studio.

 There are commercial add-ons to NUnit that you can use.

 However, you can gain much of the convenience without any
add-ons by making a simple setting to your Visual Studio
class library project.

 We will illustrate by configuring the QueueSetup
example to run the tests from within Visual Studio.

 Do your work in Demos\QueueSetup, which is backed up in
Chap02\QueueSetup.

 The final project is in Chap02\QueueSetupVs.

 Also it is possible to tightly integrate unit test
frameworks such as NUnit into Visual Studio by
making use of a test adapter1.

 However, the Visual Studio test runner is not as fully
featured as the NUnit test runner.

1 At the time of updating this course an NUnit test adapter for Visual Studio 2015 was not available.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

