Object-Oriented
Programming in C#

Student Guide

Revision 4.7

Object Innova tions Course 4101

Object-Oriented Programming in C#
Rev. 4.7

Student Guide

Information in this document is subject to change without notice. Companies, names and data used
in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Object
l \ .1 VA] ‘ 0 N S ™ jis a trademark of Object Innovations.

Authors: Robert J. Oberg, Howard Lee Harkness

Special Thanks: Marianne Oberg, Sharman Staples, Paul Nahay
Copyright ©2015 Object Innovations Enterprises, LLC. All rights reserved.
Object Innovations

877-558-7246

www.objectinnovations.com

Printed in the United States of America on recycled paper.

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC ii
All Rights Reserved

Table of Contents (Overview)

Chapter 1 NET: What You Need To Know
Chapter 2 First C# Programs

Chapter 3 Data Types in C#

Chapter 4 Operators and Expressions
Chapter 5 Control Structures

Chapter 6 Object-Oriented Programming
Chapter 7 Classes

Chapter 8 More about Types

Chapter 9 Methods, Properties and Operators
Chapter 10 Characters and Strings

Chapter 11 Arrays and Indexers

Chapter 12 Inheritance

Chapter 13 Virtual Methods and Polymorphism
Chapter 14 Formatting and Conversion
Chapter 15 Exceptions

Chapter 16 Interfaces

Chapter 17 NET Interfaces and Collections
Chapter 18 Delegates and Events

Chapter 19 Introduction to Windows Forms
Chapter 20 Newer Features in C#

Appendix A Learning Resources

Electronic File Supplements

Supplementl.pdf Using Visual Studio 2015

Supplement2.pdf Language Integrated Query (LINQ)

Supplement3.pdf Unsafe Code and Pointers in C#

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC
All Rights Reserved

Directory Structure

e The course software installs to the root directory
C:\OIC\CSharp.

Rev. 4.7

Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and so
on.

The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

The CaseStudy directory contains a case study in multiple
steps.

The Demos directory is provided for performing in-class
demonstrations led by the instructor.

Supplementary course content is provided in PDF files in the
Supplements directory. Code examples for the supplements
are in directories Suppl, Supp2 and Supp3.

Copyright ©2015 Object Innovations Enterprises, LLC iv
All Rights Reserved

Table of Contents (Detailed)

Chapter1 .NET: What You Need t0 KNOWcccoiiiiiiiiiieiccs e 1
(CCT a0] =T T [OOSR 3
NET: What IS Really Happeningccoeoiiiiiiiie e 4
NET Programming in @ NUEShEllcoiiiiiie e 5
NET Program EXQMPIE.........ccveiiiiiiiece s sra e sra e nns 6
VIewing the ASSEMDIYooiiiie e 7
Viewing Intermediate LanQUAGE.coiveuiiirriieieiie sttt sttt sbe e 8
UNderstanding NET ..o 9
ViISUAL STUTIO 2015, et b bbb nne s 10
Visual STUAIO SIGN IN....oiii e e 11
Creating a Console APPHCALION.........ccviiiiieiieiiee e e 12
AAAING 8 CH FHIE......oiie bbb 13
Using the Visual Studio TeXt EdItOr.........cceiiiiiriieiiec e 14
INEEITISENSE ..ttt ettt bbb e b ettt nns 15
Build and RUN the PrOJECT. ..ottt 16
PAUSING the OULPUL. ..ottt bbb 17
Visual C# and GUI PrOgramsceoueiueiienreiesiesieesieseesaesaeseesaessesseesseesssssesssesssesseens 18
INET DOCUMENTALIONutviiieiiiiie ittt sttt ettt bbb sre e e e 19
SUMIMAIY ...ttt ettt b et ekt 2k b e e h e e st e e ket e me e e eb e e e ab e e b et e mb e e nhn e e mbeeabeeenbeenrraannes 20

Chapter 2 First CH# PrOgramsccouoiieiiiieiienieeie sttt sae e sreesaeanee s 21
HEHO, WOTTU ...t bbbttt be s 23
Compiling, Running (Command LiNE)cc.oiuriierieiiriieiiesee et 24
Program STIUCLUIEoouviiieii ekt 25
NAIMIESPACES ...ttt ettt e b e kb e et bt e st e e s hb e e e s ab e e e nab e e e sbbe e e nbb e e s bbeeanbneeanneeeas 28
T (o 1= S SO PSPR TSRO 29
F N 41 T TP P TPPTTPPPRPPPPRPPPS 30
[L E= o] T SRR 31
(0 (= TSXS]] S SRS 32
F N [0 11 | S SRR 33
CalculationS USING CHo.voiieiie ittt sb et see s 34
SAMPIE PIOGIAM ...ttt b bbbt e e bbb b 35
More about OQULPUL IN CH ..ot sra et aaesaa e e sreeneaneeas 36
INPUL TN CH oottt et e et e st e et e e te e s be e s e eheeabe e seenneareenbeens 37
MOTE ADOUL CIASSES........eeeieiieite ittt sttt sttt b e be bbb e et e neesae e 38
INPUEWIAPPET CIASS ...ttt 39
ot aTo N o oo] - TSRS 40
USING INPUEVWIAPPET ...ttt ettt et et et e te e e saaesae e e e sreannnaneean 41
Compiling MUIIPIE FHIES....c..eeieee e s 42
Multiple Files in ViSual STUdIO.........ccviiiiiiiiiiiieeee s 43
The .NET FrameWOTKcviiiieieiiiiiese et 44
LD 2 ettt bbbt et nes 46

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC Y

All Rights Reserved

SUMIMAIY ...ttt ettt ettt ekt etk e e s bt e be e e mb e e ebe e e st e e b e e e mb e e nae e e mbeeabeeanbeenrraannes 47

Chapter 3 Data TYPES IN CH.....oooeieiiiieiieee ettt et 51
Y (] To T 1Y/ o 11T TSP 53
TYPING IN CH ottt st e te e n e b e e beene e sreeeeenes 54
TYPING TN CA ettt et e e st e ste e teeseesbe e e eneenreeneeanes 55
TypINg iN ViISUAI BASIC Bccuveivieiicie ettt 56
(O Y 0L OO PR OPPPPR 57
01 (T (=] I8 oL TP PP PPPPRPPR 58
INTEOET TYPE RANGE......oeoiiiiiieiie e 59
L1 =TT =T PSS 60
FIOALING POINE TYPESuviieieiiecie ettt ettt e aa e s teesae e e e steenreaneens 61
FI0AtiNg POINE LITEIAlSeoiieieie et st 62
IEEE Standard for FI0ating POINT............ccoiiiiiiiiiieeeseeeee e 63
e Tod T gL I/ o SRS 64
DECIMAI LITEIAIS.......eiiiti ittt e e 65
(O =T (o (< I/ oL USSP 66
(O T (ot g 1] - | SR 67
] (1o TS 68
ESCAPE CNATACLEISvvcviiiiie ettt ittt te ettt s e st e et e st e s te e besreesreenseaneesneens 69
BO0IBAN TY PR ..ttt ettt bbbt r e b e ae e 70
IMPIICIE CONVEISIONS.....ciiiiiiieiteste ettt bbbt 71
(0] Lo O] 017 =T 6] o] S SSS 72
CONVEISIONS EXAMPIEooviiieitie ittt sttt ra et e e re e te e sreenas 73
N TELEE L o] Lo Y o L= OSSO RPPU R 74
7 o T T S PPRSSSRSR 75
SUIMIMIATY <.ttt ettt et e e eab e £ e Rttt e ek b e ekt e e bt e et e et e e e bt e e e nbeeeanbeeeanes 76

Chapter 4 Operators and EXPreSSIONS. ...t 79
Operator CardiNAIITYccooueiieieiei e 81
F N g 11 Te (ol @ o T=T - (0] £SO 82
Y UL o] [ToF: LA o] o S S POSPSRSS 83
DAV o] o PSPPSR 84
AJUITIVE OPBIALOIS. ...ttt bbbt b b b sb b e be e b e e 85
INCremeNnt aNd DECTEMENT.......oiuiiiitirieiieieie et bbbt nbe bt b eneas 86
Example: A Small CalCUlAtorc.coviiiiecece e 87
RElAtioNal OPEIALOrSc.eiiieiiiie e sbe bt e e sbe et e sbesbeanee s 88
Conditional LOgiCal OPEIALOrScc.eiiiiiieieieie sttt sb st sb e abe e 89
Short-CirCUIt EVAIUALIONoviiiiieiiiicieee e 90
Ternary Conditional OPErator...........c.ciieiieieiieie et e e a e 92
BILWISE OPBIALOIS ... ittt sttt e bt e b nbe et e s e sbeebeesbasbesbeaneeas 93
Bitwise LOGICAl OPEIALOIScuveuieieieiieitciiesieeee ettt bbb 94
BItwise Shift OPEratorS........uciviiieiieiieie et eee st et e e e ae e e sreenaeaneeas 95
ASSIGNMENT OPEIALOIS.vecviiiiieite ettt ste et e e e te et esb e e ste e b e sreesreenseareenreens 96
(O =TS 0] USROS 97
e =To0cTo [T oo PR SRRPSR 98

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vi

All Rights Reserved

AASSOCTALIVITY ..ttt b et e et b e e bt e e e sre e sbeentesreenbe e 99

CRECKING ..t bbbt 100
LD 4 bbbttt ne s 101
SUIMIMIATY .ttt ettt e b e e e Rt e e e bt e e e Rt e e e b e e e kb e e et e e e bb e e e bb e e e ntneennbeaean 102
Chapter 5 Control STrUCTUES.......c.oiiiieece et 105
) = TSRS UR RPN 107
BIOCKS ..o bbbt rns 108
[0 T0] oL T TP PPROPPRPP 109
WHITE LLOOP ..ttt 110
o [T ATLY a1 [= oo SRS 111
L0 g 0 0] o1 PSSP OTRRUROPR 112
FOrUP EXAMPIE ... e e 113
FOrDOWN EXAMPIE ... 114
N -\ T ST PPRTSPPRPPPN 115
FIDONACCT EXAMPIEocovrinieiiicece e sre e e 116
(0] €216l o1 N0 To o U PT TR RTRRTPRTS 117
0] 127 | 118
(0101011] T USSP TPV PP PRPRPRTPR 119
0101 (o T PRSP TSPPROPPRRPRN 120
Structured ProgramimMiNg........c.oocceoeeieieeesiee et sae e sre e sreenee e 121
Structured Search EXampPle...... ..o 122
[V UL o] L= =11 T Lo SR 123
SWITCR 1. ettt bbb 125
SWICH 1N CH# N0 C/CH ..ottt nneas 126
. oI T PSSRSO 127
SUIMIMIATY <.ttt bttt a bt seab e £ e Rt e e shb e e et e e ekt e e e bb e e e bbb e e be e e anbneeantene s 128
Chapter 6 Object-Oriented Programmingccccceereriienenienieeseesesieeseesee e seeneesnes 131
(0] o] 101 1 TP S TP PSPPIV PRPPPRPRTPTR 133
Objects iNthe Real WOII...........coveiiiiecieece et 134
(@] o T=Tot 1Y oo L] SRS SRORSR 135
Reusable Software COMPONENTScooiiiiiiieiiee et 136
ODJECES TN SOTEWAIE.......ccveeeeeee et bbb bbb 137
State AN BENAVIOTccuiiiiiiieiie bbb 138
ADSTTACTION ...ttt bt n e 139
g L= oS0 F= U1 o o T RSO PR R 140
(O] - SO 141
INNEITTANCE CONCEPL ... ittt esre e te s ae e e esneeneenrens 142
INNEFItANCE EXAMPIE .. .eiivieeece ettt et te b e e nne s 143
Relationships amONg CIASSES.cciiiiiiiiiiiesie et 144
POIYMOIPNISIN ...t ae et 145
Object Oriented Analysis and DESIGN........ccviueriveriiiieiiese e siee e e see e eee e sre e 147
USE CBSES ..ttt sttt ettt ekttt ekt e et b et b e et e b e et e e R e et e R et e R e nR e e b e Rr e b e nnr e ns 148
CRC Cards and UIML ..ottt nbeenee s 149
SUMMABIY .t b et h bbb e e nb e nne s nne e 150
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC vii

All Rights Reserved

(O gF=T o) (=] g O F- - ST 151

Classes @S StrUCLUIE DatA.........c.cveririiriieieierie et 153
(08 F T 1T [@ o =Tt £SO PSS 154
RETEIBNCES. ...ttt bt bbb et nes 155
Instantiating and UsSINg an ODJECT.........cciiiiiiieieieereeeeee e 156
ASSIgNING ODJECt RETEIENCES......eciieiiiieie et nneas 157
Garbage COIECHIONcc.eeveeiicee et nne e 158
SAMPIE PrOGIaM.....viiiiiiiciieteee ettt sttt et e sbe et et esreenbeenee s 159
IMBENOAS ... ettt et e et e s e te e eneenre e nnes 160
Method SYNtaxX EXAMPIE........ccveiiiieiieie e 161
PUDIIC @GN PIIVALE ... 162
F N 1511 = Tod o] RPN 164
ENCAPSUIATION ...ttt 165
INITIAHZATION ..ottt 166
Initialization With CONSIIUCTONScviiiieieiesie e 167
DEfaUIt CONSIIUCTONviiiii ettt nre e 169
L1 OSSPSR 170
TestAccount SAMPIE PrOgramcc.icueiieiireie ettt nae e nneas 171
Static Fields and MethOaS.c.uieiiiiiiic s 173
SEALIC MELNOAS ..o e e ae e nne e 174
SAMPIE PIOGIaM ...ttt ettt nn et 175
SEALIC CONSIIUCTON ...ttt sttt b bbb 176
Constant and Readonly FIeldsc.coveiiiiiiieie e 177
. oI TSRS 178
SUMIMAIY ...ttt ettt b ettt e eh b e e b e e b b e e bt e ehe e et e e e be e e nbeenbeeenbeenbeeentee e 179
Chapter 8 MOore aDOUL TYPESc.oiiiiiiiisie ittt 183
OVEIVIEW OF TYPES IN CH..oeeeie ettt ettt ne e nne e 185
SETUCTUIES ..ttt h ettt ekt e ke e s ab e e bt e e st e e beesabeenbeesnbeebee e 186
Uninitialized Variablesoovoiiii i 187
B IECES] 8 o 00 = o PRSI 188
COPYING 8 STIUCTUIE ...ttt n e s be e b e s e sreenbeeneeas 189
[0] (= o3OS 190
[10 (=] @0 o) V2ot PSS 191
RESUILS OF HOEl COPYocuveieiiiece et 192
ClaSSES AN STIUCESeevieiieiie ettt e e b e e sreern e neenbe e 193
ENUMETALION TYPES ...ttt bbb bbb nne s 194
Enumeration TYPES EXAMPIESccveiiiieiiee et 195
RETEIENCE TYPES ..ttt e et e et e e sbeeanb e e sE e e e tn e nneeenes 196
(08 1 Y] 1SRRI 197
(0] 0] 1= 0! ST TSP ST P PP PV PRPPPRRPOR 198
] (1o USSR 199
F N V£ T PP UPR 200
DETAUIT VAIUBS ...ttt e 201
BOXIiNG aNd UNDOXINGcuvoiiiiiiiiiii e 203
Implicitly Typed VariablesScocveiiiiiieiee e 204
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC viii

All Rights Reserved

Implicitly Typed Variables — EXample.........ccooooiiioiiii e 205

. oI USSR 206
SUIMIMIATY <.ttt sttt e sttt e s st e e e sttt e s bt e e e bt e e e bbb e e bb e e e kb e e e be e e antneeanteee s 207
Chapter 9 Methods, Properties, and OpPeratorsccocveeiieevveresieese e 209
Static and INStaNCE METNOUSccuviiiiieiiee e 211
METNOT ParGMETEIS ...ttt 212
NO “Freestanding” FUNCLIONS IN CH.......c.coveiiiiieiiecece et 213
Classes with All Static MethOdScooiiiiiiieie e e 214
ParaAmMELEr PASSINGc.vieitiitiiti ettt b bbb 215
Parameter TEIMINOIOQYccvviieieeieeie et e e ae e sraesreenee e 216
VAUE PAIAIMELETSc.viiieiicieeieie ettt bbbttt sbe b sae e 217
RETEIENCE PArAMELEIS .. .oveeiiiiieee ettt nre e 218
OULPUL PAIMELETS. ... nne e 221
STIUCTUIE PArQMETEISeeeeie ettt 222
ClaSS PArAMETEISveivieieeiieieie ettt sttt st bbb e e e e 223
MEthOd OVEIIOATINGccueeiiiiiiiiieeie e et 224
. 101 PSSR 226
Modifiers as Part 0f the SIgNALUIEccceeieeiiie e 227
Variable Length Parameter LSScccooviiieiieii e 228
0] 01T L O RTTORTRTR 229
Properties EXAMPIES ..ot 230
AULO-IMPleMENtEd PrOPEITIES.c.ciiieiieiieeciie et sie e sre s 233
Auto-Implemented Property EXamMPIe........ccooviiiiiieiiiieiee e 234
101 T USRS 235
Operator OVEIIOATINGoveieieiiie ettt 236
T L0 o] L3 o (0o > o SRR 239
Operator Overloading in the Class LibDraryccccocciiiiiiieiiiie s 240
SUMIMAIY ...ttt ettt ettt h £ e bt e ekt e e bt e e ket e R e e e he e et e e ebeeenbeenaneenbeeanneennee e 241
Chapter 10 Characters and STFINGScocoieeiiiiriiee e ees 245
(O g L= Tod (=T £ RSSO P VTP UPSRSRPTN 247
SAMPIE PrOGIaM ...ttt ab bbbt e st e sbeenbeeneesreenbeenee s 248
(O F= T o (< 0o -1 PSSR PPTR 249
ASCI AN UNICOUR.......ciuiiiiiiiieie e ettt 250
ESCAPE SEOUENCESeiiviiie ittt ettt ettt et e et e s b e e s be e e s nn e e e s 251
Y [0SR 252
SEIING ClASS ..ttt bbb bbbt en et nnen b 253
String Literals and INItialiZationccooviiieii i 254
(O] Tor= 110 =LA o] PSSR PRP SRR 255
L0 [R URUURTTRTUTUE RO 256
Relational OPEIatOrsScviiiiiiiiere et 257
SEANG EQUAITLY ...ttt e e e e naeenee s 258
SErNG COMPAIISONS.....viivieiteeieeie ettt e e re et e s este e te e e e steeteaseesreesaeeneesreenseaneens 259
SErNG COMPAITSON ...ttt sttt sttt e st sbe et e sbeesbeesbeeneesreenbenneeas 260
SEIING TNPUL .t b ettt n b 262
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC iX

All Rights Reserved

String Methods and PrOPertiS.coioiiiiiiieiieie e 263

SEINGBUIIAET ClASS ...t 265
StringBUIlAer EQUANITYc.eeveiieeee et 267
Command LiNe AFQUMENTS.........ciiiiieieiie it ese et e et sa e e e e sreesreeaesreesaeesesneesreenneas 268
Command Line Arguments in the IDE ..., 269
COMMANG LOOPS ...tttk ettt e bbbttt et nb bt b 270
SPHITEING @ SEIING .ot reenreennearaenne e 271
LAD L0 1ttt b b n e n s 272
SUMIMAIY ...ttt ettt stttk h e et e ekt e e bt e s b st et e e she e ekt e ebe e e nbeenaneenbeeaneeannee e 273
Chapter 11 Arrays and INAEXEIS. ..o e 277
F N £ T PRSPPI 279
ONE DIMENSIONAI AITAYS .. veenviiiieitieieeie sttt sttt sbeesbesnaesreenbeeneeas 280
SYSTEIMLATTAY ..ttt b bt e bt sn e e bt e s e nneeane e 281
SAMPIE PrOQIAIM...... oottt e estaesteaseesneesaeenaesreeseeeneeas 282
Random NUMDEr GENEIALIONcoiviieieieie ettt snenre s 283
NEXE MEENOAS. ...ttt nres 284
JAGOEU AITAYS ...ttt b bbbt e bbbttt 285
RECTANGUIAT ATTAYS ..ottt ettt e sttt et e s e steeaeeneesnaeeeaneesreenneanes 286
AITays @S COECLIONSccveiii et 287
Bank Case StUAY: STEP L....cceiiiieiieiieee it 289
ACCOUNT CIASS ..ttt et te et ebeeneesneenaeenneenes 291
BANK ClaSS ...t bbbt 294
TESIBANK ClASS ...ttt bbb nes 297
F N1 0O - TSP 299
RUNNING the CaSE STUYoiiiiiiiiiiiiieiee e 301
INOEXEIS ..ttt b bbb Rt b bbbt n b e 303
ColorIndex EXample PrOgramc.cooveiueciiiiieiieieseeseeies e ssesee e saeeseesseesreenesnaesneens 305
USING the INUEXET ...ttt sttt sttt st et nne e 306
7 o I USSR 307
SUIMIMIATY <.ttt sttt s et s sttt e ea b e e e e s b e e e bt e e bt e e e bbb e e n bt e et e e e bbeeantneenntene s 308
Chapter 12 TNNEFITANCEccvoiieece et ens 311
INheritance FUNAAMENTALS..........cooiiiieie et 313
INNEIITANCE 1N CH...oeeee bbbt 314
SINGIE INNEIITANCE ...t e e sre e e ne e e ens 315
ROOL ClaSs — ODJECTveiee ittt be s 316
AACCESS CONTIOL ...ttt e st te st e e s e s e sneenneeneeanes 317
PUDBIIC Class ACCESSIDIITY........ccciieieiieiiee e s 318
Internal Class ACCESSIDIIILYccviiiiiee e 319
Member ACCESSIDIIITYooiiieie e s 320
Member Accessibility QUAHTIErS.........cooiiiiiiiiiee e 321
Member Accessibility EXamPle........cov i 322
L=y aToTo I o TTo [T SR 323
Method Hiding and OVErTIdingcccooviiiiiiiiiiieeee e 324
Example: Method HIdING......cc.ooiiiiiiiee e 325
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC X

All Rights Reserved

INIHAIIZATION ... 326

Initialization FUNAAMENTAISccviiiiieiiee e 327
Initialization Fundamentals EXamplecccooovviieiicic i 328
DEfaUIt CONSIIUCTON ...ttt ettt sbenre s 329
OVErloaded CONSLIUCTONSoieeiiiieiieeie sttt et re b 330
Example: Overloaded CONSIIUCTONSccuiiiieiiierieriesii e 331
INVOKIiNg Base Class CONSIIUCIONScueiveireieeieseesie e see e see e ae e e e snee e e 332
Base Class Initialization EXamMPIEc.cooveiiiiiiie e 333
Bank Case StUAY: STEP 2. ..ot 334
Bank Case StUdY ANAIYSIS.......ocoiiiiiiiiieese e 335
AACCOUNL ...ttt e e e me e e s e e e e n e e e n e nnn e e neennne s 336
ChECKINGACCOUNL......c.uiiiieitieie ettt te et e esteeaesreesraenneareenneens 337
SAVINGSACCOUNT ...ttt sttt sttt e e bt e st e et e b e nbeeseesbeenbeeneesbeebe e 339
TESTACCOUNT ...ttt ettt ettt e e ssb e e e bt e e abb e e e be e e snbneeannreens 341
RUNNING the CaSE STUAYveieeieee et 342
LD L2 ettt b b ne et e rns 343
SUMIMAIY ...tttk ettt ekt e bt et e ekt e e bt e e b s e e bt e she e et e e ebeeenbe e naneambeeeneeannee e 344
Chapter 13 Virtual Methods and Polymorphismcccoociiiiiiine e 347
Introduction to POlYMOIPRISMc..cuiiieiicce e 349
ADbstract and Sealed CIASSEScccouiiiriieiiie e 350
Virtual Methods and Dynamic Binding..........cccccoviiiiiiiiiese e 351
Type Conversions iN INNEIMHTANCEcveiveiie e 352
Converting Down the HIErarchyccoeiiii i 353
Converting Up the HIBFarchy ... 354
ViIrUAL IMBTNOUS ...ttt e e e e enes 355
Virtual Method EXAmMPIEoovveiiee e 356
ViIrtUal IMEtNOO COSE ..o bbbt 357
MELNOA OVEITIAINGeeveiiiie ettt sre e enes 358
The Fragile Base Class Problem ... 359
oAV T 1o (o =) ATV] (o S 360
a0 Y10 o] 4] S S PR 361
Polymorphism USING “TYPE TagS” .. .oueieeierienieeniesie e sie e et ste et sre b snee s 362
Polymorphism USING VIrTUALoooiiiiiiiiiiiee e 363
PolymorphiSm EXAMPIE........ooiiiieice et 364
ADSITACT CIASSES ...ttt bbbt sa e sb e e e e e 368
KEYWOIT: GDSTIACT.ottt bbb e rnennee e 369
SBAIBU CIASSES ... vveteereietiesieeite ettt ettt e st e e e e st e sbe e e e seesteeteanesaneesbeeneeereenteaneeas 370
Heterogeneous COIECTIONSc.ooveieiie e 371
Heterogeneous Collections EXaMPIE.........c.coveiiiieiicie e 372
Bank Case StUAY: STEP 3. ..ot e s 373
CaSE STUAY CIASSESveueeeieeitc ettt bbb 374
RUN the CaSE STUAYcveeieiiiiieee ettt e e e e re e enes 376
AACCOUNT ...ttt b et b e e st e b e e Re e e b e e e mn e e be e e mr e e nbeenrneeneennneas 377
CheckingAccount, SAVINGSACCOUNTeeiuiiieiieieeiesieestee e ee e see e e saesneesreeseesneens 378
B F V0] g Lo N 1 RSP PS 379
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC xi

All Rights Reserved

. oI 1 TSRS 381
SUIMIMIATY <.ttt sttt e sttt e s st e e e sttt e s bt e e e bt e e e bbb e e bb e e e kb e e e be e e antneeanteee s 382
Chapter 14 Formatting and CONVEISION........cccueiviieiieieeie e sie e see e 385
INtroduction t0 FOrMATLING......cc.oiviiiiiiiiiieiee e 387
B 10151 1o USSR 388
TOSLHING IN YOUr OWN CIASSc.vvevieieciic ettt sttt nne s 389
USING PIACENOIAEIS ... e 391
FOIMAL STIINGS. ...ttt bbbttt e bbb b 392
SIMPIE PIACENOIAETS........eeieceiecee et re e 393
ControlliNg WIALNoceeece et 394
FOIMMAL STFING ..ttt ettt e b e b e neenre e 395
CUITENCY ..ttt b e bt E e et b e bt e bt e e ne e nne e 396
Currency FOrmat EXAMPIE.........c.coveiiiieiice ettt nne e 397
SHANG.FOIMMAL ...t e e ra e nte e e reeee e 398
PadLeft and PadRIGNT ..o e 399
Bank Case StUY: STEP 4...ccue ot 401
TYPE CONVEISIONSveiveiieiteeeesieesiee e s e ste e et este e e s seesteesaesseesteesseaneesaeenseeneesseenseaneenneas 402
Conversion Of BUIE-IN TYPESoiueii it 403
Conversion of User-DefiNed TYPESooiiiueiiriieiesieseeie et 404
User Defined Conversions: EXAMPIE...........coiiiiiiiiiineee e 406
LD L4 bbbttt r s 408
SUMMIATY .ttt bbbt e st e e aR R e e e S Rb e e hb e e bt e e kb e e et e e e bt e e e bbaeanbneeanbnae s 409
Chapter 15 EXCEPLIONS.......cciiiieiie ittt sttt et be e re e e e reete e e sreeneenes 411
INtrOdUCEION 10 EXCEPLIONS. ...c.viiuieiieeiicie e ettt e e te e e nreens 413
EXception FUNAAMENTAIS.........c.couiiieii et 414
NET EXCePtIoN HANGING.coiveiiiiie ettt 415
Exception FIOW Of CONEIOLcovoiiiiiiiiie e 416
Context and StaCk UNWINGINGooveieiieiieie e siesiese e se et snsesne e eneesneesseeneens 417
EXCEPLION EXAMPIEocvieee ettt 418
SYSTEM.EXCEPLION ...ttt sre e b e sreenbeenee s 421
User-Defined EXCePtion CIASSEScoiiiiiiiiiiieie sttt 422
User EXCeption EXAMPIEooviieee e 423
Structured EXCeption HanNAliNg..........cooveiieiiiic et 426
FINAHY BIOCK. ... oo bbbt 427
Bank Case StUY: STEP 5. 429
INNEE EXCEPLIONS ...ttt ettt ettt te e s e ra e ae e eana s neeneeaneennaenes 430
Checked Integer ArthMELIC........ccviiiiiicece et 431
EXAMPIE PrOGIAM ...ttt sb et 432
. oI TSP 433
SUIMIMIATY ..ttt ettt e s a e e s st e e e b bt e s bt e e e bt e e e kbt e e bb e e e bb e e e bbeeanteeeanbeae s 434
Chapter 16 INTEITACESccvce et sre e nne e 437
Q100 0T od o] o PSSRSO 439
INTEITACES 1N CH ... bbb b b 441
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC xii

All Rights Reserved

INterface INNEIITANCEo 442

Programming With INTerfaCes..........cceiiiiiiiiiiiieee s 443
IMpPlementing INtEITACESccuv it 444
USING N INEEITACEeeiiee et 446
Demo: SMAlINTEITACEo i e 447
Dynamic USE OF INTEITACESc.oiiiiiiiieieese e 448
DEMO: TrYINTEITACESvevve ettt e s re e nre e 449
(O L= L0 SRS 450
I @ 0 1=T - 10 T PO RTUU TP OUR PRI 451
Bank Case StUY: STEP B......ooveiieiieiiiieriesee bbb 452
Common Interfaces in Case Study —IACCOUNT.........cccueriirieiiieiiee e 453
ApParent REAUNTANCY.........c.ooiiiiiii ettt sae s 454
ISEALEIMENT ...ttt ettt e bt e bt e b e e be e enneenneeaneeas 455
IStAtEMENT IMETNOUS ..ot nnees 456
0§ T= o3 [o USSR 457
LT V7] 0 USSR 458
The IMPIEMENTALIONoiiiiie e 459
SAVINGSACCOUNT ...ttt skttt bbbttt et bbbt bbb e e nn e e 460
TRE CHIBNT ...ttt b e bbbttt 461
RESOIVING AMDIGUILYvveeeeieicece et 463
ACCESS IMIOTITIET ...ttt e ettt et s e e 464
Explicit Interfaces TeSt Programccccooiiiiiiiiiiiieiese e 465
SUIMIMIATY <.ttt ettt ettt e e ab et e eh e e e bttt e sab e ekt e e kbt e e bt e e bb e e e bbeeanteeeanteee s 466
Chapter 17 .NET Interfaces and ColleCtiONS..........cccocveveiieiiiiie e 467
L@ LT T USSR 469
COIIBCTIONS ... b bbbttt bbb bbbt e e b e 470
Array LISt EXAMPIE.. ..ottt 471
CoUNE AN CAPACITY ... veeveeiieieeie ettt sttt sb e sb et esbeebe e st e sbeesbeeneesneesbeeneeas 472
TOTACK LOOP ...ttt 473
N 1 Y20 N\ 0] = oo I SRS 474
AdAING 10 the LISteiiiiiieee e sttt e e re e te e e saeenas 475
REMOVE MELNOG..........ooiiie et 476
REMOVEAL METNOA.i it nre e e enes AT7
COlIECTION INTEITACESeiviciieiee bbbt 478
IEnumerable and IENUMEIALON........cocviiiiiieieie et 479
IEnumerable and IEnumerator Demo: ACCOUNELISE..........ccouervirieiiiiciieneee e 480
L@f0] | 1= ox 1 To] o ISR SRRRRN 481
I SO P SRR 482
A Collection of User-Defined ODJECES.........cceiveiiiiiiiececce e 483
(D0 o] [Tor 1L @] o] [T £ RPSP 484
A Correction t0 ACCOUNTLISE (STEP 1) ...vviuieieieriesiesiesie e 485
Bank Case StUAY: SIEP 7....oivieeeieiie sttt nre e enes 486
Copy Semantics and ICIONEADIEcoveiiiiece e 487
COPY SEMANTICS IN CH....oeeeee ettt re b 488
Shallow Copy and DEEP COPYccuerueruirieieieiesie sttt 489
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC xiii

All Rights Reserved

EXAMPIE PrOGIAM ...ttt e 490

RETEIENCE COPY ..ttt bbbttt bbbttt 491
MEMDEIWISE CIONE ...ttt 492
USING ICIONEADIE ... e 493
(00] oFo U g 1o 1ol @] o] 1T £ UR TSRS 494
SOMTING AN ATTAY ..ttt bbbt bt et e e bbb e e 495
ANALOMY OF AITAY.SOM ..ot re et e reenaeeneenneas 496
USING the 1S OPEIALOTc.eeiveeiecie ittt sre e sreeteeneesreeneanes 497
The Use of Dynamic Type CheCKINgc.cociiiiiiiiiiiieneee e 498
Implementing ICOMPArabIeooiiiiiie 499
RUNNING the PrOgram......c.ciiccecece e ene e 500
(@00 0] o] 1= C=TST0] (1] 1T] o [P SO SUSSPRS 501
LD L7 A ettt ettt e reereene et et rens 502
WIIEING GENEIIC COUR ...ttt 503
USING @ ClaSS OF ODJECT ..ouveviiieee e e 504
(CC T Lo Y 1= SRS SRS 505
GENEIIC SYNEAX TN CH ...ttt st re et enee s 506
GENEIIC EXAMPIC. ...t 507
GENEIIC CHIENT COUR.......eeeuiiiiii ittt 508
System.ColIECtIONS.GENEIIC.......cciieiieie ettt sae e sre e 509
.1 oI 4 = T USSR 510
ODJECT INTTIANZETS. ...ttt 511
COllECtioN INITIAHZETS.co.iiiiieiee bbb 512
ANONYIMOUS TYPBS 1.ttieittiieitieeeiieesstiee ettt asieesssbseesbseesbe e e ssbeeessbeeessbeeessbeesssseesssbeesnseeeansees 513
SUMIMAIY ...ttt ettt ettt £ bttt e e ket e b e e ek et et e e she e e bt e ebeeenbeenaneambeeanneennee e 514
Chapter 18 Delegates and EVENTS........cocuiiiiiiiiiiiieie e 519
Overview of Delegates and EVENTS............cciiieiiiii i se e 521
CallbDacKs aNd DEIBGALESoiuieiiiiee ettt sttt ne e 522
USaQE OF DEIBGALES ...ttt bbbttt 523
DeClaring @ DEIEQALE...........coveieeie e ne s 524
Defining @ MELNOMcoueiieiiee et et 525
Creating a Delegate ODJECT.........ooiiiiiiieee bbb e 526
CalliNg @ DEIBGALE. ..o bbb 527
N a0 0] 1 4 - | USSP 528
ANONYMOUS MELNOASeoiieiie it ste e ans 529
Combining Delegate ODJECLS........oiviiieiiere e e 530
F o1 11| Y T TP OUPRRP 531
DElEgAtEACCOUNT.CS . .eeviieiieceieie ettt e ettt et e e e e s e te e teeneearaeteeneenneenes 532
Lambda EXPrESSIONScveiuiiiieeieeiesiee ettt te et ste et esteeste e e steesteaseesnasannereeneenes 533
NaMEd MELNOM ... bbb sre e 534
ANONYMOUS IMETNOM ... 535
Lambda EXPression EXAMPIEccveiieiiieiieeee et 536
B NS e r e 537
EVeNts IN CH aNd INET ..o e 538
(O T 0] [0 [T A VZ=T 0 SO0 Lo [540
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC Xiv

All Rights Reserved

Chat ROOM EXAMPIE ... e 541

. oI OSSPSR 542
SUIMIMIATY <.ttt sttt e sttt e s st e e e sttt e s bt e e e bt e e e bbb e e bb e e e kb e e e be e e antneeanteee s 543
Chapter 19 Introduction to Windows FOIMSccccveiiiereiiieieere e 545
Creating 8@ WINAOWS FOIMS APD ..voiuiiiiiieieie e 547
PATIAI CIASSESe.veiiieiiiiesti ettt bbbt b bbbt n e 551
Windows Forms Event Handling..........ccooovevieieiie i 552
Add Events Tor @ CONLIOL..........ooioiiiiiiee s 553
EVENtS DOCUMENTALIONeiiiieieeie ettt sttt nne e nre e 554
(@8 (o XS] oo = T o 1 1 SRR ORR 555
LIStBOX CONLIOLveiiiiciiciieee bbbt 556
LISTBOX EXAMPIE ...ttt 557
oI OSSPSR 558
SUIMIMIATY ..ttt ettt s e e s sttt e s st e e e s b e e s ab e e e bt e e e kbt e e bb e e e bb e e e beeeantneennteee s 559
Chapter 20 Newer Features iN CHcccoviieiiie e 563
AYNAMIC TP ettt bbbt b bbbt bttt e n e 565
RUNLIME Error EXAMPIEoiviie e 566
dYNAMIC VEISUS OBJECT......ccieiiiie ettt sre e nne e 567
Behavior OF ODJECT.......ccuiiie e e 568
Behavior OF AYNAMICooiiiiii e 569
NAMEA AFGUIMENESeevieeiieiieie et sie et teete e ste et e e sbeeaesseesreeaeareesseeneeaneesreeneennes 570
OPLIONAL ATQUIMENTS.eiiieciice sttt ste et e e reestesneesaeesaeennesraenreeneeas 571
2700 QO TSRS 572
UsIiNg Optional ATQUMENTScviiiiiiiriiieeieieie et sne e nne s 573
Variance in GENEriC INTEITACEScviiiiiiiiiie et 574
CoVvarianCe EXAMPIEcoveiiiie ettt e et te e sre e sae e e e nreenee s 575
Variance With ICOMPArEr<T > .. .ottt ae e nneas 576
Interfaces With Variance SUPPOITuiviieiiiiiiieie s 577
ContravarianCe EXamMPIE.........cccuoiiiiiiiee et sre e e nne e 578
Asynchronous Programs iN CH# 5.0ccceeiiiiiiecie sttt 579
Task and TaSKSTRESUITSoviiiieiecicee s 580
AYSNC METNOUS ... bbb bbbt 581
ASYNC EXAMPIE ...t e naenne s 582
SYNCAIONOUS Call......c.oioiiiiicice et re e naeareeneeas 583
ASYNC CallL.oei ettt b et b e e ne s 584
TRIEAAING ...t ettt 585
NEW FEATUIES TN CH B.0.... et a e saenre s 586
NUT-Conditional OPEIALOr.........cviiieieeiecie e sre e 587
SUMIMAIY ...ttt ettt b e et e ek e e e bt e e b s e e bt e she e e ke e ebeeenbeeeaneenbeenbaesnnee e 588
Appendix A Learning RESOUICESccouiieeiiiriesiierieaie ettt 589
Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC XV

All Rights Reserved

Rev. 4.7 Copyright ©2015 Object Innovations Enterprises, LLC XVi
All Rights Reserved

CSharp Chapter 1

Chapter 1

NET: What You Need to Know

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 1
All Rights Reserved

CSharp Chapter 1

NET: What You Need to Know

Objectives

After completing this unit you will be able to:

Describe the essentials of creating and running a
program in the .NET environment.

Build and run a simple C# program.
Use the ILDASM tool to view intermediate language.

Use Visual Studio 2015 as an effective environment
for creating C# programs.

Use the .NET Framework SDK documentation.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 2

All Rights Reserved

CSharp Chapter 1

Getting Started

e From a programmer’s perspective, a beautiful thing
about .NET is that you scarcely need to know
anything about it to start writing programs for the
NET environment.

— You write a program in a high-level language (such as C#), a
compiler creates an executable .EXE file (called an
assembly), and you run that .EXE file.

e Even very simple programs, if they are designed to do
something interesting, such as perform output, will
require that the program employ the services of
library code.

— A large library, called the .NET Framework Class Library,
comes with .NET, and you can use all of the services of this
library in your programs.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 3
All Rights Reserved

CSharp Chapter 1

NET: What Is Really Happening

e The assembly that is created does not contain
executable code, but, rather, code in Intermediate
Language, or IL (sometimes called Microsoft
Intermediate Language, or MSIL).

— In the Windows environment, this IL code is packaged up in
a standard portable executable (PE) file format, so you will
see the familiar .EXE extension (or, if you are building a
component, the .DLL extension).

— You can view an assembly using the ILDASM tool.

e When you run the .EXE, a special runtime
environment (the Common Language Runtime, or
CLR) is launched and the IL instructions are
executed by the CLR.

— Unlike some runtimes, where the IL would be interpreted
each time it is executed, the CLR comes with a just-in-time
(JIT) compiler, which translates the IL to native machine
code the first time it is encountered.

— On subsequent calls, the code segment runs as native code.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 4
All Rights Reserved

CSharp Chapter 1

NET Programming in a Nutshell

1. Write your program in a high-level .NET language, such as C#.
2. Compile your program into IL.

3. Run your IL program, which will launch the CLR to execute
your IL, using its JIT to translate your program to native code as
it executes.

e We will look at a simple example of a C# program,
and run it under .NET.

— Don’t worry about the syntax of C#, which we will start
discussing in the next chapter.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 5
All Rights Reserved

CSharp Chapter 1

NET Program Example

e See SimpleCalc in the Chap01 folder.

1. Enter the program in a text editor.

// SimpleCalc.cs

//

// This program does a simple calculation:
// calculate area of a rectangle

public class SimpleCalc

{
static void Main()
{
int width = 20;
int height = 5;
int area;
area = width * height;
System.Console._WriteLine("area = {0}, area);
+
by

2. Compile the program at the command-line. Start the console
window via Start | All Programs | Visual Studio 2015 | Visual
Studio Tools | Developer Command Prompt for VS2015.
Navigate to folder \OIC\CSharp\Chap01\SimpleCalc.

>csc SimpleCalc.cs

3. Run your IL program SimpleCalc.exe

>SimpleCalc
area = 100

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 6
All Rights Reserved

CSharp Chapter 1

Viewing the Assembly

e You can view the assembly using the ILDASM tool".

>ildasm SimpleCalc.exe

=

File View Help

«» MANIFEST

EIIE SimpleCalc
----- » .class public auto ansi beforefieldinit
B _ctor : void()
-.8 Main : void()

.assembly SimpleCalc
K I

NEL D

! You can change the font size from the View menu.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 7
All Rights Reserved

CSharp

Chapter 1

Viewing Intermediate Language

e Double-click on Main:void()

B
Find | Find Next
Lmethod private hidebysig static woid Main() cil managed =
{

.entrypoint

/f Code size 28 (0xlc)

.maxstack 2

.locals init {(int32 v_0,

int32 v 1,
int32 V_2)

IL 0000: nop

IL 0001: 1dc.i4.s 20

IL 0003: stloc.0

IL 0004: 1dc.i4.5

IL. _0005: stlec.l

IL 0006: 1dloc.0

IL 0007: 1dloc.l

ITL 0008: mul

IL 000%: stloc.2

IL _000a: ldstr "area = {0I"

IL 000f: 1dloc.Z

IL 0010: box [mscorlib]System.Int32

IL 0015: call void [mscorlib]System.Conscle::WriteLine

IL 001a: nop

IL 001b: ret
} // end of method SimpleCalc::Main o
| | v o4
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 8

All Rights Reserved

CSharp Chapter 1

Understanding .NET

e The nice thing about a high-level programming
language is that you usually do not need to be
concerned with the platform on which the program
executes.

e You can work with the abstractions provided by the
language and with functions provided by libraries.

e Your appreciation of the C# programming language
and its potential for creating great applications will
be richer if you have a general understanding of
NET.

e After this course, we suggest you next study:
— Test-Driven Development (Unit Testing)

— .NET Framework Using C#

e And then, depending on your interests:

Data Access Windows Web

ADO.NET Windows Forms ASP.NET

XML Programming WPF ASP.NET MVC
WCF

ASP.NET AJAX

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 9
All Rights Reserved

CSharp Chapter 1

Visual Studio 2015

e While it is possible to write C# programs using any
text editor, and compile them with the command-line
compiler, it is very tedious to program that way.

e An IDE makes the process of writing software much
easier.

— An IDE provides convenience items, such as a syntax-
highlighting editor.

— An IDE reduces the tedium of keeping track of
configurations, environment settings and file organizations.

e You may use Visual Studio 2015 throughout this
course to create and compile your C# programs.

e Visual Studio 2015 is discussed in more detail in
Supplement 1.

e In this course you may use any version of VS 2015,
including the free Community Edition.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 10
All Rights Reserved

CSharp

Visual Studio Sign In

Chapter 1

e \When you first bring up Visual Studio on a new
device, you will be invited to sign in.

pq Visual Studio

Welcome. Sign in to Visual Studio.

Visual Studio will automatically keep you signed in, sync your settings
between devices, and connect to online developer services.

Learn mare

Sign in |

Mot now, maybe later.,

By signing in, you agree to the Visual Studio Online
Terms of Use and Privacy Statement

e Sign in with any Microsoft ID.

e By doing so you will synchronize your settings among

devices and connect to online developer services.

Rev. 4.7

Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

11

CSharp Chapter 1

Creating a Console Application

e \We will now create a simple console application using
Visual Studio.

— Our program is the same simple calculator we created earlier
that was compiled at the command line.

1. From the Visual Studio main menu, choose File | New |
Project.... This will bring up the New Project dialog.

N

. Choose Visual C# and “Console Application”.

w

. Leave checked “Create directory for solution”. 2

N

. In the Name field, type SimpleCalcVs and for Location browse
to C:\OIC\CSharp\Demos. Click OK.

New Project 2l
b Recent NET Framework 4.5.2 - Sortby: Default ~| i |i=||search Installed Templ O ~
4 Installed

c# - - "
N | | Windows Forms Application Visual C# Type: Visual C#
4 Templates A project for creating a command-ine
4 Visual CE 53 application
. _—) p
b Windows E_] WPF Application Visual C#
Web c#
Android E Console Application Visual C#
Cloud o
i0s g_] ASP.MET Web Application Visual C#
Reporting -
Silverlight :_] Shared Project Visual C#
Test 2)}
WCF =
¢ Online Click here to go online and find templates.
Mame: SimpleCalcys
Location: C:\OICYCSharpiDemos), - Browse... |
Solution: Create new solution -
Solution name: SimpleCalcys Create directory for solution
[] Add to source control
OK I Cancel

2 Examples in later chapters frequently do not have a directory for solution.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 12
All Rights Reserved

CSharp Chapter 1

Adding a C# File

e There will be a number of starter files. Expand
properties and select the files Assemblylnfo.cs (in the
Properties folder), App.config and Program.cs. Press
the Delete key.

e \We are now going to add a file SimpleCalc.cs, which
contains the text of our program.

1. In Solution Explorer, right click over SimpleCalcVs and choose
Add | New Item.... This will bring up the Add New Item dialog.

2. In the middle pane, choose “Code File.” For Name type
SimpleCalc.cs. Click Add.

Add New Item - SimpleCalcVs 2l
4 Installed Sertby: | Default B = Search Installed Templates (Ctrl+E) P~
4 Visual C# [tems C# - -
Code ‘I;j Class Visual C# Items Type: Visual CF Ttems
4 .
Data An empty dass definition
General .-o Interface Visual C# Items
B Web -
) -
Windows Forms h] Code File Visual C# Ttems
WPF
Reporting
SQL Server
Workflow
Graphics
PowerShell
I Online

Click here to go online and find templates.

Mame: | SimpleCalc.cs|

Add Cancel

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 13
All Rights Reserved

CSharp

Chapter 1

Using the Visual Studio Text Editor

e The empty file SimpleCalc.cs will now be open in the
Visual Studio text editor. Enter the following
program.

— Or you could just copy from Chap01\SimpleCalc\.

// SimpleCalc.cs

//

// This program does a simple calculation:
// calculate area of a rectangle

public class SimpleCalc

{

static void Main()

{

int width = 20;

int height = 5;

int area;

area = width * height;
System.Console._WriteLine('area = {0}, area);

— Notice that the Visual Studio text editor highlights syntax,

Rev. 4.7

indents automatically, and so on.

Copyright © 2015 Object Innovations Enterprises, LLC 14
All Rights Reserved

CSharp Chapter 1

IntelliSense

o A powerful feature of Visual Studio is IntelliSense.

— IntelliSense will automatically pop up a list box allowing you
to easily insert language elements directly into your code.

smpiecacs= -+ > [N
Miscellaneous Files = ¥z SimpleCalc
—?}_ﬁimpigtalc.cs
'y
| // This program does a simple calculation:
| // calculate area of a rectangle
—lpublic class SimpleCalc
1
- static wodid Main()
1
int width = 28;
int height = 5;
int area;
area = width * height;
System.Conscle.Writeline("area = {8}", area);
System.(cnacled
b @ SetWindowsSize B
} & Title
M TreatControlCAsInput
A WindowHeight
A WindowlLeft
A WindowTop
A WindowWidth
m Write
@ ' void System.Console.\
Writes the current line
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 15

All Rights Reserved

CSharp Chapter 1

Build and Run the Project

e Building a project means compiling the individual
source files and linking them together with any
library files to create an IL executable .EXE file.

e You can build the project by using one of the
following:

— Menu Build | Build Solution or toolbar button i or
keyboard shortcut Ctrl+Shift+B.

— Menu Build | Build SimpleCalcVs or toolbar button & (this
just builds the project SimpleCalcVs)®.

e You can run the program without the debugger by
using one of the following:

— Menu Debug | Start Without Debugging

— Toolbar button » (This button is not provided by default;
see Appendix A for how to add it to your Build toolbar.)

— Keyboard shortcut Ctrl + F5

e You can run the program in the debugger by using
one of the following:

— Menu Debug | Start Debugging
— Toolbar button * st

— Keyboard shortcut F5.

® The two are the same in this case, because the solution has only one project, but some solutions have
multiple projects, and then there is a difference.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 16
All Rights Reserved

CSharp

Chapter 1

Pausing the Output

e If you run the program in the debugger from Visual
Studio, you will notice that the output window
automatically closes on program termination.

e To keep the window open, you may prompt the user
for some input.

public class SimpleCalc

{

}

static void Main()

{

}

int width = 20;
int height = 5;
Int area;
area = width * height;
System.Console.WriteLine('area = {0}, area);
System.Console._WriteLine(

"Prese Enter to exit');
System.Console.ReadLine();

e This program is saved as a Visual Studio solution in
Chap01\SimpleCalcVs.

e Remember that you can always make the console
window stay open by running without the debugger
via Ctrl + F5.

Rev. 4.7

Copyright © 2015 Object Innovations Enterprises, LLC 17
All Rights Reserved

CSharp Chapter 1

Visual C# and GUI Programs

e Microsoft’s implementation of the C# language,
Visual C#, works very effectively in a GUI
environment.

— Using Windows Forms, it is easy to create Windows GUI
programs in C#.

Example: See Chap01\SimpleCalcGui

Rectangle Calculator =10] x|
Width | 20
Height 5 Calculate |
Area |1Dﬂ

e We will discuss GUI programming using C# in
Chapter 19.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 18
All Rights Reserved

CSharp Chapter 1

.NET Documentation

e .NET Framework documentation is available online.

— Use the menu Help | View Help. Other menu choices let you
add and remove content and to set a preference for launching
in Browser or Help Viewer.

— The .NET Framework 4.5 documentation now includes
documentation for .NET 4.6, which is the version of the
.NET Framework that comes with Visual Studio 2015.

,_é' MET Framework 4.6 and 4.5 - Internet Explorer
@ | ® Iﬁ https: //msdn.mi... .Oj| % 4+ JNET Framework 4.6 and 4.5 X

& Microsoft | Developer Network

Technologies ~ Downloads v Programs v Community ~ Documentatior

Was this page helpful? ‘Your feedback about this content is important. Let us know what you think. - I

¥ MSDN Library
. NET Development .NET Framework 4.6 and 4.5

4 NET Framework 4.6)
and 4.5

" What's New

.NET Framework 4.6 and 4.5 | Other Versions =

b Getting Started

¥ Migration Guide %] Note

! Development Guide

This .NET Framework content set includes information for .NET Framework versions ¢
the MET Framework 4.5, its point releases and the .NET Framework 4.6 release, see w
Framework System Requirements.

b Tools
b NET Framewark

Class Liorary

Download the .NET Framework

The .NET Framework is a development platform for building apps for Windows, Windc
the common language runtime (CLR) and the .NET Framework class library, which inclh
range of technologies. The .MET Framework provides a managed execution environme
with a variety of programming languages, including Visual Basic and Visual C#, v

< >

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 19
All Rights Reserved

CSharp Chapter 1

Summary

e As in other environments, with .NET you write a
program in a high-level language, compile to an
executable (.EXE file), and run that .EXE file.

e The .EXE file, called an assembly, contains
Intermediate Language instructions.

e You can view an assembly through the ILDASM tool.

e Visual Studio 2015 is a powerful IDE that makes it
easy to develop C# programs.

e With Visual Studio it is easy to create GUI programs
using C#.

e You can access extensive .NET Framework
documentation through the Visual Studio help
system.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 20
All Rights Reserved

CSharp Chapter 2

Chapter 2

First C# Programs

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 21
All Rights Reserved

CSharp Chapter 2

First C# Programs

Objectives

After completing this unit you will be able to:

Write a basic “Hello, World” program in C#.

Compile and run C# programs in your local
development environment.

Describe the basic structure of C# programs.

Describe how related C# classes can be grouped into
namespaces.

Use variables and simple expressions in C# programs.

Write C# programs that can perform simple
calculations.

Perform simple input and output in C#.
Describe objects and classes in C#.

Use an input wrapper class to perform input in C#.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 22

All Rights Reserved

CSharp Chapter 2

Hello, World

e \Whenever learning a new programming language, a
good first step is to write and run a simple program
that will display a single line of text.

— Such a program demonstrates the basic structure of the
language, including output.

— You must learn the pragmatics of compiling and running the
program.

e Here is “Hello, World” in C#:

— See Demos\Hello\Hello.cs, backed up in Chap02\Hello.
// Hello.cs

class Hello

{
public static int Main(string[] args)

{

System.Console._WriteLine(
"Hello, World");
return O;

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 23
All Rights Reserved

CSharp Chapter 2

Compiling, Running (Command Line)

e The Visual Studio 2015 IDE (integrated development
environment) was introduced in Chapter 1, and we
will use it throughout the course.

— See Supplement 1 for more details.

— To open an existing project or solution, use the menu File |
Open | Project/Solution. You can then navigate to a .csproj
or .sIn file.

e If you are using the .NET SDK, you may do the
following:

— Compile the program via the command line:

csc Hello.cs

— An executable file Hello.exe will be generated. To execute
your program, type at the command line:
Hello
— The program will now execute, and you should see the
greeting displayed. That’s all there is to it!

Hello, World

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 24
All Rights Reserved

CSharp Chapter 2

Program Structure

// Hello.cs

class Hello

{
}

e Every C# program has at least one class.

— A class is the foundation of C#’s support for object-oriented
programming.

— A class encapsulates data (represented by variables) and
behavior (represented by methods).

— All of the code defining the class (its variables and methods)
will be contained between the curly braces.

— We will discuss classes in detail later.
e Note the comment at the beginning of the program.

— A line beginning with a double slash is present only for
documentation purposes and is ignored by the compiler.

e Ctt files have the extension .cs.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 25
All Rights Reserved

CSharp Chapter 2

Program Structure (Cont’d)

// Hello.cs

class Hello

{
public static int Main(string[] args)

{
return O;
}

o Every C# program has a distinguished class that has
a method whose name must be Main.

— Note the capitalization!
— The method should be public and static.

— An int exit code can be returned to the operating system. Use
void if you do not return an exit code.

public static void Main(string[] args)
— Command line arguments are passed as an array of strings.
— You may omit the command line arguments.

public static void Main()

— The runtime will call this Main method - it is the entry point
for the program.

— All of the code for the Main method will be between the
curly braces.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 26
All Rights Reserved

CSharp Chapter 2

Program Structure (Cont’d)

// Hello.cs

class Hello

{
public static int Main(string[] args)

{

System.Console.WriteLine(
"Hello, World'");
return O;

e Every method in C# has one or more statements.
e A statement is terminated by a semicolon.
— A statement may be spread out over several lines.

e The Console class provides support for standard
output and standard input.

— The method WriteL.ine displays a string, followed by a new
line.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 27
All Rights Reserved

CSharp Chapter 2

Namespaces

e Much of the standard functionality in C# is provided
through many classes in the .NET Framework.

e Related classes are grouped into namespaces.

e The fully-qualified name of a class is specified by the
namespace, followed by a dot, followed by the class
name.

System.Console

e A using statement allows a class to be referred to by
its class name alone.

// Hello2.cs
using System;

class Hello

{
public static void Main()
{
Console._WriteLine(""Hello, World™);
+
by

e Note that in C# it is not necessary for the file name to
be the same as the name of the class containing the
Main method.

e This version of the program also illustrates a Main()
method with no command-line arguments and void
return type.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 28
All Rights Reserved

CSharp Chapter 2

Exercise

e Take a few minutes to add two more lines of code to
your program.

— Print out the phrase “My name is XXXX” (use your own
name).

— Then print out “Goodbye.”
e Save your file, compile the program, and runit.

— Your output should be something like this:

Hello, World
My name 1s Bob
Goodbye

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 29
All Rights Reserved

CSharp Chapter 2

Answer

// Hello3.cs
using System;

class Hello

{
public static void Main()
{
Console._WriteLine(""Hello, World™);
Console._WriteLine(""My name is Bob');
Console._WriteLine(*'Goodbye™);
+
+
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 30

All Rights Reserved

CSharp Chapter 2

Variables

In C#, you can define variables to hold data.

Variables represent storage locations in memory.

In C#, variables are of a specific data type.

— Some common types are int for integers and double for
floating point numbers.

— You must declare variables before you can use them.

A variable declaration reserves memory space for the
variable and may optionally specify an initial value.

int kilo = 1024; // reserves space and assigns
// an intial value
InNt mega; // reserves space but does

// not 1nitialize

— If a variable is not initialized in its declaration, it should be
assigned prior to being used.
int kilo;
kilo = 1024;
// Now you may use Kkilo

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 31
All Rights Reserved

CSharp

Expressions

Chapter 2

e You can combine variables and constants (or
“literals™) via operators to form expressions.

e Examples of operators include the standard
arithmetic operators:

+

*

/

addition
subtraction
multiplication
division

e Here are some examples of expressions:

kilo * 1024
(fahrenheit — 32) * 5 /7 9
3.1416 * radius * radius

Rev. 4.7

Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

32

CSharp Chapter 2

Assighment

e You can assign a value to a variable by using the =
symbol.

— On the left hand side is a variable.
— On the right hand side is an expression.

— The expression is evaluated and its value is assigned to the
variable on the left.

— Assignment is a statement and must be terminated by a
semicolon.

mega kilo * 1024;
celsius = (fahrenheit — 32) * 5 / 9;
area = 3.1416 * radius * radius;

e Note that the same variable can be used on both sides
of an assignment statement.
Int item = 5;

int total = 30;
total = total + i1tem;

— The expression total + item evaluates to 35, using the old
value of total, and this value is assigned to total, creating a
new value.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 33
All Rights Reserved

CSharp Chapter 2

Calculations Using C#

e You can easily use C# to perform calculations by
adding code to the Main method of a C# class.

— Declare whatever variables you need.
— Create expressions and assign values to your variables.

— Print out the answer using Console.WriteLine().

e You can easily perform labeled output, relying on two
features of C#:

— The operator + performs concatenation for string data.

— There is an automatic, implicit conversion available that
converts numeric data to string data when required.

— Hence this code ...

int total = 35;
System.Console._WriteLine(""The total i1s " + total);

— ... will produce this output:
The total i1s 35

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 34
All Rights Reserved

CSharp

Chapter 2

Sample Program

e This program will convert temperature from
Fahrenheit to Celsius.

— See Convert\Stepl.

// Convert.cs - Step 1

//

// Program converts a hardcoded temperature in
// Fahrenheit to Celsius

using System;

class Convert

public static void Main(string[] args)

{
{
}
}
Rev. 4.7

int fahr = 86;

int celsius = (fahr - 32) * 5 / 9;
Console._WriteLine("fahrenheit = " + fahr);
Console._WriteLine("celsius = " + celsius);

Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

35

CSharp Chapter 2

More about Output in C#

e The Console class in the System namespace supports
two simple methods for performing output:

— WriteLine() writes out a string followed by a new line.

— Write() writes out just the string without the new line.

Int X = 24;
inty =5;
Int z = X *vy;

Console._Write("Product of " + x + " and " + y);
Console._WriteLine(" 1s " + Zz);
Console._WriteLine("'The product is {0}, z);

— The output is all on one line:
Product of 24 and 5 is 120

e A more convenient way to build up an output string
Is to use placeholders {0}, {1}, etc.

— An equivalent way to do the output shown above is:

Console._WriteLine("Product of {0} and {1} 1s {2}",
X, Y, Z);

— The program OutputDemo illustrates the output operations
just discussed.

— Later in the course we will see how to control formatting of
output, and occasionally in examples we will throw in some
simple use of formatting.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 36
All Rights Reserved

CSharp Chapter 2

Input in C#

e Our first Convert program is not too useful, because
the Fahrenheit temperature is hard-coded.

— To convert a different temperature, you would have to edit
the source file and recompile.

e \What we really want to do is allow the user of the
program to enter a value at runtime for the
Fahrenheit temperature.

e Although simple console input in C# is fairly easy, we
can make it even easier using object-oriented
programming.

— We can encapsulate or “wrap” the details of input in a class.

— It will be easy to use the wrapper class.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 37
All Rights Reserved

CSharp Chapter 2

More about Classes

e Although we will discuss classes in more detail later,
there is a little more you need to know now.

e A class can be thought of as a template for creating
objects.

— An object is an instance of a class.
e A class specifies data and behavior.
— The data is different for each object instance.

e In C#, you instantiate a class by using the new
keyword.

InputWrapper iw = new InputWrapper();

— This code creates the object instance iw of the
InputWrapper class.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 38
All Rights Reserved

CSharp Chapter 2

InputWrapper Class

e The InputWrapper class “wraps’ interactive input for
several basic data types.

— The supported data types are int, double, decimal and
string.

— Methods getint, getDouble, getDecimal and getString are
provided.

— A prompt string is passed as an input parameter.

— See files InputWrapper.cs in directory TestinputWrapper,
which implements the class, and TestlnputWrapper.cs,
which tests the class.

e Although the code is quite short, it is a little complex,
involving a number of different methods from
different .NET Framework classes.

e However, you do not need to be familiar with the
Implementation of InputWrapper in order to use it.

— That is the beauty of “encapsulation”—complex functionality
can be hidden by an easy-to-use interface.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 39
All Rights Reserved

CSharp Chapter 2

Echo Program

e We illustrate interactive input by a simple “echo”
program.

— The program prompts the user for a name, and then prints out
a personalized greeting.

— See Echo.

e This directory has two files, each defining a class.

— InputWrapper.cs defines the wrapper class. There is no
Main method in this class.

— EchoName.cs has a class Echo, with a Main method.

// EchoName.cs

//

// Prompts user to enter name and then
// prints out greeting using name

using System;

class Echo

{
public static void Main(string[] args)
{
InputWrapper iw = new InputWrapper();
string name = iw.getString("Enter your name: ');
Console._WriteLine(""Hello, "™ + name);
+
+
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 40

All Rights Reserved

CSharp Chapter 2

Using InputWrapper

e The bolded statements illustrate how to use the
InputWrapper class.

— Instantiate an InputWrapper object iw by using new.

— Prompt to obtain input data by calling the appropriate
getXXX method.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 41
All Rights Reserved

CSharp Chapter 2

Compiling Multiple Files

e Itis easy to compile multiple files at the command
line.

Csc *.cs
— This will compile all of the files in the current directory.

— The file containing a class with the Main method will be
used as the name of the generated .EXE file:

Directory of C:\OIC\CSharp\ChapO2\Echo

03/30/2015 03:38 PM <DIR>
03/30/2015 03:38 PM <DIR>

11/25/72009 05:06 PM 3,683 Echo.csproj

11/25/2009 05:06 PM 897 Echo.sln

11/25/72009 05:09 PM 10,240 Echo.suo

11/16/2001 07:21 PM 317 EchoName.cs

03/30/2015 03:38 PM 4,096 EchoName.exe

01/05/2001 01:34 PM 855 InputWrapper.cs
6 File(s) 20,088 bytes

2 Dir(s) 42,316,091,392 bytes free

— If multiple classes contain a Main method, you can use the
/main command line option to specify which class contains
the Main method that you want to use as the entry point into
the program.

csc *.cs /main:Echo

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 42
All Rights Reserved

CSharp Chapter 2

Multiple Files in Visual Studio

e Itis very easy to work with Visual Studio projects
that have multiple files.

e As an example, open the Visual Studio solution that is
specified by the file Chap02\Echo\Echo.sln.

e A solution can contain one or more projects.
— Inthis case there is a single project file Echo.csproj.

e You can see all the files in a solution through the
Solution Explorer.

Solution Explorer - I %
D o--¢Fm|F =8
Search Solution Explorer (Ctrl+;) P~

ﬂ'_-l Solution 'Echo’ {1 project)
d Echo
I+ =B References
P EchoMame.cs
P C* InputWrapper.cs
|

e \When you build the solution via the toolbar button &,
you will build all the projects in the solution.

— You can also build just the current project via the toolbar
button &,

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 43
All Rights Reserved

CSharp Chapter 2

The .NET Framework

e The .NET Framework has a very large class library
(several thousand classes).

e To make all of this functionality more manageable,
the classes are partitioned into namespaces.

e The root namespace is System, which directly
contains many useful classes, among them:

— Console provides access to standard input, output and error
streams for 1/0.

— Convert provides conversions among base data types.

— Math provides mathematical constants and functions.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

44

CSharp Chapter 2

The .NET Framework (Cont’d)

e Underneath System, there are other namespaces,
among them:

— System.Data contains classes constituting the ADO.NET
architecture for accessing databases.

— System.Xml provides standards-based support for processing
XML.

— System.Drawing contains classes providing GDI+ graphics
functionality.

— System.Windows.Forms provides support for creating
applications with rich Windows-based interfaces.

— System.Web provides support for browser/server
communication.

— System.lO provides support for reading and writing with
streams and files. Both synchronous and asynchronous 1/0
are supported.

— System.Net provides support for several standard network
protocols.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 45
All Rights Reserved

CSharp Chapter 2

Lab 2

C# Programs for Calculation

In this lab you modify or implement several C# programs to
perform calculations. You need to perform input (through a
wrapper class), perform a calculation, and output the result. Do as
many of these exercises as time permits. If you have extra time, do
some of the optional experiments suggested in some of the
exercises, or make up some experiments on your own.

Detailed instructions are contained in the Lab 2 write-up at the end
of the chapter.

Suggested time: 30 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 46
All Rights Reserved

CSharp Chapter 2

Summary

e Every C# application has a class with a method Main,
which is the entry point into the application.

e The System class includes methods for performing
output, such as WriteLine.

e Expressions in C# are formed from literals, variables
and operators.

e With the assignment statement, you can assign a
value computed by an expression to a variable.

e Inputin C# is a little more complicated than output,
but you can use a wrapper class that encapsulates the
required C# classes and presents a simple
programming interface.

e The .NET Framework has a large class library that is
partitioned into namespaces.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 47
All Rights Reserved

CSharp Chapter 2

Lab 2

C# Programs for Calculation

Introduction

In this lab, you modify or implement several C# programs to perform
calculations. You need to perform input (through a wrapper class), perform a calculation,
and output the result. Do as many of these exercises as time permits. If you have extra
time, do some of the optional experiments suggested in some of the exercises, or make up
some experiments on your own.

Suggested Time: 30 minutes

Root Directory: OIC\CSharp

Directories: Labs\Lab2\Convert (Exercise 1 work)
Chap02\Convert\Stepl (Backup of Exercise 1 starter files)
Chap02\Convert\Step2 (Answer to Exercise 1)
Chap02\TestInputWrapper (InputWrapper class)
Labs\Lab2 (Exercise 2 work)

Chap02\Circle (Exercise 2 answer)

Exercise 1. Fahrenheit to Celsius Conversion

Examine the code of the starter program. Build and run. Notice that the
Fahrenheit temperature to be converted is hard-coded. Modify the program to prompt the
user for a Fahrenheit temperature, read in the value entered by the user, and print out the
result. Make use of the wrapper class InputWrapper that was discussed in this chapter.

The starter program uses int as the data type for temperatures. An optional
experiment is to use double as the data type. Could you input the Fahrenheit temperature
as an int and calculate the Celsius temperature as a double?

Exercise 2. Calculate the Area of a Circle

Use Visual Studio to create an empty C# project Circle in the Lab2 folder. This
will create the folder Circle. Add a new file Circle.cs to your project, where you will
place your program code.

Write a C# program to calculate the area of a circle. Prompt the user for the
radius, read in the value entered by the user, calculate the area of the circle, and print out
the result. For pi, use the approximation 3.1416. What is an appropriate data type to use
for radius and area?

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 48
All Rights Reserved

CSharp Chapter 2

As an optional experiment, use the class Math (in the namespace System) for a
more accurate value of pi.

Another optional experiment is to capture the output data in a file. This is easy to
do at the command line, by using the > to “redirect” output to a file.

Circle > output.txt

When using this technique, the prompts are written to the output file and not displayed on
the screen. Hence you need to know what to type! If you type “10” for the radius, your
output file should look like:

radius: Using, 3.1416, area = 314.16
Using, Math.Pl, area = 314.15926535897933

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 49
All Rights Reserved

CSharp Chapter 2

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 50
All Rights Reserved

CSharp Chapter 5

Chapter 5

Control Structures

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 105
All Rights Reserved

CSharp Chapter 5

Control Structures

Objectives

After completing this unit you will be able to:

e Use the common C# control structures to perform
tests and loops.

e Use arrays in C# programs.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 106
All Rights Reserved

CSharp Chapter 5

If Test

e In an if test, a bool expression is evaluated, and,
depending on the result, the “true branch” or “false
branch” is executed.

IT (expression)

statement 1;

else // optional
statement 2;

o If the else is omitted, and the test is false, the control
simply passes to the next statement after the if test.

False/else
(optional)

True

expression?

A

statementl statement2

A 4
A

— See LeapYear.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 107
All Rights Reserved

CSharp Chapter 5

Blocks

e Several statements may be combined into a block,
which is semantically equivalent to a single statement.

— A block is enclosed in curly braces.

— Variables declared inside a block are local to that block.

e The program Swap illustrates a block and the
declaration of a local variable temp within the block.

— An attempt to use temp outside the block is a compiler error.

// Swap.cs
using System;

public class Swap

{
public static int Main(string[] args)
t
Int X = 5;
inty = 12;
Console._WriteLine("Before: x = {0}, y = {1}",
X, Y);
iIf X<y
t
int temp = Xx;
X = VY;
y = temp;
+
Console._WriteLine("After: x = {0}, y = {1}",
X, Y);
// Console_WriteLine(""temp = {0}, temp);
return O;
+
+
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 108

All Rights Reserved

CSharp Chapter 5

Loops

e while

o for

e do/while
e foreach
e break

e continue
e goto

e switch

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 109
All Rights Reserved

CSharp Chapter 5

while Loop

e The most basic type of loop in C# is a while loop.

while (expression)

{

statements;

}

more statements;

— Recommendation: Use blocks (in curly braces) even if there
Is only one statement in a loop.

A

True
Expression?

False
Statement

— See LeapYearlLoop.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 110
All Rights Reserved

CSharp Chapter 5

do/while Loops

e In the while loop, if the condition is initially false,
then the loop is skipped.

e If you want a loop in which the body is always
executed, use a do/while.

do
{

}

while (expression); // < note semicolon!

4

Statement

True

Expression?

l False

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 111
All Rights Reserved

CSharp Chapter 5

for Loops

e A perennial favorite of C/C++ and Java
programmers, the for loop is the most flexible of the
loop control structures.

for (initialization; test; iteration)

{

statements;

}

more statements;

— The test must be a Boolean expression. Initialization and
iteration can be almost any kind of expression.

Initialization

€

4

_ True

Expression?
False
Statement
|
Iteration
v
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 112

All Rights Reserved

CSharp Chapter 5

ForUp Example

e The example program ForUp illustrates calculating
the sum of the numbers from 1 to 100 using a for loop
with the counter going up.

— Notice that in this loop the variable i is defined within the
loop and hence is not available outside the loop.

// ForUp.cs
using System;

public class ForUp

{
public static int Main(string[] args)
{
int sum = 0;
for (int 1 = 1; 1 <= 100; i++)
{
sum += 1;
¥ o
Console._WriteLine("'sum = {0}, sum);
// Console_WriteLine("1 = {0}, 1);
// 1 is not defined outside the for loop
return O;
}
}
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 113

All Rights Reserved

CSharp Chapter 5

ForDown Example

e The example ForDown illustrates calculating the sum
of the numbers from 1 to 100 using a for loop with the
counter going down.

— Notice that in this loop the variable i is defined before the
loop and hence is available outside the loop.

// ForDown.cs
using System;

public class ForDown

{
public static int Main(string[] args)
{
int sum = 0;
int 1;
for (i = 100; 1 >= 1; 1--)
{
sum += 1;
¥ o
Console._WriteLine('sum = {0}, sum);
Console._WriteLine('1 = {0}, 1);
// 1 is defined outside the for loop
return O;
}
}
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 114

All Rights Reserved

CSharp Chapter 5

Arrays

e Arrays are a very common and easy to use data
structure in many programming languages, and they
are useful for illustrating programs involving loops.

— Hence we will give a brief preview here, so that we can
provide more interesting examples for the rest of the chapter.

e An array is declared using square brackets [] after
the type, not after the variable.

int [] a; // declares an array of iInt

— Note that the size of the array is not part of its type. The
variable declared is a reference to the array.

— You create the array elements and establish the size of the
array using the new operator.

a = new Int[10]; // creates 10 array elements

— The new array elements start out with the appropriate default
values for the type (O for int).

— You may both declare and initialize array elements using
curly brackets, as in C/C++.

int [] a=4{2, 3, 5, 7, 11};

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 115
All Rights Reserved

CSharp Chapter 5

Fibonacci Example

e As our first example we will populate a 10-element
array with the first 10 Fibonacci numbers. The
Fibonacci sequence is defined as follows:

fib[0] = 1
fib[1] = 1
fib[i] = Ffib[i-1] + Ffib[i-2] for i >= 2

— The program Fibonacci populates the array and then prints
out the first 10 Fibonacci elements all on one line, followed
by printing them out in reverse order on the next line.

int [] fib;

fib = new Int[10];

Tib[0] = fib[1] = 1;

for (int 1 = 2; 1 < 10; 1++)
fib[1] = Tib[1-1] + fib[1-2];

for (int i = 0; i < 10; i++)
Console.Write("{0} ", Fib[i]);
Console._WriteLine();

for (int 1 = 9; 1 >=0 ; 1--)
Console._Write("{0} ", Fib[i]);
Console._WriteLine();

e Here is the output:

11235813 21 34 55
5534 2113853211

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 116
All Rights Reserved

CSharp Chapter 5

foreach Loop

e The foreach loop is familiar to VB programmers, but
Is not present in C/C++ or Java (before Java 5).

e Itis aspecial loop for iterating through collections.

e In C#, an array is a collection, so you can use a
foreach loop to iterate through an array.

// ForEachLoop.cs
using System;

public class ForEachLoop

{
public static int Main(string[] args)
{
int [] primes = {2, 3, 5, 7, 11, 13};
int sum = O;
foreach (int prime iIn primes)
{
Console Write("'{0} ", prime);
sum += prime;
+
Console._WriteLine();
Console._WriteLine('sum = {0}, sum);
return O;
+
+

e foreach will be covered in greater detail in a later
chapter.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 117
All Rights Reserved

CSharp Chapter 5

break

e The break statement allow immediate exit from a
loop.

— See BreakSearch.

int [] primes = {2, 3, 5, 7, 11, 13};
foreach (Int prime iIn primes)
Console. Write("'{0} ', prime);
Console_WriteLine();
Iint target = 7;
int i1;
for(i = 0; 1 < primes.Length; i++)
{
1T (target == primes|[i])
break;
}
iIT (1 == primes.Length)
Console._WriteLine('{0} not found', target);
else
Console._WriteLine("{0} found at {1}', target,i);
return O;

e Here is the output:

2357 11 13
7 found at 3

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 118
All Rights Reserved

CSharp Chapter 5

continue

e The continue statement bypasses the remainder of a
loop, transferring control to the beginning of the loop.

— See ContinueLoop.

int [] numbers = {0,1,2,3,4,5,6,7,8,9};
foreach(int num in numbers)

{
}

Console._WriteLine();
Console . Write(''Odd numbers: ™);
Int index = 0O;

while(++index < numbers.Length)

Console . Write("{0} ", num);

{
if(numbers[index] % 2 == 0)
{
continue;
+
Console Write("'{0} ", numbers[index]);
+

Console._WriteLine();

e Here is the output:

012345673829
Odd numbers: 1 3 57 9

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 119
All Rights Reserved

CSharp Chapter 5

goto

e Considered by purists to be evil, the infamous goto
was even completely banned from some languages.

— Use goto sparingly and with great care.

goto label;
label :

// GotoSearch.cs
using System;
public class GotoSearch

{
public static int Main(string[] args)

{
int [] primes = {2, 3, 5, 7, 11, 13};
foreach (int prime in primes)

Console. Write("{0O} ", prime);
Console._WriteLine();
int target = 7;
int i1;
for(i = 0; 1 < primes.Length; i1++)
{
1T (target == primes[i])
goto found;

+
Console_WriteLine("{0} not found", target);
return O;

found:
Console_WriteLine("{0} found at {1}",

target,i1);

return O;

+

+

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 120
All Rights Reserved

CSharp Chapter 5

Structured Programming

e Although a program like the one shown in the
preceding page is easy to understand on a small scale,
the structure of such a program is problematical if
the same style is carried over to larger programs.

— The basic difficulty is that there are many execution paths,
and so it becomes difficult to verify that the program is
correct.

e Structured programming imposes certain discipline.

— Programs are built out of basic components, such as blocks
(compound statements) and simple control structures like
if...else and while.

— Each of these components has a single entrance and a single
exit.

e The program on the preceding page violates these
principle several places.

— The Main function has two exits (return statements).

— The loop can be exited in two ways, normally and via the
goto.

— Such a program can become difficult to maintain. If some
task needs to always be done before exiting a loop, you may
have to place duplicate code, which can become out of synch
when this common code is updated in one place.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 121
All Rights Reserved

CSharp Chapter 5

Structured Search Example

e The program StructuredSearch illustrates a more
structured programming approach to our simple
linear search than either of our previous solutions.

— Both break and goto can be replaced by a simple while loop
and use of a suitable bool flag.

int [] primes = {2, 3, 5, 7, 11, 13};

foreach (int prime in primes)
Console Write("'{0} ', prime);

Console._WriteLine();

Int target = 7;

int 1 = 03

bool found = false;

while (Ifound && 1 < primes.Length)

{
1T (target == primes|[i])
found = true;
else
i++;
}
1T (found)

Console._WriteLine("{0} found at {1}', target,i);
else

Console._WriteLine(""{0} not found", target);
return O;

e Here is the output:

2 357 11 13
7 found at 3

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 122
All Rights Reserved

CSharp

Chapter 5

Multiple Methods

e Our example programs so far have all of our code in
one Main() method.

e As programs get longer, use subroutines, or
additional “methods’ in C# terminology.

— For now, look at the example MultipleMethods.

using System;

public class MultipleMethods

{

public static void Main()

{

Rev. 4.7

InputWrapper 1w = new InputWrapper();
// initialize and display array

int[] primes = {2, 3, 5, 7, 11, 13};
for (int 1 = 0; 1 < primes.Length; 1++)

Console Write("'{0} ', primes[i]);

Console_WriteLine();

// loop to read and search for targets
Console._WriteLine(

"Enter numbers to search for, -1 when done");
int target = 1w.getlnt('target number: ');
while (target !'= -1)

{

int index = Search(primes, target);

Console._WriteLine(
"{0} not found"™, target);
else
Console._WriteLine(
"{0} found at {1}', target,index);
target = i1w.getiInt(''target number: ");

Copyright © 2015 Object Innovations Enterprises, LLC 123
All Rights Reserved

CSharp

Multiple Methods (Cont’d)

Chapter 5

public static int Search(int[] array,

{
int 1 = 0;

int target)

bool found = false;

while (!'found
{
1T (target
found =
else
i1++;
}
it (found)
return 1;
else
return -1;

}
}

&& 1 < array.Length)

== array[i])
true;

e Here is a sample run of this program:

2 357 11 13

Enter numbers to search for, -1 when done

target number: 11
11 found at 4
target number: 3
3 found at 1
target number: 33
33 not found
target number: 13
13 found at 5
target number: 2
2 found at O
target number: -1

Press any key to continue

Rev. 4.7

Copyright © 2015 Object Innovations Enterprises, LLC

All Rights Reserved

124

CSharp Chapter 5

switch

e The switch statement can be substituted, in some
cases, for a sequence of if tests.

e There are comparable control structures in other
languages, such as:

— Select in Visual Basic
— case in Pascal
— "computed goto" in FORTRAN.
— switch in C/C++
e Example Program:

— SwitchDemo

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 125
All Rights Reserved

CSharp Chapter 5

switch in C# and C/C++

e In C#, after a particular case statement is executed,
control does not automatically continue to the next

statement.

— You must explicitly specify the next statement, typically by a
break or goto label.

— This avoids a “gotcha” in C/C++.

switch (code)
{

case 1:
goto case 2;

case 2:
Console._WriteLine(''Low');

break;

case 3:
Console._WriteLine(""Medium™™);

break;

case 4:
Console._WriteLine(""High™);

break;

default:
Console._WriteLine('Special case™);

break;

}

e In C#, you may switch on any integer type and on a
char or string data type.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 126
All Rights Reserved

CSharp Chapter 5

Lab 5

Managing a List of Contacts

In this lab, you will begin implementation of a contact
management system. The first version of the program is very
simple. You will maintain a list of names in an array of strings, and
you will provide a set of commands to work with these contacts:

— add a contact to the list

— show the contacts in forward order

— show the contacts in reverse order

— find a contact in the list.

— remove a contact from the list
Detailed instructions are contained in the Lab 5 write-up at the end
of the chapter.

Suggested time: 45 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 127
All Rights Reserved

CSharp Chapter 5

Summary

e C# has a variety of control structures of C#, including
if, while, do, for and switch.

e There are alternative ways of exiting or continuing
iteration in a loop, including break, continue, and
goto.

e Structured programming avoids use of goto and leads
to programs that are easier to understand and
maintain.

e C# provides arrays for holding collections of items all
of the same type.

e The foreach loop makes it very easy to write concise
code for iterating through an array or another
collection.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 128
All Rights Reserved

CSharp Chapter 5

Lab 5

Managing a List of Contacts

Introduction

In this lab, you will begin implementation of a contact management system. The first
version of the program is very simple. You will maintain a list of names in an array of
strings, and you will provide a set of commands to work with these contacts:

e add a contact to the list

e show the contacts in forward order

e show the contacts in reverse order

e find a contact in the list.

e remove a contact from the list

Suggested Time: 45 minutes

Root Directory: OIC\CSharp

Directories: Labs\Lab5\Contacts (do your work here)
Chap05\Contacts\Stepl (answer to Part 1)
Chap05\Contacts\Step2 (answer to Part 2)

Part 1. Implement a Command Processing Loop

1. Use Visual Studio to create an empty C# project Contacts in the Lab5 folder. This
will create the subfolder Contacts. Add a new file TestContacts.cs to your project,
where you will place the program code.

2. Move the supplied file InputWrapper.cs from Lab5 down to Lab5\Contacts. Add
this file to your project.

3. Add C# code to the file TestContacts.cs to set up a class TestContacts with a public
static Main() method. Provide a using System; statement.

4. Add code to Main() to do the following:
a. Instantiate an InputWrapper object iw.
b. Write a message “Enter command, quit to exit.”

c. Use the getString() method of InputWrapper to prompt for a command
using the prompt string “> “ and store the result in the string variable
cmd.

d. Write out the command that was entered.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 129
All Rights Reserved

CSharp Chapter 5

5. Build and test. It would be a good idea to also build and test incrementally after the
following steps, but we won’t explicitly say so.

6. Add a while loop that will loop until the command entered is “quit.” Move the
statement writing out the command inside the loop.

7. Add a switch statement, with cases for each of the supported commands. In the
default case, print out a message listing each of the legal commands with a brief
description. In the case for a command provide stub code that prints out a message
indicating that that command was invoked. You can now comment out the statement
writing out the command that was entered.

8. Build and test.

Part 2. Implement the Commands

In this part you will declare an array of strings to hold the names. You will provide code
for each of the commands, commenting out the stub code as each command is
implemented.

1. Declare an array names of 10 strings. Also declare an int variable count, which will
be initialized at 0. This holds a count of the actual number of elements in the array.

2. Add code to initialize a few names in the array. Increment count as you add each
name. For example, the following code would add three names:

names[count++] = "Tom";
names[count++] = "Dick";
names[count++] = ""Harry";

3. Implement the “forward” command to display the names in the array. First try a
foreach loop. What is the problem?

4. The foreach loop will try to display all 10 elements in the array, and you want to
display only the three actual names. Replace the foreach loop by a counted for loop,
with the loop index incrementing.

5. Implement the “backward” command. Use a counted for loop, with the index
decrementing.

6. Implement the “add” command.

7. Implement the “find” command. You will need search code both for this command
and also for “remove,” so it would be useful for you to create a method Search(),
similar to the method in the MultipleSearch example program.

8. Implement the “remove” command.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 130
All Rights Reserved

CSharp

Chapter 9

Methods, Properties, and
Operators

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

Chapter 9

209

CSharp Chapter 9

Methods, Properties, and Operators

Objectives

After completing this unit you will be able to:

e Explain how methods are defined and used, how
parameters are passed to and from methods, and how
the same method name can be overloaded, with
different versions having different parameter lists.

e Implement methods in C# that take a variable
number of parameters.

e Use the C# get/set (property syntax) methods for
accessing data.

e Overload operators in C#, making the invocation of
certain methods more natural and intuitive.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 210
All Rights Reserved

CSharp Chapter 9

Static and Instance Methods

e \We have seen that classes can have different kinds of
members, including fields, constants, and methods.

— A method implements behavior that can be performed by an
object or a class.

— Ordinary methods, sometimes called instance methods, are
invoked through an object instance.

Account acc = new Account();
acc.Deposit(25);
— Static methods are invoked through a class and do not depend
upon the existence of any instances.

int sum = SimpleMath.Add(5, 7);

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 211
All Rights Reserved

CSharp Chapter 9

Method Parameters

e Methods have a list of parameters, which may be
empty.

— Methods either return a value or have a void return.

— Multiple methods may have the same name, so long as they
have different signatures (a feature known as method
overloading).

— Methods have the same signature if they have the same
number of parameters and these parameters have the same
types and modifiers (such as ref or out).

e The return type does not contribute to defining the
signature of a method. By default, parameters are
value parameters, meaning copies are made of the
parameters.

— The keyword ref designates a reference parameter, in which
case, the parameter inside the method and the corresponding
actual argument refer to the same object.

— The keyword out refers to an output parameter, which is the
same as a reference parameter, except that on the calling side,
the parameter need not be assigned prior to the call.

— We will study parameter passing and method overloading in
more detail later in this chapter.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 212
All Rights Reserved

CSharp Chapter 9

No “Freestanding” Functions in C#

e In C#, all functions are methods and, therefore,
associated with a class.

— There is no such thing as a freestanding function, as in C and
C++.

— “All functions are methods” is rather similar to “everything is
an object” and reflects the fact that C# is a pure object-
oriented language.

— The advantage of all functions being methods is that classes
become a natural organizing principle. Methods are nicely
grouped together.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 213
All Rights Reserved

CSharp Chapter 9

Classes with All Static Methods

e Sometimes part of the functionality of your system
may not be tied to any data, but may be purely
functional in nature.

e In C#, you would organize such functions into classes
that have all static methods and no fields.

e The program TestSimpleMath/Stepl provides an
elementary example.

// SimpleMath.cs

public class SimpleMath

{
public static int Add(int x, Int y)
{
return x + y;
}

public static int Multiply(int x, Int y)
{

}
}

return x * y;

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 214
All Rights Reserved

CSharp Chapter 9

Parameter Passing

e Programming languages have different mechanisms
for passing parameters.

e Inthe C family of languages, the standard is “call-by-
value.”

— This means that the actual data values themselves are passed
to the method.

— Typically, these values are pushed onto the stack and the
called function obtains its own independent copy of the
values.

— Any changes made to these values will not be propagated
back to the calling program. C# provides this mechanism of
parameter passing as the default, but C# also supports
reference parameters and output parameters.

— In this section, we will examine all three of these
mechanisms, and we will look at the ramifications of passing
class and struct data types.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 215
All Rights Reserved

CSharp Chapter 9

Parameter Terminology

e Storage is allocated on the stack for method
parameters.

— This storage area is known as the activation record.
— It is popped when the method is no longer active.

— The formal parameters of a method are the parameters as
seen within the method.

— They are provided storage in the activation record.

— The arguments of a method are the expressions between
commas in the parameter list of the method call.

int sum = SimpleMath.Add(5, 7);
// actual parameters are
// 5 and 7

public static int Add(int x, iInt y)

{ // formal parameters are
// x and y
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 216

All Rights Reserved

CSharp Chapter 9

Value Parameters

e Parameter passing is the process of initializing the
storage of the formal parameters by the actual
parameters.

e The default method of parameter passing in C# is
call-by-value, in which the values of the actual
parameters are copied into the storage of the formal
parameters.

— Call-by-value is safe, because the method never directly
accesses the actual parameters, only its own local copies.

e But there are drawbacks to call-by-value:

— There is no direct way to modify the value of an argument.
You may use the return type of the method, but that only
allows you to pass one value back to the calling program.

— There is overhead in copying a large object.

e The overhead in copying a large object is borne when
you pass a struct instance.

— If you pass a class instance, or an instance of any other
reference type, you are passing only a reference and not the
actual data itself.

— This may sound like call-by-reference, but what you are
actually doing is passing a reference by value.

— Later in this section, we will discuss the ramifications of
passing struct and class instances.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 217
All Rights Reserved

CSharp Chapter 9

Reference Parameters

e Consider a situation in which you want to pass more
than one value back to the calling program.

e C# provides a clean solution through reference
parameters.

— You declare a reference parameter with the ref keyword,
which is placed before both the formal parameter and the
actual parameter.

— A reference parameter does not result in any copying of a
value.

— Instead, the formal parameter and the actual parameter refer
to the same storage location.

— Thus, changing the formal parameter will result in the actual
parameter changing, as both are referring to exactly the same
storage location.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 218
All Rights Reserved

CSharp Chapter 9

Reference Parameters (Cont’d)

e The program ReferenceMath illustrates using ref
parameters.

— The two methods Add and Multiply are replaced by a single
method Calculate, which passes back two values as
reference parameters.

// ReferenceMath.cs

public class ReferenceMath

public static void Calculate(int x, iInt vy,
ref int sum, ref Int prod)
sum = X + y;
prod = x * vy;
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 219

All Rights Reserved

CSharp

Chapter 9

Reference Parameters (Cont’d)

e Notice the use of the ref keyword in front of the third
and fourth parameters. Here is the test program:

// TestReferenceMath.cs

using System;

public class TestReferenceMath

{

public static void Main(string[] args)

{

}
}

int sum = 0, product = 0;
MultipleMath.Calculate(5, 7, ref sum,

ref product);
Console._WriteLine('sum = {0}, sum);
Console._WriteLine("product = {0}, product);

e The ref keyword is used in front of the parameters.

e Variables must be initialized before they are used as
reference parameters.

Rev. 4.7

Copyright © 2015 Object Innovations Enterprises, LLC 220
All Rights Reserved

CSharp Chapter 9

Output Parameters

e A reference parameter is used for two-way
communication between the calling program and the
called program, both passing data in and getting data
out.

e Thus, reference parameters must be initialized before
use.

— In TestReferenceMath.cs , we are only obtaining output, so
initializing the variables only to assign new values is rather
pointless.

— C# provides for this case with output parameters.

— Use the keyword out wherever you would use the keyword
ref.

— Then you do not have to initialize the variable before use.

— Naturally, you could not use an out parameter inside the
method; you can only assign it.

e The program OutputMath illustrates the use of output
parameters.

public static void Calculate(int x, Int vy,
out Int sum, out Int prod) // definition

Int sum, product; // no initialization
OutputMath.Calculate(5, 7, out sum, out product);
// use

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 221
All Rights Reserved

CSharp Chapter 9

Structure Parameters

e A struct is a value type, so that if you pass a struct as
a value parameter, the struct instance in the called
method will be an independent copy of the struct in
the calling method.

e The program HotelStruct illustrates passing an
Instance of a Hotel struct by value.

e The object hotel in the RaisePrice method is an
independent copy of the object ritz in the Main
method.

— This figure shows the values in both structures after the price
has been raised for hotel.

— Thus, the change in price does not propagate back to Main.

Main ritz Boston
Ritz
100

$200.00

RaisePrice hotel Boston
Ritz
100

$250.00

— The program HotelStructRef has the same struct definition,
but the test program passes the Hotel instance by reference.

— Now the change does propagate, as you would expect.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 222
All Rights Reserved

CSharp Chapter 9

Class Parameters

e A class is a reference type, so that if you pass a class
instance as a value parameter, the class instance in
the called method will refer to the same object as the
reference in the calling method.

e The program HotelClass/Stepl illustrates passing an
instance of a Hotel class by value.

— This figure illustrates how the hotel reference in the

RaisePrice method refers to the same object as the ritz
reference in Main.

Main ritz Boston
Ritz
100
$250.00
RaisePrice hotel

— Thus, when you change the price in the RaisePrice method,

the object in Main is the same object and shows the new
price.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 223
All Rights Reserved

CSharp Chapter 9

Method Overloading

e In atraditional programming language, such as C,
you need to create unique names for all of your
methods.

e If methods basically do the same thing, but only
apply to different data types, it becomes tedious to
create unique names.

— For example, suppose you have a FindMax method that can
find the maximum of two int, two long, or two string.

— If we need to come up with a unique name for each method,
we would have to create method names, such as
FindMaxInt, FindMaxLong, and FindMaxString.

e In C#, as in other object-oriented languages such as
C++ and Java, you may overload method names.

— That is, different methods can have the same name, if they
have different signatures.

— Two methods have the same signature if they have the same
number of parameters, the parameters have the same data
types, and the parameters have the same modifiers (none, ref,
or out).

— The return type does not contribute to defining the signature
of a method.

— So, in order to have two functions with the same name, there
must be a difference in the number and/or types and/or
modifiers of the parameters.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 224
All Rights Reserved

CSharp Chapter 9

Method Overloading (Cont’d)

e At runtime, the compiler will resolve a given
invocation of the method by trying to match up the
actual parameters with formal parameters.

— A match occurs if the parameters match exactly or if they can
match through an implicit conversion.

— For the exact matching rules, consult the C# Language
Specification.

e The program OverloadDemo illustrates method
overloading.

— The method FindMax is overloaded to take either long or
string parameters.

— The method is invoked three times, for int, long, and string
parameters.

— There is an exact match for the case of long and string.

— The call with int actual parameters can resolve to the long
version, because there is an implicit conversion of int into
long.

— You may wish to review the discussion of conversions of
data types at the end of Chapter 3.

e \We will cover the string data type and the Compare
method in Chapter 10.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 225
All Rights Reserved

CSharp Chapter 9

Lab 9A

Method Overloading

In this lab, you will extend the SimpleMath class to include
subtraction and division, providing the four methods for double as
well as int.

Detailed instructions are contained in the Lab 9A write-up at the
end of the chapter.

Suggested time: 15 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 226
All Rights Reserved

CSharp Chapter 9

Modifiers as Part of the Signature

e Itis important to understand that if methods have
identical types for their formal parameters, but differ
in a modifier (none, ref, or out), then the methods
have different signatures.

e The program OverloadHotel provides an illustration.
— We have two RaisePrice methods.
— In the first method, the hotel is passed as a value parameter.

— In the second version, the hotel is passed as a reference
parameter.

— These methods have different signatures.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 227
All Rights Reserved

CSharp Chapter 9

Variable Length Parameter Lists

e Our FindMax methods in the previous section were
very specific with respect to the number of
parameters—there were always exactly two
parameters.

e Sometimes you may want to be able to work with a
variable number of parameters, for example, to find
the maximum of two, three, four, or more numbers.

e C# provides the params keyword, which you can use
to indicate that an array of parameters is provided.

— Sometimes you may want to provide both a general version
of your method that takes a variable number of parameters
and also one or more special versions that take an exact
number of parameters.

— The special version will be called in preference, if there is an
exact match. The special versions are more efficient.

e The program VariableMax illustrates a general
FindMax method that takes a variable number of
parameters.

— There is also a special version that takes two parameters.

— Each method prints out a line identifying itself, so you can
see which method takes precedence.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 228
All Rights Reserved

CSharp Chapter 9

Properties

e The encapsulation principle leads us to typically store
data in private fields and to provide access to this
data through public accessor methods that allow us to
set and get values.

— For example, in the Account class we used as an illustration
in Chapter 7, we provided a method GetBalance to access
the private field balance.

— You don’t need any special syntax; you can simply provide
methods and call these methods what you want, typically
GetXXX and SetXXX.

e C# provides a special property syntax that simplifies
user code.

e Rather than using methods, you can simply use an
object reference, followed by a dot, followed by a
property name.

— Some examples of a Balance property (that is both
read/write) of a SimpleAccount class follow.

— We show in comments the corresponding method code.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 229
All Rights Reserved

CSharp Chapter 9

Properties Examples

e First example is SimpleAccount.

SimpleAccount acc = new SimpleAccount();
decimal bal;

bal = acc.Balance;

// bal = acc.GetBalance();

acc.Balance = 100m;

acc.Balance += 1m;

// acc.SetBalance(acc.GetBalance() + 1m);

e As you can see, the syntax using the property is a
little more concise.

e Properties were popularized in Visual Basic and are
now part of NET and available in other .NET
languages, such as C#.

e The program AccountProperty illustrates
Implementing and using several properties: Balance,
Id, and Owner.

— The first two properties are read-only (only get defined) and
the third property is read/write (both get and set).

— It is also possible to have a write-only property (only set
defined).

e The next page shows the code for the Account class,
where the properties are defined.

— Notice the syntax and the special C# keyword value.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 230
All Rights Reserved

CSharp

Properties Example (Cont’'d)

Chapter 9

// Account.cs

public class Account

{

private int id;

private static int nextid = 1;
private decimal balance;
private string owner;

public Account(decimal balance, string owner)

{
this.id = nextid++;
this.balance = balance;
this.owner = owner;

}

public void Deposit(decimal amount)

{

balance += amount;

public void Withdraw(decimal amount)

{

balance -= amount;

public decimal Balance

{
get

{

+
+
public int Id
{

return balance;

get
{

}

return id;

}

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC

All Rights Reserved

231

CSharp Chapter 9

Properties Example (Cont’'d)

public string Owner

get
return owner;
set
owner = value;
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 232

All Rights Reserved

CSharp Chapter 9

Auto-Implemented Properties

e An auto-implemented property provides a concise
way of defining a property.

— The compiler automatically provides a private field to
implement the property.

— You can only access the property through the get and set
accessors.

e An auto-implemented property must declare both a
get and a set accessor.

public decimal Balance { get; set; }

e An auto-implemented property can be made read-
only by declaring set as private.

public 1nt Accountld { get; private set; }
// read-only

e The next page provides an example of the use of auto-
implemented properties.

— See AutoProperties.

— The line that is commented out is illegal because the property
Accountld is read-only.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 233
All Rights Reserved

CSharp Chapter 9

Auto-Implemented Property Example

class Program

{
static void Main(string[] args)
{
Account acc = new Account(101, 150m);
acc.Show();
acc.Balance += 100m;
acc.Show();
// acc.Accountld = 201;
// lllegal because Accountld is read-only
}
+
class Account
{
public int Accountld { get; private set; }
// readonly
public decimal Balance { get; set; }
public Account(int accld, decimal bal)
{
Accountld = accld;
Balance = bal;
+
public void Show()
{
Console._WriteLine(''1d: {0}, Balance: {1:C}",
Accountld, Balance);
+
+
Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 234

All Rights Reserved

CSharp Chapter 9

Lab 9B

Properties

In this lab, you will use properties to access and modify member
data items in an object of a class type.

Detailed instructions are contained in the Lab 9B write-up at the
end of the chapter.

Suggested time: 20 minutes

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 235
All Rights Reserved

CSharp Chapter 9

Operator Overloading

e Another kind of syntactic simplification that can be
provided in C# is operator overloading.

e The idea is that certain method invocations can be
Implemented more concisely using operators, rather
than method calls.

— Suppose we have a class Matrix that has static methods to
add and multiply matrices.

— Using methods, we could write a matrix expression like this:

Matrix a, b, c, d;
// code to initialize the object references
d = Matrix.Multiply(a, (Matrix.Add(b, ¢));

— If we overload the operators + and *, we can write this code
more succinctly:

d=a* (b + c);

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 236
All Rights Reserved

CSharp Chapter 9

Operator Overloading (Cont’d)

e You cannot create a brand new operator, but you can
overload many of the existing C# operators to be an
alias for a static method.

— For example, given the static method Add in the Matrix
class ...

class Matrix

{
public static Matrix Add(Matrix x, Matrix y)
{

— ... you could write instead:

public static Matrix operator+(Matrix Xx,
Matrix y)

e All of the rest of the class implementation code stays
the same, and you can then use operator notation in
client code. Operator declarations, such as operator+
shown above, must obey the following rules:

— Operators must be public and static, and may not have any
other modifiers.

— Operators take only value parameters, and not reference or
output parameters.

— Operators must have a signature that differs from the
signatures of all other operators in the class.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 237
All Rights Reserved

CSharp Chapter 9

Operator Overloading (Cont’d)

e There are three categories of operators that can be
overloaded.

— The table shows the unary and binary operators that can be
overloaded.

— A third category of operators, user-defined conversions, will
be discussed in Chapter 14.

Type | Operators

Unary |+ - I ~ ++ -- true false

Binary |+ - * /| % & | N << >> == = > < >= <=

— If you overload a binary operator op, the corresponding
compound assignment, operator op=, will be overloaded for
you by the compiler. For example, if you overload +, you
will automatically have an overload of +=.

e The relational operators must be overloaded in pairs:
— operator== and operator!=
— operator> and operator<

— operator>= and operator<=.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 238
All Rights Reserved

CSharp Chapter 9

Sample Program

e As an illustration of operator overloading, consider
the program ClockOverload, which has a class, Clock,
that does “clock arithmetic.”

— The legal values of Clock are integers between 1 and 12
inclusive.

— Addition is performed modulo 12. Thus 9 + 7 is 16 modulo
12, or 4,

— We overload the plus operator to perform this special kind of
addition operation.

— We have two different versions of the plus operator. One
adds two Clock values, and the other adds a Clock and an
int.

— In the test program, note that we are able to use +=, even
though we have not explicitly provided such an overload.
The compiler automatically furnishes this overload for us, by
virtue of our overloading +.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 239
All Rights Reserved

CSharp Chapter 9

Operator Overloading in the Class

Library

e Although you may rarely have occasion to overload
operators in your own classes, you will find that a
number of classes in the .NET Framework Class
Library make use of operator overloading.

e In Chapter 10, you will see how + is used for
concatenation of strings.

e In Chapter 18, you will see how += is used for adding
an event handler to an event.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 240
All Rights Reserved

CSharp Chapter 9

Summary

e In this chapter, we examined a number of features of
methods.

e In C#, there is no such thing as a freestanding
function.

e All functions are tied to classes and are called
methods.

e If you do not care about class instances, you can
Implement a class that has only static methods.

e By default, parameters are passed by value, but C#
also supports reference parameters and output
parameters.

e A method name can be overloaded, with different
versions having different parameter lists.

e You can also implement methods in C# that take a
variable number of parameters.

e C# provides special property syntax for concisely
invoking get/set methods for accessing data.

e You can overload operators in C#, a feature which
makes the C# language inherently more extensible
without requiring special coding in the compiler.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 241
All Rights Reserved

CSharp Chapter 9

Lab 9A

Overloading Methods

Introduction

In this lab, you will extend the SimpleMath class to include subtraction and division,
providing the four functions for double as well as int.

Suggested Time: 15 minutes

Root Directory: OIC\CSharp

Directories: Labs\Lab9A\TestSimpleMath (work area)
Chap09\TestSimpleMath\Stepl (backup of starter files)
Chap09\TestSimpleMath\Step2 (answer)

Instructions

1. Build and run the starter project.

2. Extend the SimpleMath class by adding functions to handle subtraction and division

for int.
3. Then add methods to handle the same four operations for double.
4. Add test code to TestSimpleMath.cs to check your overloaded methods.

5. Build and test.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC
All Rights Reserved

242

CSharp Chapter 9

Lab 9B

Properties

Introduction

In this lab, you will use properties to access and modify member data items in an object
of a class type.

Suggested Time: 20 minutes

Root Directory: OIC\CSharp

Directories: Labs\Lab9B\HotelClass (work area)
Chap09\HotelClass\Stepl (backup of starter files)
Chap09\HotelClass\Step2 (answer)

Instructions

1. Build and run the starter project.

2. Change all of the data members of the Hotel class to have private access, and add
properties to access and change the data members. In the properties for the number of
rooms, enforce a limitation of no more than 400 and no fewer than 10. For the cost of
a room, limit it to the range $30-$150.

3. Modify HotelTest.cs to check the properties.

4. Build and test.

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 243
All Rights Reserved

CSharp Chapter 9

Rev. 4.7 Copyright © 2015 Object Innovations Enterprises, LLC 244
All Rights Reserved

