Table of Contents (Detailed)

Chapter 1: Workflow Foundation Conceptual OVervVieW............ccccevveveiieiieesneieeseennnen, 1
What IS WOTKFIOW? ...ttt ettt 3
Windows WOrKfloOw FOUNGALION. ..........cccveieiieiiee e 4
WWOTKTIOWS. ...ttt et e st e e e s raeste et e sneesreeneesres 5
Ao () SO ROP 6
StANAAIA ACTIVITIES ......veecvie e e et e e s e e sae e s e e beeesteesaeesbeearnean 7
RUNLIME SEIVICES ....eevviieieitieie ettt et e e e e s ne et e e e e sra e teaneesseenaeeneenreenreenes 8
WOrKfIOW BUSINESS SCENAIIO....c.uveiiivieiieeie ettt et 9
High LeVel WOIKFIOW .........ooiiieeee e e 10
Details of WNile ACHIVITY ......ooviiiiiiicieee s 11
Structure 0F the SOIULION .......c.eeecc e 12
@] 0 (= 3 o] o[- SRS 13
Manual Step in the VerifiCation............ocuoiiiiiii i s 14
Main CONSOIE DISPIAY .....veivieiiiiiiieiieee e 15
UL ES N ] 1= PSS 16
INVOICES FOIUBE ...ttt et s e et e e e s reente e e e aneens 17
Learning MICIOSOTE'S W ........oiiiiiieiie ittt bbb 18
Windows Workflow Foundation 3..............coiiiiiiiiie e 19
Orders WOrkfIoOW iN W 3 ... .ottt 20
Windows Workflow FOUNCAtION 4.............ccoouiiiiiiiieiiece e 21
Windows Workflow Foundation 4.5...........cceiiiiiiiiic e 22
SUMMABIY .ottt b e bt e bbb e e bt nb e e s 23

Chapter 2: Getting Started With WEF 4.5 ... 25
WOTKFIOW STIUCTUIE ...ttt e ae e e be et e ena e 27
Minimal WOrKFIOW PrOgram.........c.coeiiiiiiiiiieiee st 28
SEAUENCE ACTIVITY ..vveieieceieit ettt e a et e st e et e e e saa e teeneesneenneaneennee e 29
Visual Studio WOrKFIOW PrOJECES ........ccviiiiicie ettt 30
WOTKFIOW DeSIGNEr DEMO ........ceiuieiiiie ittt st sbe e bbb neeas 31
VATTADIES ... et e b ra e e e enne s 35
ASSIGN ACTIVITY ..ottt e e s de et esseesta e e e sneesreenseaneenneens 36
HEllOASSIGN WOTKFIOW .......cvviieiecece ettt e 37
C# and Visual BasiC EXPrESSIONS .......ccueruiriirrieiieieeniieiesieesteeie s saee e seessbssssssneesensnsesses 38
ATGUIMBNTS ...ttt r et sme e e e n e e e nntennneennee s 39
ATGUMENT EXAMPIE ...ttt te e e e et e e e e nraenseanee s 40
LA 2 et e e re e teenre e e reaeearen 41
CONLrOl FIOW ACLIVITIES ....ecuvieiiie ittt et e a s 42
WHITE ACTIVITY ...t b bbbt 43
[ 1o T2 = USSR PRPSSR 44
SUMMIATY .ttt ettt et e ettt e e bt e e ek e e et e e e bt e e e st e e nRb e e e e bt e e e bb e e e beeeanbeeeanes 45

Chapter 3: Primitive and Control FIOW ACIVILIES..........cccccvveviiieiiecece e 55
BUIlt-1N Primitive ACLIVITIES ......coveieiie et nne s 57

Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC Y

All Rights Reserved



INVOKEMELNO (STALIC) ....veeveeieiiiieeieee e et 58

Workflow (Static INVOKEMETNOM)........cocoiiiiiiiiiiee e 59
Variables in the WOrKFIOW...........ccooiiiiii e 60
INVOKEMELNO (INSLANCE) .....veeveieieccie ettt re e 61
Workflow (Instance INVOKEMELNOM) ........cvoiiiiiiieiieece e 62
Invoking .NET Framework LIDIary ..o s 63
INPUL TN WOTKFIOWS ... 64
Prompt EXample WOIrKFIOW ...........oooiiiiiice e 65
DEIAY ACLIVITY ...ttt sttt b e b ebe e sbe et e b e sbeeneenneas 66
7. 0T PSSR 67
CoNLrol FIOW ACHIVITIES ......oviiiieiieieieie st 68
PAFAIIEL ... s 69
Parallel ACHIVILY EXAMPIE .......ccoiiiiie it s 70
SO SSSRSS 71
T e B ISB eebebeeeeeeeerenes 72
WWVETE ..ttt e bbb n e a e 73
DOWWNIIE ...ttt b et bttt e et e nne s 74
Y1 S TS 76
SWILCRKT S EXAMPIE ...ttt e neenee e 77
LD BBttt b bbbt ee s 80
SUMIMAIY ...tttk ekttt ske e st e e bt e e s bt e bt e e et e e ke e em bt et e e eh b e et e e sen e e beeemneebeennnaennes 81
Chapter 4: CUSTOM ACTIVITIES. ... .coviiiiieiieii ettt nneas 95
WhY CUSEOM ACHIVITIES? ...ttt te e sre e sre e aneenne e 97
AUhOriNG CUSLOM ACHIVITIES ....coviieiiiie it 98
Arguments in CUSTOM ACHIVITIES. ......ciiiiiiiiieieiese et 99
ACLIVILY Class HIBIArCY ........cvoiiiii et 100
L0000 (=Y N 11V SRS RS 101
COUBACHVITYCONTEXL ...ttt sttt ettt e s et e e sae e e 102
COUACHIVITYSTRESUITS ...t 103
COUBACHVILY DEIMO ...ttt st e te et e e s e nreeneeneesseeneenneenneas 104
LD A bbbt bbb bbb r et e e 109
Composing EXIStING ACHVITIES ....c.eiieiieiieiiiie et e 110
Demo: COMPOSING ACTIVITIES. ......ceiiiieitiitiiti sttt sb e 111
LAD 4B bbbttt 115
BONUS EXAMPIE ...ttt ettt e e e s bt e enn e neente e 116
SUMIMAIY ...tttk etttk ettt e b et e st e e e b e e s bt e Re e e st e e she e e n bt e b st e b e e nmneesbeeabneas 117
Chapter 5: WOrKFIoW HOSEING ......c.coiiiiiiiie e e 129
WOTKFIOWINVOKET ...ttt 131
Specifying INput t0 @ WOIKFIOW .........ooiiiiiiiiiei e s 132
USING DICHIONAIIES ...ttt bbbttt 133
OULPUE ATGUIMENT ...ttt e et e e sbb e nbr e e s be e e snbeeeas 134
INVOKING @ GENEIIC ACLIVILY ..ot 135
RESUIt OUEPUL ATQUIMENT ...t 136
ReUSING 8 WOTKFIOW ......oouiiiiiiice s 137
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC vi

All Rights Reserved



MV OTKTIOW TIMBOUL. ... s 138

TIMEOUt WIth 118 TIME ...eeeeeeiieceeee e 139
Long Computation Without 1d1€ TIMe .......ccceciiieiieiese e 141
Invoking the Long COMPULALION ........c.ccviiieiice e 143
Long Computation With TIMEOUL...........ccoiiiiiiiiice e 144
LD DA ettt re e aeereera et rens 145
Hosting @ WOrkflow in WINAOWS .........cccuviiiiieiecie e 146
WiINAOWS HOSE COUR ..ottt bbb 147
WorkflowInvoker Instance Methods .........c.ooeeiiiiiiiiiieeese e 148
WorkflowInvoker Asynchronous Methods............ccccooiiiiiiiiiiiiiec e, 149
ASYNChronous DemONSEIALION...........ccciiieieeeiie e sre e enes 150
HellOASYNC COde (INVOKET) .......oiiieie et 152
EXAMPIe WOIKFIOW .......oiieiiiiee e e 154
ETTECT OF SIBEP. .t 155
WOTrKFIOWAPPICALION ..ottt e e 156
WOrkflowApPplICation DEMO .......cccviiiiiicece e 157
Thread SYNChrONIZAtION ........ooiiiiii e s 161
ATGUIMBNTS ...t ettt n et e e s r e e e e nn e e e nnneenns 162
WorkflowApplication ASYNC DEMO ........ccoeiieiieiieie e ee e sa e 163
HelloAsync Code (APPHICALION) ....cc.eciiiiiicce e 165
WorkflowApplication DEIEGALES ..........cccviiiieiieiieiieie e 166
Manual Control Of WOIKFIOWS..........coiiiiiiieciiecee e 167
Stopping WOrkKfIoW EXECULION ........ccuviiiiiiiiee et 168
Workflow Manual Control EXample ..o 169
ENQUEUE WOTKFIOW ...t 170
DeqUEUE WOTKFIOW ......c.oiiiiiiiiiieee st 171
Host Code for Enqueue WOrKFIOW .........cooiiieiiiccis e 172
Host Code for Dequeue WOTKFIOW ...........cccoiiiiiiiiiece e 173
(101 = T SRR PTPRPSPSRRP 174
Hosting @ WOrKfIow i ASP.NET .....ovoiiiieiiieeiiee s 175
ASP.NET WOIKFIOW HOSE ...ttt 176
LD Bt h e r bbb bbb re et e e 177
SUMIMAIY ..ttt ettt etk e st e be e e st e e e he e e s bt e ke e asbb e eaR e SRR e e e b n e e mt e e nrneenbeeerneas 178
Chapter 6: Collection and Parallel ACHVILIES...........ccooviiiiiiiiiieee e 187
COIIECTION ACHIVITIES ..ottt bt s b b ere et nee 189
Collection ACLIVITIES EXAMPIE .....c..oiviiiiiiiei e e 190
TOP-LEVEI WOTKFIOW ... e 191
Process Command ACHIVITY.......c.oiiiieieeeeiese et n e ne e ne e 192
AT AN SNOW ...ttt be st bbb 193
REMOVE @NA CIEAT ... .eiiiiee et 194
FOIEACNST S ACHIVITY ..ottt 195
ParallelFOrEACNST > ... bbb 196
Factor Workflow EXample.........cooooiiii e 197
USING FOTEACNST> ..ot st 198
Using ParallelFOrEaCNST> ...t 199
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC vii

All Rights Reserved



USING ASYNCCOAEACTIVITY ..ottt 200

EXAMPIE COUB ...t 201
HOSE COB..... ettt bbb bbb bbbt 202
ASYNChronous ACHIVITIES IN W ..ot 203
T (0] o TP PP PP PPPPRPPR 204
FACTOTNUMDEI.CS ...t eeeeenee e 205
ASYNC Coding: BEGINEXECULE .......cveiiiiieieeie sttt 206
ASYNC Coding: ENAEXECULE .......ccveii ettt 207
LD B .ottt bt reere et e e 208
SUMMEBIY .. b et b bt e bt bt e b e et e sn e be b e nne s 209
Chapter 7: More about CuStOM ACTIVITIES ........ccviiiiiiiiiieee s 215
WaIING FOI TNPUL. ... ettt 217
BOOKIMAIKS ...ttt ettt e re e nte e reenne e 218
NALIVEACTIVITY ..ottt et e te e s e re e teenaesneesteeneenree e 219
BOOKMArK EXAMPIE ....coviiiiiiciece ettt ne e 220
GetTWOINt CUSTOM ACTIVITY ..oiiviiiiiieiie e 221
HOSE PrOGIAM ..o 222
Passing Data 0N RESUME .........cciiirieiieie et se st e et e e saeenae e e sreenee s 223
BOOKMArK OPLIONS ...c.veciiiie ittt ste e e e ne e 224
BOOKMArks and THIEads .........cceiiriiiiiiie i 225
Threads IN HOSE COUE .....oiiiiiieie ettt ste e nnes 226
Threads iN WOTKFIOW ..ot 227
Sample Threading OULPUL........ccoiiiiie et sre s 228
7. oI O SR T PR PRPSSSRRR 229
A Compute INtensive WOTKFIOW .........c.oiiiiiiiiii e 230
ENQUEUELLOOP ..ttt bbbttt et e et e e bn e e e ne e e anes 231
=T [0 1= I o] o PRSP P UPR PP 232
FactorQueueBoOKMArk SOIULION ........cooiiiiiiiciii e 233
FACIOTCONSOIEWVWE ...ttt et et be e teaneesraeeennee e 234
MOTE EXPEIIMENTS. ..euviitieiteeie et te ettt e et este e bs e e e e na e seanreaneensaeneenreenes 236
PICK ACHIVITY .. sae e e te et e e e s aeesteeneesreeneaneenneens 237
PICK EXAMPIE .. et b e bbb 238
Gt aNd CNECK ANSWET .....cveeieiiiesiieite e ste e e eeestee e see st e steeseesteesseaseesreesbeansesseenseaneensens 239
S THMIBE 1t b et bbbttt bbbt 240
SUMMIATY vtttk h e ettt e et e e e b e e et bt e et e e e eab e e sab e e d e e s b e e e ne e e e ne e e bta s 241
Chapter 8: Flowchart and State Maching ............cccooveiviii i, 251
WOrKFlow MOdeling StYIES........couviieiieeee e 253
FIOWCNAIT ACHIVITIES. ... evviiiiiesiicies et sb bbb nne e 254
FIOWChArt ACHIVILY DESIGNE ... ..ccuiiiiiieiiieieeie et 255
Demo: Absolute Value FIOWChArt ..........c.cooeiiiiiieec e 256
AULO-CONNECT ...t n s r e e neenrne s 261
USING FIOWDECISION ...ttt s re e 262
Flowchart and CUStOM ACHIVITIES .........ooiiiiiiiiiee e 265
LD BA ettt e aeere e e e et e nes 266
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC viii

All Rights Reserved



State Machine Workflows iNnWFEF 4.5 ..o 267

State Machine WOorkflow Modeling .........cccoeiiiiniiiiieee e 268
State Machine WOrkflow EXample........c.coovvvoeiieiieiecc e 269
POWET ON TIANSITION ...ttt ettt bttt be e s 270
TransitionCommaNd TIIGGET ...ooeeiiiie ettt enes 271
WAIMING STALE ....veiiciieieee bbbttt nbenre s 272
HEALEA TTaNSITION......iiiiiii ettt 273
[ (01 o (0o -1 o PP 274
State Machine ACHIVILY DESIGNE ........cccuiiiiiiiieieeie ettt neeas 275
Demo: Timer State MaChiNe........ooov i 276
Timer in the Math Game.........ccviiii s 281
DO ProBIEM SEALE ......oviiiiecicece e 282
TIMEUP TIaNSITION.....cviiiiiiiiie ettt b e re et et sne e 283
TIME QUL STALE ...t et et e e steereesre e beeneesneeneas 284
(@00 0] o] [=] (=T I - 13 Y1 o] o USSR 285
TRIEAUING ISSUB ...t cvie ittt ettt et e st e et e ene e s teeaeaneesreeneas 286
Threading 1SSUE RESOIVEX.........ooiiiiiiiiieee s 288
g F =0 B I oo =T USSP U RSO T PP 289
ECRO TTaNSITION ....iiiiieiee ettt bbb 290
QUIL TTANSITION .. vt ittt ettt st e et e e e b e st e e b e e saaeesbeesbaeebeesabeesbeesareebeesnreens 291
LD BBttt b b beereene et e e 292
SUMIMEBIY .t b et b e bt e bt e bt e e b b e s nne s 293
Chapter 9: PerSISTENCE......c..oviii itttk nn e sbe st 309
Long RUNNING WOTKFIOWS ......cuiiiiiieiiie e 311
Persistence and BOOKMAIKS .........cooiiiiieiiiiie sttt nne e 312
Long-Running WOrkflow EXamPIe .......ccooveiiiieeieie e 313
Persistent Term Life EXAMPIE ....ccooovviieiiiiie ettt 314
WOrkFlow Persistence iN W 4.5 ...ttt e 315
SQL Server Persistence Database. ........ccovevveieiiieienie et 316
Host Code t0 ENable PErSISIENCE .......cc.oiviiiiiiiiiieieiie i 317
PErSISTENCE DEBIMO...c.iiiiiiiieiieiiite ittt b e st bbbt e sttt sbe e ans 318
AULORESEIEVENT ... e b e 322
PersiStableldle EVENT........ccviiee ettt ne e 324
HOW t0 Persist @ WOIKFIOW..........ccuiiiiiiic b 326
Loading a Persisted WOrKFIOW...........ccooiiiiiiicc e 327
Unload and Load EXAMPIe... ..o st 328
StartANAUNIOAAINSTANCE() ....vvveeieeeeie e 329
Load ANdCompleteINSTANCE() ... ccverieeieiieiiesie et e e e nne e 330
Stopping and Starting the HOSE...........coceiiii e 331
SEAMTVWOTKFIOW. ...t nre s 332
SEAMTVWOTKFIOW.. ... et sne e 333
Loading After Data Available..........c.ccviiiiiiiiee e 334
INIENIMIES ...ttt bttt b bbbt e bt nennerens 335
(€121 5] 1] T SRS PURTTRURPRTR 336
SEIING COMMANGS. ..ottt bbbt 337
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC iX

All Rights Reserved



HOSE PTOGIAM ...t 339

7. o1 P UPRSSSSRSRS 340
SUMIMIATY ..ttt ekt e ekt e ek bt e et b e e et e e e sab et e asbe e e nnb e e e nbb e e e nbbeeenbneeantneeas 341
Chapter 10: WOrKFIOW SEIVICES.........c.coiveiieie ettt 347
WAL IS W2, ettt et re e te e e sneenae e e nnes 349
WV SBIVICES ..ottt bbbt b ettt ettt bbbttt 350
WECE 2 ABC ettt bbb bbb bbb 351
Address, Binding, CONTIACT.........ccooiiiieiiee e 352
WOTKFIOW SEIVICES......oivieieieie ettt sttt et sre et enee e 353
MESSAGING ACTIVITIES. .....eeiveeiiiie et te e e s e e reeneereesreenee e 354
Messaging ACtiVity TEMPIALES .......c.coiiiiiiiiec e 355
Demo — Creating @ WOrKFIOW SEIVICE........ccoiiiiiiiiiiiics e 356
WECE TESE CHENT ...ttt nre e nnes 360
Demo — WOrKFIOW Services CHENT.......ccoiiiiiiiiiieieeee e 362
MUILIPIE OPEIALIONS ..ottt ettt e e re e reern e raeee e 365
Multiple Operations via Parallel ... 366
HOStING @ WOTKFIOW SEIVICE.......ccuiiiiiiiiiic e 367
CoNFIGUIALION FIB.....eiiiiie e e e e e eas 368
WorkflowServiceHOSt EXaMPIE .........coiiieiiiieiecc e 369
PrOGIAIMLCS ..ttt e e s st e e st e e nb e e e anb e e e nn e e e anree s 370
Startup CONFIGUIALION ......oiuiiiiieicie bbb 372
LAD L0 ot b bbbttt et nes 373
SUMMIATY .ttt ettt e etk e et e e e e S Rb e e et e e e ab e e e nb e e e nb e e e nnb e e e nbb e e e bneeenbeee s 374
Chapter 11: Debugging and Error Handling ..........ccccooveviiiiin e, 385
Debugging WOIKFIOWS..........c.ooiieecicie sttt nne e 387
Control FIow and FIOWCHAIT ............oooiiiiiiiiiei e 388
Breakpoint EXAMPIE........ooo o 389
Breakpoint i XAIML ..ottt bbb 390
(=] o] £ [0 S ST 391
EXCeption DEMONSIIALION .......cviiieiiiciecie sttt ae e 392
ACCOUNt AN BANK CIASSES.....cueiiiiiiiiie ittt 393
USE OF DICTIONAIY ...ttt bbb bbbttt 394
DepOoSit aNd WITNATAW .......cocuieiiiie et nre e saenne e 395
COUE ACHIVITIES ..ottt ettt et bbb bbb e e s et e e bt nre et 396
COMPOSITE ACTIVITIES. ...eoviiiieiie sttt ettt sbe et eesbeeaesnte e 397
TOP-LEVEI WOTKFIOW ... 398
[ (01 (0o | =10 TSP TUPRP PP 399
UNhandled EXCEPLIONS ........ccvviieiiecieee ettt e enreene e 400
Using WOrKFIOWAPPHCATION........c.eiiiiiiiieiee e e 401
SAMPIE OQULPUL ... bbbt bbbt 402
TIYCALCN ACHIVILY ..ovviiieeiece et e e e e e sneenes 403
TrYCAtCh DEMO......eciieii ettt et s e b e et e sreesreenennes 404
LI U057 T3 £ 3 PSPPSR 409
COMPENSALION ...ttt bbbttt nb bbb e e nes 410
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC X

All Rights Reserved



NO COMPENSALION. ...ttt sttt e be et e s re e be e besreenbeeneeeree e 411

USING COMPENSALION .......oviiiitiiiieiieiie ettt bttt b ene s 412
TrANSTEIXAM ..o bbb 413
Compensable Withdrawal ..............ccoviiiiiiiicccce e 414
ComMPENSALION TOKEN ...ttt nne s 415
Canceling the WOTKFIOW ..o 416
Exceptions and COMPENSALION .......c.ueiiiieiieriieie e nne e 417
Compensation NOt Performed...........ccooiiiiiieieiie e 418
7. o1 SRS PRPSPSRRR 419
SUMMBIY ..t b bbbt a b b e enb e et be b e nne s 420
AppendixX A: Learning RESOUICES.........ccuiiiiiiiieiisiesiseeee et 429
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC xi

All Rights Reserved



Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC xii
All Rights Reserved



WTFCs Chapter 1

Chapter 1

Workflow Foundation
Conceptual Overview

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 1
All Rights Reserved



WTFCs Chapter 1

Workflow Foundation Conceptual Overview

Objectives

After completing this unit you will be able to:

e Explain what a workflow is and how Windows
Workflow Foundation supports workflow
applications.

e Describe a typical business scenario for workflow and
illustrate with a WF application.

e Explain the concepts of workflows and activities.
e Describe runtime services provided in WF.

e Discuss the differences between WF 3 and WF 4/4.5.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 2
All Rights Reserved



WTFCs Chapter 1

What Is Workflow?

e In general terms, a workflow can be thought of as a
flow of processes or tasks that produce some result.

e Workflows are often concerned with documents that
flow through various activities and may spawn other
documents as they are processed.

e Workflows can be manual, with paper documents
being transmitted among people working at different
desks in an office, each person performing defined
tasks according to specified rules.

e \We are concerned with workflows as software
systems that define the flow of work, the activities
performed, and the rules that are employed.

— Rules can be expressed declaratively or in code.

— Activities may be entirely automated or may involve human
interaction.

— Workflows may be distributed among multiple computers in
diverse locations.

— Workflows are typically represented in a graphical manner.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 3
All Rights Reserved



WTFCs Chapter 1

Windows Workflow Foundation

e Windows Workflow Foundation (WF) is a
framework that supports creating and running
workflow applications on Windows platforms.

— WEF consists of a programming model, an engine, and tools.

— The tools include designers for Visual Studio.

e WF provides a consistent development experience
with other .NET 4.x technologies, including WCF and
WPF.

e The WF API contains support for both C# and Visual
Basic, a special workflow compiler, workflow
debugging support, and a visual workflow designer.

e Workflows can be developed completely in code or
created in conjunction with XAML markup.

e The WF model and designer are extensible, enabling
developers to create custom activities that
encapsulate particular workflow functionality.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 4
All Rights Reserved



WTFCs Chapter 1

Workflows

o A workflow is a set of activities that are stored in a
model describing a business (or other real-world)
process.

e A workflow describes the order of execution and
relationships between units of work.

— The units of work may run for a short time or a long time.

— Activities may be performed by people or the computer.

e A workflow instance is created and maintained by the
workflow runtime engine.

— There can be several workflow engines within an application
domain.

— Each instance of the engine can support multiple workflow
instances.

o A compiled workflow model can be hosted inside any
Windows process, including a console application, a
Windows Forms application, a WPF application, a
Windows service, an ASP.NET Web application, and
a Web service.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 5
All Rights Reserved



WTFCs Chapter 1

Activities

e The units of work of a workflow are called activities.

e \When a workflow instance starts, activities are
executed in an order as defined by the workflow
model.

— Both parallel and sequential orders of execution are
supported.

— Conditional and looping behavior of activities is supported.

— Execution continues until the last activity completes, and the
workflow then terminates.

e Activities can be reused within a workflow and in
other workflows.

e Activities usually have properties that are
configurable.

e WF provides many standard activities out-of-the box,
and custom activities can be created.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 6
All Rights Reserved



WHiCs

Chapter 1

Standard Activities

e The Visual Studio Toolbox contains many standard
activities that can be dragged onto the surface of the
Workflow Designer.

— These are arranged in groups, such as Control Flow,

Flowchart, State Machine, Messaging, and so on.

— Custom activities can be provided in activity libraries.

Rev. 4.6

Toolbaox

Search Toolbox

4 Control Flaw

[ PSS e = ol 3 il [ [ 4

Pointer
DowWhile
FaorEach<T >
If

Parallel
ParallelForEach <T=
Pick
PickBranch
Sequence
Switch<T=
While

4 Flowchart

§ O

Pointer
Flowchart
FlowDecision

FlowSwitch =T

[+ State Machine
[+ Messaging

[» Rumtime

[» Primitives

[ Transaction

[ Collection

[» Error Handling

[+ Migration

[ ReadActivityLibrary

- 0%
po-

Fs

Copyright © 2014 Object Innovations Enterprises, LLC 7
All Rights Reserved



WfCs Chapter 1

Runtime Services

e WF provides a number of out-of-the box runtime
services that are available in the workflow engine.

e Persistence services enable a developer to easily save a
WF instance to external storage, such as a database
or XML file.

— This capability enables workflow applications to maintain
state and be long-running, surviving application restarts.

e Transaction services enable you to maintain
transactional integrity in workflow applications.

e Tracking services support monitoring and recording
workflow execution.

e Scheduling services enable you to control how the WF
runtime manages threads in your application.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 8
All Rights Reserved



WHiCs

Chapter 1

Workflow Business Scenario

e To illustrate workflows consider the following
business scenario:

As orders are created they are specified in XML files placed
in the folder Orders.

Each order in the Orders folder is processed, beginning with
getting the order information from the XML file.

The order is verified, which is done by a person who checks
each item in the order for consistency (description furnished
by customer matches the description in the vendor database
or has a trivial error such as a misspelling). The system also
does some verification, making sure that the item ID is found
in the database.

If the order is valid, it is processed and an invoice is created.
The invoice is specified in an XML, stored in the Invoices
folder.

If the order is not valid, the issue with the order is specified
in another XML file, stored in the Issues folder. (A customer
service representative can follow up on such orders by
emailing or calling the customer.)

e This scenario is implemented by a workflow
application.

Rev. 4.6

See Chap01\OrderWorkflow. See the file Workflow1.xaml
in the OrderWorkflow project for a diagram of the

workflow.

Copyright © 2014 Object Innovations Enterprises, LLC 9
All Rights Reserved



WTFCs Chapter 1

High Level Workflow

e Open up the file Workflowl1.xaml.

— The Workflow Designer opens up, showing a diagram of the
workflow™.

— Examine the workflow at a high level by collapsing the
While More Orders activity.

'y Sequence

[] Initialize Orders

+] While More Orders

&

Double -aick foview

(] Prompt For Exit

1 You must build the solution before the Workflow1.xaml file will load properly in the visual designer.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 10
All Rights Reserved



WTFCs Chapter 1

Details of While Activity

t] While More Orders

Condition
Mare

Body

(31 Handle Orders A

1 Get Order
1 Verify Order

&' If Order is Valid A

Condition

Status == "OK"
Then Elze
1 Process Order ] Process Issue

e The heart of the workflow is a loop that gets and
verifies orders.

— If order is valid, it is processed.

— If order is not valid, an issue is processed.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

11



WTFCs Chapter 1

Structure of the Solution

e The solution consists of three projects:

— OrderLibrary is an activity library that defines custom
activities such as InitializeOrders, GetOrder, and so on.

— OrLib is an ordinary class library defining the classes that
are used in the implementation of the custom activities. This
includes code to access a database.

— OrderWorkflow is a console application that contains the
workflow itself. It has a graphical representation specified in
the XAML file Workflow1.xaml.

e Three folders are provided for XML data files:
— The Orders folder contains orders to be processed.

— The Invoices folder contains invoices that are created for
valid orders.

— The Issues folder contains files describing issues for orders
that are not valid.

e A database of products is provided in the SQL Server
database file Product.mdf in the C:\OIC\Data folder.

— The database uses the LocalDB version of SQL Server 2012,
which is automatically installed with Visual Studio 2013.

— The database access code is encapsulated within the OrLib
class library.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 12
All Rights Reserved



WTFCs Chapter 1

Orders Folder

e The Orders folder contains XML files representing
orders. The loop goes through all the files in this
folder.

— As an example, consider 1002.xml. This order is basically
valid, but one of the items is slightly questionable.

<?xml version="1.0" encoding="'utf-8"
standalone="yes"?>
<Order>
<Order1d>1002</0Orderlid>
<Customer>
<Name>Mary Smith</Name>
<Emai I>mary@bar.com</Email>
</Customer>
<ltem>
<ltemld>104</1temld>
<Description>Sofa</Description>
<Quantity>1</Quantity>
</ltem>
<ltem>
<ltemld>102</I1temld>
<Description>Tabel</Description>
<Quantity>2</Quantity>
</ltem>
<ltem>
<Itemld>103</Itemld>
<Description>Lamp</Description>
<Quantity>2</Quantity>
</ltem>
</0Order>

e An automated verification might reject item 102
because of the misspelling of the description.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 13
All Rights Reserved



WTFCs Chapter 1

Manual Step in the Verification

e As is typical in workflow applications, steps in the
workflow can be carried out either by the computer
or a person.

e As part of the processing of the VerifyOrder activity a
message box will be displayed for a human to verify
each item.

e Build and run the solution.

— OrderWorkflow is the startup project, so this console
application will run.

— As orders are verified, a message box will pop up for each
item of each order.

e Here is the message box for item 102 of order 1002.
Ttem Verification x|

Customer Description: Tabel
Database Description: Table
I= this OK?

e The person viewing this will clearly see that this is
benign and will click Yes to approve this item.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 14
All Rights Reserved



WTFCs Chapter 1

Main Console Display

e As the workflow is executed, a running report on
each item is displayed on a main console.

e Here is the display for order 1002:

C:\OIC\WFCs\Chap01\OrderWorkflow\Orders\1002.xml
Orderld = 1002

Verification message = OK

Orderld = 1002

CustomerName = Mary Smith

CustomerEmail = mary@bar.com

Itemld Description Quantity ... Price Extension
104 Sofa 1 .- $500.00 $500.00
102 Tabel 2 .- $200.00 $400.00
103 Lamp 2 .- $50.00 $100.00

Total = $1,000.00
File 1002.xml has been created in folder Invoices

e And here is the display for orders 1003 and 1004 for
which there were genuine issues.

file = 1003.xml
C:\OIC\WFCs\Chap01\OrderWorkflow\Orders\1003.xml
Orderld = 1003

Verification message = Description does not match
Create issue: Description does not match

File 1003.xml has been created in folder Issues
file = 1004 ._.xml
C:\OIC\WFCs\Chap01\OrderWorkflow\Orders\1004 .xml
Orderld = 1003

Verification message = ltem Not Found

Create issue: Item Not Found

File 1004.xml has been created iIn folder Issues
Press Enter to exit

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 15
All Rights Reserved



WTFCs Chapter 1

Issues Folder

e The Issues folder will contain an XML file for each
order having genuine issues.

e Our example illustrates two kinds of problems.

— The item is not found in the database, a problem that can be
detected automatically, illustrated in order 1004.

— The item’s description indicates a genuine guestion, such as
an ambiguity that should be verified with the customer,
illustrated in order 1003.

Ttem Verification |

Customer Description: Bookshelf
Database Description: Bookshelf (5 shelves)
Is this OK?

— The human verifier will reject this item, because the
company has several bookshelves having different numbers
of shelves, and the customer should be queried to make sure
she gets the desired bookshelf.

— Here is the generated issue file 1003.xml:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<lIssue>
<Order1d>1003</0rderld>
<CustomerName>Bill Jones</CustomerName>
<CustomerEmail>bill@forest.net</CustomerEmail>
<Message>Description does not match</Message>
</1ssue>

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 16
All Rights Reserved



WTFCs Chapter 1

Invoices Folder

e For valid orders an XML file is created from which
an invoice can be generated.

— The actual invoice that will be sent to the printer is created by
a separate subsystem, which could be another workflow,
whose input is the files in the Invoices folder.

e As an example, here is the invoice XML file for order
1002.

<?xml version="1.0" encoding="utf-8" standalone="'yes"?>
<lnvoice>
<Order1d>1002</0rderld>
<CustomerName>Mary Smith</CustomerName>
<CustomerEmai I>mary@bar.com</CustomerEmai >
<Lineltem>
<ltemld>104</I1temld>
<Description>Sofa</Description>
<Quantity>1</Quantity>
<Price>500.0000</Price>
<Extension>500.0000</Extension>
</Lineltem>
<Lineltem>
<ltemld>102</I1temld>
<Description>Table</Description>
<Quantity>2</Quantity>
<Price>200.0000</Price>
<Extension>400.0000</Extension>
</Lineltem>
<Lineltem>
<ltemld>103</I1temld>
<Description>Lamp</Description>
<Quantity>2</Quantity>
<Price>50.0000</Price>
<Extension>100.0000</Extension>
</Lineltem>
<Total>1000.0000</Total>
</Invoice>

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 17
All Rights Reserved



WTFCs Chapter 1

Learning Microsoft’'s WF

e There are two main challenges in learning to use
Windows Workflow Foundation.

e The first challenge is to understand the nature of
workflow applications, which are quite different in
structure from conventional applications.

— For this purpose studying a miniature example illustrating an
actual business scenario is invaluable.

— The program OrderWorkflow is such an example. (By
contrast, a conventional console application is provided in
OrderConsole in the chapter folder.)

e The second challenge is to understand the classes and
tools in the actual framework.

— For this purpose studying small standalone examples,
divorced from the complexities of a business situation, will
be most helpful.

— We’ll largely follow this second approach in the remainder of
the course, beginning with a simple “Hello Workflow”
example in Chapter 2.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 18
All Rights Reserved



WHiCs

Chapter 1

Windows Workflow Foundation 3

e \Windows Workflow Foundation was introduced as

Rev. 4.6

part of NET Framework 3.0 (formerly called
WinFX).

NET Framework 3.0 layers on top of NET
Framework 2.0 and has the components shown in the
diagram.

Windows Windows Windows .
) L Windows
Presentation Communication Workflow
. : . CardSpace
Foundation Foundation Foundation (WCS)
(WPF) (WCF) (WF)
.NET Framework 2.0
Windows ASP.NET ADO.NET

Forms

Base Class Libraries

Common Language Runtime

NET Framework 3.5 added some important new
features, notably Language Integrated Query or
LINQ, but remained layered on top of .NET 2.0.

— WF 3.5 used the same Workflow programming model as WF
3.0.

— OrderWF3 illustrates the same order processing workflow
implemented using WF 3.5. The graphical representation of
the workflow looks different, as can be seen on the next page.

Copyright © 2014 Object Innovations Enterprises, LLC 19
All Rights Reserved



WTFCs Chapter 1

Orders Workflow in WF 3

L§ InitializeOrders

S -~

v

B whileMarel
3 =
|

(=]

= HandleOrder
(]

L GetOrder

., -

' 'l‘ ™y
L§ verifyOrder

. A

V

B iforderyalid
ﬁl’n
| |
Orderlsvalid OrderlsMoty alid

7 7

- b e
|:5 ProcessOrder ‘ ‘:5 Processlssus
b ht

L 4 v

$

L

v

=5' PromptForBdt

., -

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 20
All Rights Reserved



WTFCs Chapter 1

Windows Workflow Foundation 4

e NET 4.0 is a major revision of the .NET Framework,
and the WinFX technologies are no longer layered on
top of .NET 3.0.

e Windows Workflow Foundation in .NET 4.0is a
complete re-architecting of WF.

— WF 4 has a completely new set of assemblies:
System.Activities.* that are used in place of the
System.Workflow.* assemblies from WF 3.

— But WF 4 retains the System.Workflow.* assemblies, so WF
3 workflows will run unchanged in WF 4 (as illustrated by
the OrderWF3 example).

e Major changes in WF 4 include:

— A new visual designer, built with WPF, supports the ability
to work with much larger workflows.

— Data flows, which were opaque in WF 3, can now be clearly
specified as variables and arguments with familiar typing and
scoping.

— A new Flowchart activity is provided.

— The programming model has been revamped, making
Activity a core base type used for both workflows and
activities. The model is now fully declarative, expressible in
XAML, with no code-beside.

— Integration with WCF has been improved, with new
messaging activities, and fully declarative service definition.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 21
All Rights Reserved



WTFCs Chapter 1

Windows Workflow Foundation 4.5

e \Windows Workflow Foundation in .NET 4.5/4.5.1
and Visual Studio 2013 contains new activities,
designer capabilities, and a new workflow
development model.

— Some of this capability was available in the Service Pack and
Platform Update to Visual Studio 2010.

e A major enhancement for C# programmers is C#
expressions.

— Prior to .NET 4.5 expressions in workflows had to be written
in Visual Basic.

e NET 4.5 provides for a state machine development
model out-of-the box.

— WEF 3 supported state machines but WF 4 did not. The state
machine development model was provided in the Platform
Update to Visual Studio 2010.

e There are a number of new designer capabilities:

— Auto-surround with Sequence: Dragging a second activity
into a block expecting a single activity will cause the
designer to automatically insert a Sequence.

— There is an auto-connect feature in flowcharts.

— Breakpoints can be set on states in state machines.

e Consult MSDN documentation for other
enhancements in WF 4.5.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 22
All Rights Reserved



WTFCs Chapter 1

Summary

o A workflow can be thought of as a flow of processes
or tasks that produce some result.

e Windows Workflow Foundation (WF) is a
framework that supports creating and running
workflow applications on Windows platforms.

e The units of work of a workflow are called activities.
e Workflows can be defined using a visual designer.

e Standard activities are provided in a Toolbox, and
custom activities can be created in an activity library,
also made available in the Toolbox.

e Workflow Foundation 4 is a complete re-architecting
of WF.

e WEF 4.5 contains new activities, designer capabilities,
and a new state machine development model. C#
expressions are supported in workflows.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 23
All Rights Reserved



WTFCs Chapter 9

Chapter 9

Persistence

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 309
All Rights Reserved



WTFCs Chapter 9

Persistence

Objectives

After completing this unit you will be able to:

Explain the need of a persistence mechanism in long
running workflows.

Describe the role of bookmarks in persistence.

Describe how to set up a persistence store in SQL
Server.

Implement a workflow that persists its state.

Implement a workflow that persists its state, unloads,
and then loads its state from the persistence store.

Show how to serialize workflow instance
identification so that the host program as well as the
workflow can unload and start up again.

Implement a long running workflow that can be
unloaded for days or weeks and then resume when
needed data is available.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 310

All Rights Reserved



WTFCs Chapter 9

Long Running Workflows

e A characteristic of some workflow applications is that
they are inherently long running.

e For example, some steps in the workflow may require
human interaction.

— Such a step involving human operation may take days or
even weeks.

e To deal with the requirement of long running
workflows, Workflow Foundation provides a
persistence mechanism.

e The state of the workflow may be saved to persistent
storage, such as a SQL Server database.

o After the state of the workflow has been saved, the
workflow may be unloaded.

e \When needed data becomes available, the workflow
may be loaded again and its state restored.

— The needed data can be supplied, and the workflow resumes.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 311
All Rights Reserved



WTFCs Chapter 9

Persistence and Bookmarks

e Conceptually, the persistence scenario is similar to
the use of bookmarks.

— A workflow may go idle when it needs data.

— To enable resumption from the point where it left off, the
workflow creates a bookmark.

— When the data becomes available the bookmark may be
resumed.

e But in this scenario the workflow is only idle, not
unloaded.

— The workflow continues to reside in memory.

e This scenario is not suitable for truly long-running
workflows.

— For these we need the persistence mechanism.

e But the persistence mechanism typically makes use of
bookmarks in its implementation.

— A bookmark marks a place where a persisted workflow can
be resumed.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 312
All Rights Reserved



WTFCs Chapter 9

Long-Running Workflow Example

e To illustrate a long-running workflow, consider a life
insurance workflow application.

e Issuing a life insurance policy involves several
aspects, including:

— The premium must be calculated based on actuarial tables.

— Risk must be evaluated in an underwriting process.

e The first step can be completely automated, but the
underwriting step involves human interaction and
possibly a medical examination.

e The workflow can begin with automated steps, but
must pause when the underwriting report is needed.

— The underwriting process may take days or weeks.

— During this time the workflow instance should be unloaded,
which requires persistence.

e See PersistentTermLife\Step2 in the chapter folder.
— The instructor will demonstrate this program.

— Before running the program on your own computer, you will
need to set up a persistence store in SQL Server. This
procedure is discussed and demonstrated later in the chapter.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 313
All Rights Reserved



WTFCs Chapter 9

Persistent Term Life Example

e Build and run the program.

— First some data (age and amount) are entered, which can be
done immediately from the application.

— But before insurance can be offered, the underwriting step is
needed, which can take days or weeks.

— The program unloads at this point.

Name: John Smith

Age: 40

Amount: 150000
Workflow has unloaded

— Next an underwriting decision is entered when the
underwriter’s report has become available.

Underwriting Decision
approve, deny, or rating:
approve

— Now the workflow can be reloaded and resumed, and a
proposal is created.

Term Life Proposal
Insured: John Smith

Age: 40

Death Benefit: $150,000.00
Monthly Premium: $18.30
Workflow has completed
Workflow has unloaded

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 314
All Rights Reserved



WTFCs Chapter 9

Workflow Persistence in WF 4.5

Workflow persistence is the capture of the state of a
workflow instance in a durable storage medium.

— This enables unloading workflow instances that are not
actively performing work, optimizing memory.

— It also provides a point of recovery in the event of system
failure.

The persistence mechanism involves:
— ldentification of a persistence point
— Gathering of state data to be saved

— Delegation of the actual storage of the data to a persistence
provider.

.NET 4.0 provides a persistence provider based on
SQL Server, or you can create your own.

— The SqglWorkflowlInstanceStore class enables metadata and
state information about a workflow instance to be saved to a
SQL Server 2005 or 2008 or 2012 database’.

The examples in this chapter assume you have SQL
Server 2012 Express installed.

! At the time of this writing SQL Server 2014 has been released, but we have not yet tested against it. So
for this course you should use SQL Server 2012 Express.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 315
All Rights Reserved



WTFCs Chapter 9

SQL Server Persistence Database

e Before using the persistence API, you must create a
database for storing persistent data from workflow
instances.

e NET 4.0 provides two SQL scripts to initialize a
fresh database for this purpose, which should be run
in this order:

— SqglWorkflowInstanceStoreSchema.sql

— SglWorkflowInstanceStoreLogic.sql

e These scripts are located in the windows directory
here:

\Microsoft. NET\Framework\v4.xxx\SQL\EN

¢ \When no longer needed, you can remove the database
using SQL Server Management Studio.

e Alternatively, the MSDN samples provide two
command files (which should be run from a Visual
Studio command prompt) for creating and removing
the database:

— CreatelnstanceStore.cmd
— RemovelnstanceStore.cmd

e The course labs provides a copy of these files here:
— \OIC\Data

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 316
All Rights Reserved



WTFCs Chapter 9

Host Code to Enable Persistence

1. Add references to these DLLS:

System.Activities.Durablelnstancing.dll
System.Runtime.Durablelnstancing.dll

2. Import this namespace: System.Activities.Durablelnstancing.

3. Provide code such as this to initialize an instance store and
assign it to the InstanceStore member of
WorkflowApplication.

const string connectionString =
"Server=_\\SQLEXPRESS; Initial Catalog=
SamplelnstanceStore; Integrated Security=SSPI1";
SglWorkflowlnstanceStore store =
new SqlWorkflowlnstanceStore(connectionString);
wfFApp. InstanceStore = store;

— The command file CreatelnstanceStore.cmd created a
database whose name is SamplelnstanceStore.

4. Typically you will handle the Persistableldle event of the
WorkflowApplication object and return either the Persist or
Unload member of the PersistableldleAction enumeration.

wFApp.Persistableldle = delegate(
WorkflowApplicationldleEventArgs e)

{
return PersistableldleAction.Persist;
};
— Persist will persist the workflow, and Unload will persist
and then unload the workflow.
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 317

All Rights Reserved



WHiCs

Persistence Demo

Chapter 9

e This demonstration sets up a persistence instance

store and persists a simple workflow.

1. Open up a Visual Studio command prompt and navigate to the
folder C:\OIC\Data. Run this command file:

CreatelnstanceStore.cmd

2. In Server Explorer set up a connection to SamplelnstanceStore.

Rev. 4.6

Enter information ko connect to the selected data source or click
"Change" ko choose a different data source andfor provider,

Data source:

IMichsnFt S0L Server (3glClient) Change... |

SErver name:

I.'I,SQLEKPRESS >|  Refresh |

—Log on to the server

% Use Windows Suthentication
" Use SOL Server Authentication

ser nanme: I

Password; I

[T Save my password

—Conneck to a database

{* Select or enter a database name:
CannplelnskanceStore j

™ attach a database file:

I Browse, .. |

[Lomical manme:

advanced. .. |
Test Connection | Ok I Cancel

y

Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

318



WTFCs Chapter 9

Persistence Demo (Cont’'d)

3. Open up the new database connection in Server Explorer and
examine the tables of the database.

Server Explorer - 0w
@ | = o
F] ﬁi Data Connections
b WP Product.mdf
F E win-h5ilSlgedunisglexpress, SamplelnstanceStore. dbo
4 Tables

B DefinitionIdentityTable (System.Activities.DurableInstandng)
BH IdentityCOwnerTable (System. Activities.DurableInstandng)
B InstanceMetadataChangesTable (System. Activities. DurableInstancng)
B InstancePromotedPropertiesTable (System. Activities. DurableInstancing)
B InstancesTable (System. Activities. Durablelnstancing)
B KeysTable (System. Activities. Durablelnstancing)
BH LockOwnersTable (System. Activities. DurableInstancng)
BH RunnableInstancesTable (System. Activities, DurableInstandng)
BH ServiceDeploymentsTable (System. Activities, DurableInstandng)
BR sqWorkflowInstanceStoreVersionTable (System. Activities.DurableInstancing)

e v A v A v v A

4. Right-click over InstancesTable and select Show Table Data.
System. Actvities.Du._InstancesTable (Detz) -+

(] | | Max Rows: | 1000 - | T m
Id | Surrogatelnsta. .. | Surrogatelodk. .. | PrimitiveDataPr. .. | ComplexDataPr... | WriteOnlyPrimit. .. | WriteOnlyComp... |
k¥ NLEL ALEL NLEL AL ALES NS AL

5. No workflow instances are currently stored. Close this window.

6. Open up the solution SimplePersist in the Demos folder. It is
backed up in SimplePersist\StepO in the chapter folder.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 319
All Rights Reserved



WTFCs Chapter 9

Persistence Demo (Cont’'d)

7. There is a simple workflow in Workflowl.xaml in a Sequence.

i
[yl Seguence

(O Delay 1second

B WriteLine

Text ™Hello Persistence”™

(O Delay 10 seconds

8. Build and run (without debugging). After a brief pause, a
message is displayed. After a longer pause, the workflow
completes and unloads.

Hello Persistence

Workflow has completed
Workflow has unloaded
Press any key to continue .

9. Examine the host code in Program.cs. It uses the
WorkflowApplication class, because we need it for
implementing persistence. We’ve temporarily commented out
some code pertaining to persistence.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 320
All Rights Reserved



WTFCs Chapter 9

Persistence Demo (Cont’'d)

Workflowl wf = new Workflowl();
WorkflowApplication wFApp =
new WorkflowApplication(wf);

AutoResetEvent syncCompleted =
new AutoResetEvent(false);
AutoResetEvent syncUnloaded =
new AutoResetEvent(false);

wFApp.Completed = delegate(
WorkflowApplicationCompletedEventArgs e)
{

Console _WriteLine(""Workflow has completed');
syncCompleted.Set();

¥

wFApp.Unloaded = delegate(
WorkflowApplicationEventArgs e)

{

Console._WriteLine("Workflow has unloaded™);
syncUnloaded.Set();

}:

wFApp.Persistableldle = delegate(
WorkflowApplicationldleEventArgs e)

{

Console._WriteLine(""Workflow 1s i1dle");
return PersistableldleAction.None;
}:

//const string connectionString =

//  "'Server=_\\SQLEXPRESS; Initial Catalog=...
//5glWorkflowlnstanceStore store = ...
//wfApp. InstanceStore = store;

wFApp-Run();

syncCompleted.WaitOne();
syncUnloaded.WaitOne();

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 321
All Rights Reserved



WTFCs Chapter 9

AutoResetEvent

e This code uses a AutoResetEvent for the Unloaded
event.

AutoResetEvent syncUnloaded =
new AutoResetEvent(false);

e The purpose is to ensure that we will see both
messages pertaining to workflow completion and
unloading.

— The AutoResetEvent is signaled by the event handler.
wFApp.Completed = delegate(
WorkflowApplicationCompletedEventArgs e)
{
Console._WriteLine("Workflow has completed');
};

wfApp.Unloaded = delegate(
WorkflowApplicationEventArgs e)
{

Console._WriteLine("Workflow has unloaded™);
syncUnloaded.Set();

— To ensure that both messages are shown, we wait for the
Unloaded AutoResetEvent to be signaled.

syncUnloaded.WaitOne();

— If instead we had waited for workflow completion, the host
thread may finish before the workflow has been unloaded.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 322
All Rights Reserved



WTFCs Chapter 9

Persistence Demo (Cont’'d)

10. Uncomment the instance store setup code and try to build.
You will get compile errors.

11. Add references to System.Activities.Durablelnstancing and
to System.Runtime.Durablelnstancing.

12. Import namespace System.Activities.Durablelnstancing.

13. Build and run. You should get a clean compile. The output
now also shows a message for each time the workflow goes idle
from the Delay activities.

Workflow is idle

Hello Persistence

Workflow 1s 1dle

Workflow has completed
Workflow has unloaded
Press any key to continue .

14. Examine the instance store in Server Explorer. Again, there
will be no entries in the InstancesTable. We have not yet
actually persisted a workflow instance. Close the window
showing the table.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 323
All Rights Reserved



WTFCs Chapter 9

Persistableldle Event

e \When persistence is enable, every time the workflow
goes idle, both the Idle and the Persistableldle events
are raised.

— The event handler should return a member of the
PersistableldleAction enumeration. There are three possible

values.
None No action is taken.
Persist The workflow application should persist the
workflow.
Unload The workflow application should persist the

workflow and then unload the workflow.

15. The starter code used None. Change this to Persist.

wFApp.Persistableldle = delegate(
WorkflowApplicationldleEventArgs e)
{

Console._WriteLine("Workflow is idle™);
return PersistableldleAction.Persist;

}:

16. Build and run. You should see the same output as before.
Examine the instance store. It is still empty! Why?

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 324
All Rights Reserved



WTFCs Chapter 9

Persistence Demo (Cont’'d)

17. The workflow was actually persisted, but we did not see it,
only examining the instance store after the workflow completed,
when the entry is removed from the instance store. The second
Delay of 10 seconds will give you an opportunity to examine
the instance store before the workflow has completed. If a
window is open showing the instance table, close it now.

18. Run the workflow, and immediately look at InstancesTable.
Now there has been a workflow instance stored.

| Id | Surrogatelnsta. .. | Surrogatelock... | PrimitiveDataPr. ..
3 2 NLEL
* ALEL ALES ALEL ALEL

19. Close this window, and let the application complete. Now
look at InstancesTable again. It should once again be empty.
(Click the Refresh button @ ) The application at this point is
saved in SimplePersist\Stepl.

20. Modify the code of the Persistableldle handler to return an
action of Unload.

wFApp.Persistableldle = delegate(
WorkflowApplicationldleEventArgs e)
{

Console._WriteLine("Workflow is idle™);
return PersistableldleAction.Unload;

}:

21. Build and run. The workflow immediately unloads during the
first Delay, and the workflow does not complete. We don’t see
any further output.

Workflow 1s i1dle
Workflow has unloaded

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 325
All Rights Reserved



WTFCs Chapter 9

How to Persist a Workflow

e The most common way to persist a workflow is by
specifying a Persist or Unload action in the handler of
the Persistableldle event.

e A second way is to call the Persist() or Unload()
method of the WorkflowApplication class.

wFApp.Persist();
wFApp.-Unload();

e A third way is by using the Persist activity in your
workflow.

— The Persist activity is in the Runtime group in the Toolbox.

4 Runtime
k  Pointer

Q TerminateWorkflow
o NoPersistScope

e Another way is implicitly through completion of a
transaction activity.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 326
All Rights Reserved



WTFCs Chapter 9

Loading a Persisted Workflow

e To just persist and unload a workflow by itself is
useless.

e \We also need to be able to reload the workflow and
resume its activation.

e The basic mechanism is quite simple, relying on an
instance store and an application ID.

— Enable persistence and store app id:

store = new SqlWorkflowlnstanceStore(
connectionString);

wFApp. InstanceStore = store;

1d = wfApp.Id;

— Unload the workflow when it goes idle after creating a
bookmark:
wFApp.Persistableldle = delegate(
WorkflowApplicationldleEventArgs e)
{
return PersistableldleAction.Unload;
};
— Load the workflow:

wFApp. InstanceStore = store;
wFApp.Load(id);

— Resume the bookmark:

wFApp -ResumeBookmark("'GetTwolnt", line);

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 327
All Rights Reserved



WTFCs Chapter 9

Unload and Load Example

e See BookmarkPersist in the chapter folder.

— This program is based on the SimpleBookmark example
from Chapter 7. The workflow reads two integers and divides
them.

[ GetTwolnt

&=B Assign

Quotient =XfY

& Writeline

Text "Quotient = " + Quotient

— Global variables:

static SqglWorkflowlnstanceStore store;
const string connectionString = "Server=...
static AutoResetEvent syncUnload =
new AutoResetEvent(false);
static DivideWorkflow wf = new DivideWorkflow();

— Main program:

static void Main(string[] args)
{
Guid 1d = StartAndUnloadlnstance();
Console._WriteLine(
"Workflow has been persisted. Press any key to
continue.');
Console.ReadKey();
LoadAndCompletelnstance(id);

}

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 328
All Rights Reserved



WHiCs

Chapter 9

StartAndUnloadInstance()

static Guid StartAndUnloadlnstance()

{

Guid 1d;
// Create WorkflowApplication
WorkflowApplication wFApp =

new WorkflowApplication(wf);

// Define lifecycle event handlers
wfApp.Persistableldle = delegate(

WorkflowApplicationldleEventArgs e)
{

}:

wfApp.Unloaded = delegate(
WorkflowApplicationEventArgs e)

{

return PersistableldleAction.Unload;

Console._WriteLine("Workflow has unloaded™);
syncUnload.Set();

¥

// Enable persistence and store app id

store = new SqlWorkflowlnstanceStore(
connectionString);

wFApp. InstanceStore = store;

1d = wfApp.I1d;

// Start the workflow
wFApp-Run();

// Wait for workflow unloaded
syncUnload.WaitOne();
return id;

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

329



WTFCs Chapter 9

LoadAndCompletelnstance()

static void LoadAndCompletelnstance(Guid i1d)
{
// Create WorkflowApplication
WorkflowApplication wFApp =
new WorkflowApplication(wf);

// Define lifecycle event handlers
wFApp.Completed = delegate(

WorkflowApplicationCompletedEventArgs e)
{

Console._WriteLine("Workflow has completed™);
};

wfApp.Unloaded = delegate(
WorkflowApplicationEventArgs e)
{

Console._WriteLine("Workflow has unloaded");
syncUnload.Set();

¥

// Load the application
wFApp. InstanceStore = store;
wFApp.Load(id);

// Collect user input and resume the bookmark.
Console._WriteLine(

"Enter two iIntegers separated by space');
string line = Console.ReadLine();
wFApp -ResumeBookmark("'GetTwolnt', line);

// Wait for workflow unloaded
syncUnload.WaitOne();

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 330
All Rights Reserved



WTFCs Chapter 9

Stopping and Starting the Host

e In our examples so far the host program was running
continuously.

e The persistence mechanism makes it entirely possible
to reload a workflow after the host has stopped.

— The instance store can be recreated from the connection
string, and the application ID can be serialized.

— The example SerializePersist illustrates this scenario.

e The solution has three projects:

— ActivityLibraryl contains the custom native activity
GetTwolnt.

— StartWorkflow contains a copy of the workflow and host
code to start the workflow and unload it when GetTwolnt
asks for input, creating a bookmark.

— CompleteWorkflow contains a copy of the workflow and
host code to load and complete the workflow. It supplies the
data needed for GetTwolnt and resumes the bookmark.

e Run this example as follows:

— First, build and run the solution without debugging. This will
run StartWorkflow, because that is the startup project. (If
for any reason it is not the startup project, make it so!)

— Next, make CompleteWorkflow the startup project. Build
and run the solution without debugging.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 331
All Rights Reserved



WTFCs Chapter 9

StartWorkflow

o StartWorkflow calls only StartAndUnloadlnstance().

— The code is almost the same as the corresponding method in
the BookmarkPersist example.

— The new feature is the method SavePersistinfo(Guid id),
which serializes the application ID.

static void StartAndUnloadlnstance()
{
SglWorkflowlnstanceStore store;
Guid 1d;

// Enable persistence and store app id

store = new SglWorkflowlnstanceStore(
connectionString);

wFApp. InstanceStore = store;

id = wFApp.I1d;

// Save persistence info
SavePersistinfo(id);

}

static void SavePersistinfo(Guid id)

{
FileInfo T = new Filelnfo(

@*C:-\OIC\Data\id.bin™);

Stream s = f.Open(FileMode.Create);
BinaryFormatter fmt = new BinaryFormatter();
fmt.Serialize(s, 1d);
s.Close();

}

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 332
All Rights Reserved



WTFCs Chapter 9

StartWorkflow

o CompleteWorkflow calls LoadAndCompletelnstance().

— The code is almost the same as the corresponding method in
the BookmarkPersist example.

— The new feature is the method LoadPersistInfo(), which
deserializes the application ID.

static Guid LoadPersistinfo()

{
Filelnfo f = new Filelnfo(

@"'C:\OIC\Data\id.bin');

Stream s = f.Open(FileMode.Open);
BinaryFormatter fmt = new BinaryFormatter();
Guid 1d = (Guid)fmt.Deserialize(s);
s.Close();
return id;

}

static void LoadAndCompletelnstance()

{

SglwWorkflowlnstanceStore store;
Guid 1d;

// Load persistence info

id = LoadPersistinfo();

store = new SglWorkflowlnstanceStore(
connectionString);

// Load the application
wFApp. InstanceStore = store;
wFApp.Load(id);

// Collect user input and resume the bookmark.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 333
All Rights Reserved



WTFCs Chapter 9

Loading After Data Available

e Our examples so far illustrated getting the needed
data after the workflow has been reloaded.

e A better approach is to only reload the workflow after
the needed data has been obtained.

e Our next example illustrates this scenario.
— See PersistentCollection in the chapter folder.

— This example also illustrates persisting data as part of the
workflow state that is saved, in this case a collection of
strings.

oy
[yl Seguence

L] InitNames
[] GetCommand

ofe Switch<String>

&

— Variables Names and Cmd are defined.

Mame Variable type scope Default
MNames List<String = Seguence mew List<string>()
Cmd 5iring Seguence Enter 8 CF expression
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 334

All Rights Reserved



WTFCs Chapter 9

InitNames

e InitNames is a composite activity with the argument
aNames that is bound to the variable Names.

— It is a composite activity that uses the collection activity
AddToCollection<String> to initialize a collection
List<String> of names.

_':'_ Sequence

“_:‘_ Add "Tom" To Collection
*,‘_:‘_ Add Dick”™ To Collection

¥ Add Harry™ To Collection

— Each invocation of AddToCollection<String> adds a
different hardcoded name.

Collection aMameas _]
DisplayMame Add "Tom" To Collection
Ttem "Tom" _J
TypeArgument Siring j

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 335

All Rights Reserved



WHiCs

GetString

Chapter 9

public sealed class GetString :

{

}

GetString (used with display name “Get Command”
in Workflowl.xaml) is a native activity that reads a

string from the console.

— It creates a bookmark and waits for the string to be supplied

by the host when it resumes the bookmark.

public static AutoResetEvent

syncNeedData = new AutoResetEvent(false)

public OutArgument<string> aStr { get; set; }

protected override void Execute(
NativeActivityContext context)
{

NativeActivity

context.CreateBookmark("'GetString', Resumed);

syncNeedData.Set();
+

// The callback method

private void Resumed(
NativeActivityContext context,
Bookmark bookmark, object value)

string str = value as string;
aStr.Set(context, str);

}

protected override bool Canlnduceldle

{
}

get { return true; }

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

336



WTFCs Chapter 9

String Commands

e The workflow will unload to allow user to enter a
command. The legal commands are “show” and
“concat”.

e When the workflow resumes, a Switch<String>
activity will process the command.

o5 Switch<String> A
Expression |Cmd
Default
B WriteLine
Text “Illegal command™
Case show
.1 ShowMames
Case concat
1 ConcatenateMNames
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 337

All Rights Reserved



WTFCs Chapter 9

String Commands (Cont’d)

e ShowNames.xaml is a composite activity.

t] ForEach<String:

Foreach |item in  aMames

Body

[ WriteLine

Text item

e ConcatenateNames.xaml is also a composite activity.

&8 Assign

Line =| &

4] ForEach<String> 2
Foreach |item in  aMames

Body

&+8 Assign
Line = Line +item + " "
& WriteLine
Text Line
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 338

All Rights Reserved



WTFCs Chapter 9

Host Program

e The host program is very similar to the host for the
BookmarkPersist example.

— Global variables:

static SglWorkflowlnstanceStore store;
const string connectionString = "Server=...
static AutoResetEvent syncUnload =

new AutoResetEvent(false);
static Workflowl wf = new Workflowl();

— Main program:

static void Main(string[] args)

{
Guid 1d = StartAndUnloadlnstance();
Console_Write(''show or concat: '");
string cmd = Console.ReadLine();
LoadAndCompletelnstance(id, cmd);

+

e The key difference is that the workflow remains
unloaded until after the user has supplied data.

e Here is a sample run:

Workflow has unloaded

show or concat: concat

Tom Dick Harry

Workflow has completed
Workflow has unloaded
Press any key to continue .

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 339
All Rights Reserved



WTFCs Chapter 9

Lab 9

Persistence in a Business Scenario

In this lab you will you will implement a life insurance workflow
application that prepares a term life insurance proposal based upon
an application and an underwriter’s report, which evaluates the
applicant’s insurability. A base premium can be calculated
immediately from the applicant’s age and amount of insurance
requested. After performing this part of the process, the workflow
will unload until the user enters the underwriter’s report. This will
cause the workflow to be loaded again and complete the proposal
or statement that insurance has been denied.

Detailed instructions are contained in the Lab 9 write-up at the end
of the chapter.

Suggested time: 60 minutes

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 340
All Rights Reserved



WTFCs Chapter 9

Summary

e To deal with the requirement of long running
workflows, Workflow Foundation provides a
persistence mechanism.

e You can set up a persistence store in SQL Server.

e A common way to persist a workflow is by specifying
a Persist or Unload action in the handler of the
Persistableldle event.

e You can serialize workflow instance identification so
that the host program as well as the workflow can
unload and start up again.

e You can implement a long running workflow that can
be unloaded for days or weeks and then resume when
needed data is available.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 341
All Rights Reserved



WTFCs Chapter 9

Lab 9

Persistence in a Business Scenario

Introduction

In this lab you will you will implement a life insurance workflow application that
prepares a term life insurance proposal based upon an application and an underwriter’s
report, which evaluates the applicant’s insurability. A base premium can be calculated
immediately from the applicant’s age and amount of insurance requested. After
performing this part of the process, the workflow will unload until the user enters the
underwriter’s report. This will cause the workflow to be loaded again and complete the
proposal or statement that insurance has been denied.

Suggested Time: 60 minutes
Root Directory: OIC\WTCs

Directories: Labs\Lab9\PersistentTermL.ife (do your work here)
Chap09\PersistentCollection (model host persistence code)
Chap09\PersistentTermL.ife\Step0 (backup of starter code)
Chap09\PersistentTermL.ife\Stepl (solution to Part 1)
Chap09\PersistentTermLife\Step2 (solution to Part 2)

Part 1. Add Bookmark and Underwriter’s Report to the Workflow

You are provided with starter code that prepares a proposal based on the applicant’s
name, age and amount of insurance requested. Modify the application to query the user
for an underwriter’s report that will be one of “approve”, “rating” or “deny”. In the first
case the premium will be the base premium already calculated. In the second case
insurance will be offered at a higher than normal premium, which will be double the base
premium. In the third case insurance will be denied. Implement the query for the
underwriter’s report as a native activity that creates a bookmark. The activity will resume
when the host program supplies a string.

Optional detailed instructions:

1. Build and run the starter program. Here is a sample run:

Name: John Smith

Age: 40

Amount: 150000

Term Life Proposal
Insured: John Smith

Age: 40

Death Benefit: $150,000.00
Monthly Premium: $18.30

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 342
All Rights Reserved



WTFCs Chapter 9

2.

3.

Examine the starter workflow, which is a simple sequence of custom code activities.

1 Read MName

1 Read Age

1 Read Amount

1 CalculatePremium

1 ShowProposal

Examine CalculatePremium:

public sealed class CalculatePremium : CodeActivity<decimal>

{

public InArgument<int> aAge { get; set; }
public InArgument<int> aAmount { get; set; }

protected override decimal Execute(CodeActivityContext context)

{
int age = context.GetValue(this.aAge);

decimal amount = (decimal)context.GetValue(this.aAmount);
return Rate.MonthlyPremium(age, amount);

This calculation in turn is based on a Rate class, which calculates a monthly premium
based on a table giving rates for different 5-year age intervals between 20 and 69.

ShowProposal is a simple activity which merely displays a proposal based upon its
input arguments.

Implement a custom native activity GetString, which will read a string from the
console and return the value in an output argument aStr. This activity makes use of
the bookmark “GetString”. A public static AutoResetEvent will be used by the host
for synchronizing with when the activity needs data.

public sealed class GetString : NativeActivity

public static AutoResetEvent syncNeedData =
new AutoResetEvent(false);

public OutArgument<string> aStr { get; set; }

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 343

All Rights Reserved



WHiCs

Chapter 9

protected override void Execute(NativeActivityContext context)

{

}

context.CreateBookmark(*'GetString", Resumed);
syncNeedData.Set();

// The callback method
private void Resumed(NativeActivityContext context,

{

}

Bookmark bookmark, object value)

string str = value as string;
astr_Set(context, str);

protected override bool Canlnduceldle

{

}
}

7.

get { return true; }

Implement standard host code to run the workflow in a WorkflowApplication. The
host’s thread should wait for syncNeedData to be signaled and then prompt the user
for an underwriter’s decision, one of “approve”, “deny” or “rating”. The bookmark
should then be resumed, passing the string entered by the user.

class Program

{

static WorkflowApplication wfApp;

static void Main(string[] args)

{

Rev. 4.6

// Create the Workflow and the WorkflowApplication
Workflowl wf = new Workflowl();
wFApp = new WorkFflowApplication(wf);

// Initialize AutoResetEvent for thread synchronization
AutoResetEvent sync = new AutoResetEvent(false);

// Handle the completed event to signal the host

// that the workflow has completed

wfFApp.-Completed = delegate(
WorkflowApplicationCompletedEventArgs e)

sync.Set();
};

// Start the workflow
wFApp-RunQ);

// Obtain the input the workflow is expecting and resume bookmark
GetString.syncNeedData.WaitOne();

Console _WriteLine("'Underwriting Decision™);
Console._WriteLine("approve, deny, or rating:');

string str = Console.ReadLine();

wFApp -ResumeBookmark(*'GetString™, str);

Copyright © 2014 Object Innovations Enterprises, LLC 344
All Rights Reserved



WTFCs Chapter 9

// Wait for workflow completion
sync._WaitOne();

}
}

8. Modify Workflowl.xaml to get the underwriter’s report using GetString and then
switch on the string that is returned, with separate cases for approve, rating and
deny.

1 Read Name

[C1 Read Age

L1 Read Amount

1 CalculatePremium

|i| Get UnderwriterReport

#f= Switch<5String>

p

Expression  UnderwriterRepart

Default Adld an Fctivie
Case approve ShowProooss
Case rating A
Case deny Writel ine

9. Implement the three cases. For approve, just invoke ShowProposal. For rating,
provide a Sequence that will double Premium and then invoke ShowProposal. For
deny, just write a message that insurance has been denied.

10. Build and run, trying out the three cases. You are at Step 1.

Part 2. Implement Persistence in the Workflow

Modify the host program to implement persistence. After calculating the base premium
the workflow instance should unload, persisting the workflow state to the instance store.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 345
All Rights Reserved



WTFCs Chapter 9

The use is prompted for the underwriter’s report. Then the workflow is loaded, the
bookmark resumed with the data, and the workflow completes.

Optional detailed instructions:

1. Add references in the workflow project to System.Activities.Durablelnstancing and
to System.Runtime.Durablelnstancing.

2. Import the namespace System.Activities.Durablelnstancing.

3. There is a pattern to host code to run the workflow in the manner we want, with user
input sandwiched between methods to start/unload and load/complete the workflow.
We can use almost the exact same code as in the PersistentCollection example. Open
this solution.

4. Copy the contents of the Program class in PersistentCollection into the Program
class of the host program you are working with. Don’t overwrite what is there, as you
will want to use a tiny segment of code prompting the user for the underwriter report.

5. Observe the sandwich pattern of Main(). Replace the prompt for the collection
example with the prompt for the life insurance application you are working on. For
clarity, rename the string str to underwriting.

static void Main(string[] args)

{
Guid id = StartAndUnloadlnstance();
Console_WriteLine("Underwriting Decision™);
Console._WriteLine("approve, deny, or rating:'");
string underwriting = Console.ReadLine();
LoadAndCompletelnstance(id, underwriting);

}
6. In LoadAndCompletelnstance() replace occurrences of cmd by underwriting.

static void LoadAndCompletelnstance(Guid id, string underwriting)

{

// Resume the bookmark with data already gathered
wFApp .ResumeBookmark(*'GetString', underwriting);

7. Now you can remove the old contents of the Program class.

8. Build and run. The program should behave like the Step 2 version, but now the
workflow has been persisted and unloaded.

9. Finally, you may wish to examine the instance store at various places before, during
and after program execution.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 346
All Rights Reserved





