Table of Contents (Detailed)

Chapter 1 Introduction to ADO.NETccceciiiiiieiiee e 1
Microsoft Data ACCeSS TECNNOIOGIESc..oviieriiiiiirieeee e 3
ODBC .. bbb bRt a bbb bbbt nas 4
OLE DB ...ttt bbb bbbttt bbbttt b e e e 5
ActiveX Data ODJECtS (ADO)cuiiiiiieiiieie ittt sttt nes 6
Accessing SQL Server before ADO.NETocooiiiiiiiiieieeese e 7
ADONET oottt bbbt 8
ADO.NET AFCHITECIUIE ...ttt 9
NET DAt PrOVIAEIS.......oiueeiiieieeiie ettt sttt ettt nne s 11
Programming with ADO.NET INEITACESccooiiiiiiiiiiiseeee e 12
INET NAMESPACES ... eieitieieitiii ettt ettt sttt e et e e nab e e nbb e e e bn e e e nneeannees 13
CONNECTEA DALA ACCESSvvevvereeieriesiisiesiees ettt et e e bt sbesbe e s ne et e nbesbesbesbenreas 14
SAMPIE DALADASEeeieeeieiiiir e e e 15
Example: Connecting t0 SQL SEIVEN.........ooi i 16
SQL EXPress LOCAIDB......c.voiueiiiiiieie ettt a et a e nneeeeenes 17
SOILOCAIDB ULHILY ..ottt et s sne e 18
Visual Studio Server EXPIOIEr ..o e 19
L@ =T 1SS 21
SQL Server Management STUAIOcc.vevieieieereiie e se e e e sae e e e nee s 22
ADO.NET Class LIDIAIiESc..ecueiieiiiiiiinieiiiiese ettt st 23
Connecting to an OLE DB Data ProVIAErccooiiviiiieieiienieneeee e 24
USING COMIMANGS.......cvitiiiieiieiieiee et esst bbb bbbttt ettt bbbt e e ne e 25
Creating a Command ODJECT........ccvii i iiieiieic et 26
EXECULENONQUETY ... ittt sr et e e s e e e nbb e et e e e be e e anses 27
USING @ DAt REAUEN ..ottt ettt 28
Data Reader: Code EXAMPIE.......ccoiiiiiiiiee ettt 29
DiSCONNECTEA DALASELSc.veveviieeiieieie ettt b bbbttt bbb 30
D 1 N0 1o (=] £SO STRPRPRS 31
ACME COMPULET CASE STUAY ...ttt be e 32
BUY COMPULET ...t e s 33
IMIOTEI ...t n s 34
LO0 10100 1< o | T TSRO 35
o L TP PO TP OPPPRPP 36
PartCONTIGUIALION.euiiiieee et bbbttt sb e 37
)£ (=] 1 [PPSO PPPROPPR 38
Systemld as 1dentity COIUMN..........oooviiieie e e 39
SYSIEMDETANIS ...t 41
Y LU 11O 0o [SRR 42
REIALIONSNIPS ... ettt reenennes 43
Y (0] (=10 [e (o Tor T [N TSR PSSP 44
7. oI PSSR 45

Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC Y

All Rights Reserved

SUMIMAIY ...ttt ekttt et e e st e e bt e e sb e e ke e ehb e et e e se b e e be e sab e e beeenbeebeesnnaennes 46

Chapter 2~ ADO.NET CONNECTIONScoiviiiiiiieiiieieiie st eees 47
ADO.NET BIOCK DIAQIaM......cveiuieiiiiiiiieeiie e sttt ste et sae s teesae e saeenessaesseaneens 49
INET Data PrOVIGEIS ..ottt sttt sttt nne s 50
Namespaces for .NET Data ProVIAErSccccoviiiriniiieieieseseeseseeeee s 51
BasiCCONNECE (VEISION 1) ...cuieieiiieeieeie ettt te e te et te e e e snaesaeaneenneas 52
USING INEEITACES ...ttt be et re e reeeeenen 53
IDBCONNECTION PrOPEITIES. ... eveiiieeiieie sttt 54
CONNECTION STING ..ottt bbbttt nbe b 55
SQL Server CONNECLION STIFING c.vveveiieiieie e sae e sreeneeenes 56
OLE DB CONNECLION STIINGviivieiiieieiiee ittt e e sae e sreeneenes 57
SQL SEIVEI SECUILY ...vveteeieeiie ettt sttt st se et et esreesbeeneesreesbeeneesnee e 58
IDBCONNECTION IMETNOGS........eeiiiie et 59
BaSiCCONNECE (WEISION 2) ...c.vieiieiiieiieeiesiee st etestee e ie e ee e ste et e ste e e asaesreesaeensesseesseaneennens 60
ConNECtiON LITE CYCIE ..o 61
BasiCCONNECE (WEISION 3)viiiieiiiiieiiesiie sttt sttt sttt sttt ste e b e sbe e e nneas 62
Database Application FrONt-ENS...........cooiiiiiiiiiiisiee s 63
LD 2/ bbb bbbt 64
CONNECLION POOTING....c.viiieiieicc sttt ettt e be e e sbeeneenee e 65
P00l Settings fOr SQL SEIVETcciuiiiiiieseeee ettt 66
CoNNECION DEMO PrOGIaM........ooviititiiiraieeiieiee ettt nn b nne s 67
CONNECTION EVENTSoviiiieiieie ettt bbbttt e et bbb nre s 68
CoNNECHION EVENT DEIMO ..ottt sttt nne s 69
ADO.NET Exception HandliNgcccoiiiiiiniieine s 70
. o152 PSS 71
SUIMIMIATY ..ttt ettt et e e ekt e ekt eA et e okt e e sttt e abb e e e bt e e e bt e e e nbn e e anseeeanes 72

Chapter 3 ~ ADO.NET COMMANGS.......coriiiiiaiiiieriesieieesieseeseessesseesseessesseesseessesnes 73
ComMMANG ODJECTS.eiiieieieeee bbbttt 75
Creating COMIMANGS.coiiieiiiieie e e e rie et e s e re e e e e sbeeaeaneesseenaesneesneaneennes 76
EXECULING COMMANGScuveivieie ettt sre e sbe e sbeeteaneenne s 77
SAMPIE PrOGIaM .. .ottt bbbttt e bt e et e s e sbeenteene e 78
DYNAMIC QUETTES ...tttk b bbbt bn e 80
Parameterized QUETIESccveiiieeiiee it et st stee e st et e e st et e e s are e beesaeeesaeeanbeesbeesnreesreeaanas 81
Parameterized QUErY EXAmMPIEcvoiiiicc e e 82
COMMEANG TYPES ..ttt ettt st e b et e be e bt asb e ene e beesbesbe e be et e nee e e 83
Y 0] (oT0 e (0 TolcTo LU= SRR 84
Stored ProCcedure EXAMPIE.......coviiiiieiieie e b enes 85
Testing the StOred ProCEAUIEc.iiviieece e srs et 86
TeStiNg IN SEIVEr EXPIOTErc..ooiiiiee et e 87
Stored Procedures in ADO.NET ..o s 88
BAtCh QUEKIES ...ttt et sbe et e e be e s b e e sbeesabeesbeesnreesbeesnreas 90
THANSACTIONS ...ttt ettt bbb b et e et st e b e nbe b e nbeene e e e te e 91
7. o T PSSR S 92
SUMMABIY .ttt b e bt b et be e b e nb e e s 93

Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC vi

All Rights Reserved

Chapter 4 DataReaders and Connected ACCESSccovevveieeiieeiieeieie e se e 95

DALAREATETceeeieee ettt bbbt 97
USING @ DALAREAUETc.veevviieieiieeee ettt e et e re e be e e sreenas 98
CloSING @ DAtAREAUETcovieiiiiiieciiee ettt sb e e e 99
L= e (=T o o USSP 100
TYPE-SATE ACCESSOIS. ...uveveerveeiiesieesieettese e teeeesteeste et e sreesteeseesteeteaseessaesseeneesseesseaneesneees 101
Type-Safe Access SAMPIE Program.........cccvccueiieiieieiiee e 103
(€120 o[0T 11 SRR URTTRURPRT 105
AN LU 5 OSSR 106
TeStING FOr NUIL......ooeeeeee e es 107
EXECULEREAUET OPLIONS......eciiiiicieeie e e e ene e 108
Returning Multiple RESUIT SELS.........ooiiiiiiiiie e e 109
DataReader MUltiple RESUILS SEESccviiiiiiiiiiiieeese s 110
Obtaining Schema INfOrmMation............cccooveii i 111
Output from Sample Program............cccceieiiiiie i 113
LD 4 ettt nbe e tenreene et e e 114
SUIMIMBIY Lttt b bbbt e bt bt s e et e et e e sn b e e nn e s nne s 115
Chapter 5 DataSets and DiSCONNECTEA ACCESSccivvieereerierieseerieeiesieereeaseeseeans 117
DALASELottt b e e et e nar e b e et r e et e nnr e nes 119
DataSet AICNITECIUIEeiieeeiiee et et reeteereesreene e 120
WY DALASEL?ooveeieieieie ettt ettt e s e te et e s e s te e beanaesreenteanee e 121
DataSet COMPONENTS.viiiiier et eriir et e e stie bbb e b e e st e e s sbb e e s sbbeesssbeeanrreeans 122
D1 Vo Fo T o] (-] PR 123
DataSet EXample PrOgramt 124
Data ACCESS CIASS ... ettt b e bbb 125
REtrIEVING the DAtaccveiiiiiecc ettt e e e sre e reenne e 126
FIIING 8 DAIASELcoviieieiieie e et nb et nre e 127
ACCESSING @ DALASEL.......ccuiiieiiiiesi bbb 128
Updating @ DataSet SCENAMOcccveiieiieiieiieie e seesee e se e se e ee e e e ee e sre e e 129
Example — MOdeIDataSetccoveiuiiieiie i 130
Disconnected DataSet EXaMPIe ..o 131
AJUING 8 NEBW ROW.......ouiiiiiiiiiiiieieieeie e bbbttt ne bbbt 132
Searching and Updating @ ROWcc.vieiiiiiic e 133
DEIELING @ ROW ...ttt st e e e et e e e e sraenteenee e 134
ROW VBISTONS. ...ttt sttt b ettt et et e se e b s beeneeaba et e esbeaneenbe e 135
ROW SEALE ... bbb e b e si b bt e rb et e e annaenees 136
BeginEdit and CanCeIEIt..........cccveiiiieiiecice e 137
DataTable EVENTS......c.oiiiicceee et 138
Updating @ Databaseooviiiiiii e 139
INSEIt COMMIANTiiiieiiee ettt e st e te e s e sre e reen e s neeneasseera e 140
Update COMMANTooiuieieiie e e e e e e sae e reesreenneaneenneens 141
Delete COMMANGoviiiiiiiiieiee ettt bbb et 142
EXCEPtioN HANAIINGooveiiiiiiicee e 143
ComMMAN BUITAEIS ...ttt sttt et sne e sneenneas 144
LD D bbb bbbttt r e 145
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC vii

All Rights Reserved

SUMIMAIY ...ttt b etttk e et e b et e s b e e e be e e st e e he e e st e e nhe e e nb e e sbeeanbeesrneenbeearneas 146

Chapter 6 More about DAtaSetsccooueiiriieiieniesee e 147
FILEriNG DAtaSELSecviieiecie ettt e e nre e reenne e 149
EXamMPIe OF FIIEIING ...oveeieieiceee e 150
PartFinder Example Code (DB.CS)uiiiiiieieieniesie sttt 151
Using a Single DataTableoooveiiiieiiec e 153
MUILIPIE TaDIES ...t e e re e reenne e 154
DataSet AICNITECIUIE..... .ot ae e 155
Multiple Table EXaMPIEoooiiiie e 156
SChEMA IN the DALASELcoiviiiiiiee bbb 159
REIALIONS .ttt bbbt e b e 160
NaVIgating @ DAtaSELcoiiiiiieiiiie e re e 161
Using Parent/Child Relationccooiiiiiiiiiieee s 162
INFEITING SCREMAL....c.eie e re e nnee e 163
AGUWITNKEY ...ttt bbbt st e bt ens 164
AdAING @ PrMArY KEYc.viiiiiiiiiiiee ettt ee e 165
TADIEMAPPINGS ...ttt bbbt 166
IAENTILY COIUMNS.....cviiiice ettt e e e nreeneenree e 167
Part Updater EXamPIe......ccooiiieie ittt 168
Creating a Dataset Manually.............cooioiiiiiie s 169
Manual DataSet COUEvevieieiieiie ittt ee e sreeeeenee e 170
LD B e bbb bbb e et 172
SUMMIATY .ttt ettt e et e ettt e e b e e S Rb e e et e e e st e e e st e e e nnb e e e ebb e e e nbb e e e bneeenbeae s 173

Chapter 7 XML and ADO.NET ..o 175
ADONET aN0 XML 1.ttt bbbttt bbb 177
Rendering XML from @ DataSet..........cccceiveiieiiiiese i 178
XIMIWIEIMIOUE ...ttt sttt sae e 179
Demo: WIIting XML Data.........ccoveieiieiiieiiiniesie et 180
Reading XML int0 @ DataSeL.........cccvivieiieiieie i sre e sre e 183
Demo: Reading XML Data.........cccccviiiiiiiiieie sttt 184
DataSets and XML SCNEMA........ccuoiiiiiiieiieiiee ettt st 186
Demo: Writing XML SCNEMAL.........ccoiiiiiiieiiieeee bbb 187
MOAEISCNEMAXSH ... bbbt nbe s 188
REAAING XML SCREMA........ciuiiiiicieceese et sre e e neenaeens 189
XMIREAAMOUE ...ttt sr et a e be e be e e 190
Demo: Reading XML SChEMA......c.ooiiiiiiiieieee e 191
WIriting Data @S ALtHDULESooieiieeecc e 193
XML Data in DataTabIeS.coviiiiiiiiiiieee e e 195
TYPEUA DAIASELS ...ttt ettt nb e e b e et a e e 196
TADIE AGAPTET ... 197
Demo: Creating a Typed DataSet Using Visual Studio...........cccccvevviiieienieiiieiiece e 198
Demo: Creating a Typed DataSet..........cccccveiieiiiiiieee et 201
USING @ TYPEA DALASEL ..ottt 203
Synchronizing DataSets and XMLcccoiiiiiiiiiiece e 204

Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC viii

All Rights Reserved

UsSIiNg XMIDataDOCUMENL........ccueiiiiiiiiiiiieiie ettt st re b 205

WiINAOWS CHENE COUEc.veiiieciieeee et sre s 207
WED CHENE COU......eiiiiiieiiee ettt bbbt 208
XML SEIIAIIZALION ... bbb 210
XML Serialization Code EXamMPIE........ccooiiiiiiiiiiieee e 211
Do) = 10] L @0 11 U [od (o] USSR 212
LD 7 bbb bbb e e 213
SUMIMIATY .ttt ettt e ekt e ekt e e e b e e et e e et e e e eab e e s Rt e e e nnb e e e nbb e e e nbbeeatneeanteae s 214
Chapter 8 Concurrency and Transactionscccccveveieeieeieseese e ese e 215
DataSetS and CONCUITEINCYcviiierieeieeieseesieeiesreesteeee e sseesseeseesseesseaseesreesseessesseesseens 217
Demo — DeStrUCtiVE CONCUITENCYcveivieiiieieeiesieesieeiesteesteeeesreesteeaessaesreessessneareenseens 218
Demo — OptiMIStIC CONCUITEINCY ...c..eivieiiieiieiiesieesie ettt ee e 220
Handling ConcurrenCy VIOIAtIONScooeiiiiiiiieieiesiesc s 222
PESSIMISTIC CONCUITEINCY ...vvevievieieeiiesieeieeieesteeste e steeste e steeste e e e sraesteeseessaesseeneesraeseens 223
TEANSACTIONS ...ttt sttt sttt ettt b e bbbt b e e st e e et e ntesbeebe e b e eneene et e e 224
Demo — ADO.NET TranSaCiONSc.ccouiiiieieririieniesiee et see e e 225
Programming ADO.NET TranSaCtioNS...........ccceeereririnininieieieesie e 227
ADO.NET Transaction COUE.......c..ciueiiiiiiiiieiiseeie e 228
UsiNg ADO.NET TranSaCtiONScccveruriiiiiieiiesieseesieseesieesreeeesreesaeesaesraesseenessaesneens 229
DataBase TranSACTIONS.ciuiiiiirierieeie et ie sttt sttt st sbesseesreesteesaesreenaens 230
Transaction iN STOred PrOCEAUIE..........cii it 231
Testing the StOred PrOCEAUIEcciiee ettt 232
ADO.NET CHent EXAMPIEccviiieiieeie ettt srn e 233
O] IS T= YT o =l (o] R UPRSPRRRPIN 237
SUIMMEBIY . b et bbbt a bt e bt e b e et e et be e b e nanenne s 238
Chapter 9 Additional FEATUIESccccveieiie et 239
ACMEPUD DAtADASE ...ttt et ae s 241
Connected DataDase ACCESSuevueeieiierieeiirreeieee et e st areesreesteaseesreesseaseesseesseaneessens 242
Long Database OPEratiONS..........ccuecueiiieiieriieieseesieseeseesre e see e ae e sre e sseesreeneesreenes 244
ASYNCAIONOUS OPEIALIONSccuviiiiiieiie ittt ste et esteebesraesreeeesree e 246
ASYNC EXAMPIE COUR......coiiieiiiieiiee ettt 248
Multiple ACHIVE RESUIL SELSoiviieiiiiieiee e 251
MARS EXaMPIE PrOGIAMvveieiieiieeiie et ste e se e ssas e steenaesae e neesneesneanee e 252
BUIK COPY ottt et et et e et et e as e e ne e s ae e aeereesreenaeannenneens 253
BUIK COPY EXAMPIE ... b nbe e nne e 254
Bulk Copy EXAMPIE COUEooiiieiiieiiesieeeee e 255
LD O bbb bbbt 256
SUMMIATY .ttt ettt b e ettt e ettt e e b e e e bt e et e e e e ab e e e Rt e e nnb e e e nbb e e e bae e s enbeeenbeae s 257
Chapter 10 LINQ and Entity Frameworkcccccovriinienniene e 259
Language Integrated Query (LINQ) ..c.ooviiiiiiiiiiieiee e 261
LINQ 0 ADO.NET .ottt bbbt sttt 262
Bridging ODJectS and Data.........cccueieeriiiieiieiieie e 263
LINQ DBIMO ..ttt ettt sttt st nb et e et e et e e b e snnas 264
Object Relational DESIGNETccucieeieiie et sre e e e es 265
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC iX

All Rights Reserved

DI I S ENSEttt nnnens 267

Basic LINQ QUETY OPEIALOISc.eiieieieierieste sttt sttt b sne s 268
ODbtaiNiNg @ DAt SOUICEcveiieiieeie ettt e e ste e sneesneeneas 269
LINQ QUENY EXAMPIE......ceiieieiieeie ettt et nne e 270
L1 T=] T Vo RS RUSP ST RTRI 271
(0] (0 (=] 81 oo TSP TP URPR PR 272
o [0 =0T 1[0 SRR S 273
ODbtaiNiNg LiStS @N0 ATTAYSciveeieiieiieite et e st see e ste e steeae e sreetesneesreenaesneesreas 274
DEfErred EXECULIONoouviieieiieiee ettt sttt sb et ne e 275
MOdITYiNgG @ DAtA SOUICEcueiuiiiieiieieieite ettt b 276
Performing Inserts via LINQ t0 SQL.....cccueiiiieiieiieie e sie e 277
Performing Deletes via LINQ t0 SQLcccooiiiiiiiieiecic e 278
Performing Updates via LINQ t0 SQLccccooiiiiiiiiiiee e 279
LINQ 10 DALASELc.eeiiiieiie ittt st e s 280
LINQ t0 DataSEt DEMIOueeeeiiiiii ettt e e e e e e e e e e e e e e e e snreeeeaas 281
Using the TYPed DAtaSELccoveiiiiieiie e 283
Full-Blown LINQ to DataSet EXample.........coooiiiiiiiiiie e 284
ADO.NET ENtity FrameWOrKcccoeiiiiiiiiiiiiiiiieee e 285
EXPIOriNg the EDM.......c..oiiiiieecie ettt 286
EDM EXAMPIE ..ottt et ste e ra e nteenne e nne s 287
ACMEPUD TaDIES ... et 288
AcmePub Entity Data MOGEI ..ot 289
XML Representation of MOdel...........ccooiiiiiiiiicc e 290
Entity Data Model CONCEPLS......coiiiiiie ettt 291
CoNCEPLUAI IMOUEL ...t 292
SEOrAgE IMOTEL ... 293
T o] o Lo SRR 294
QUENYING the EDM.......oiiiiiece ettt ettt et teenae e nne s 295
(08 1 DT To | Ly o S ST TR 296
(000] (o B O =TSSR 297
I A0 H 0% 1T o] 1= SR 298
LISE OF BOOKS.....cuviteteiie sttt ettt bbbt 299
LINQ to Entities Query EXampPIe ..o 300
LINQ to Entities Update EXAMPIE.........ccoooiiiiiieieeee et 301
Entity Framework in @ Class Library ..o 302
Data ACCESS Class LIDIaryc.coveiieiiiie ettt nna e 303
CHENE COUR ...ttt sae st e se e be e neeene s 304
LD L0 ottt e te st e nh e R e na e e e e ees 305
SUIMIMIATY ..ttt e ettt e et e e ekt e et bt e ek et e eab e e aab e e e nsb e e e nbb e e e kb e e e kb e e antnae s 306
Appendix A Acme Computer Case StUAYcccoevviieeriiiieiie e 307
Appendix B SQL Server 2012 EXPIeSS.....ccoiiirieerereeieeniesiesieesiesieesieesie s seeeneesnes 315
SQL SBIVEI EXPIESS ... iiiiiiiit ettt ettt ettt b e e et e e bb e e abeeeanbeeeas 316
SQL Server 2012 EXPress LOCAIDBcocviieiiiiiiie e 317
ATACADBRIIENAME.ieieccceee et re et nre e enes 318
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC X

All Rights Reserved

DALADASE ... et ne e 319

Moving from LocalDB t0 SQL SEIVETccuiiiiiieieiesieeie e 320
Appendix C Learning RESOUICTESccoviiiiirieiisieseseeee e 321
Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC xi

All Rights Reserved

Rev. 4.6 Copyright ©2014 Object Innovations Enterprises, LLC xii
All Rights Reserved

AdoCs Chapter 1

Chapter 1

Introduction to ADO.NET

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 1
All Rights Reserved

AdoCs Chapter 1

Introduction to ADO.NET

Objectives

After completing this unit you will be able to:

o Explain where ADO.NET fits in Microsoft data
access technologies.

e Understand the key concepts in the ADO.NET data
access programming model.

e \Work with a Visual Studio testbed for building
database applications.

e Outline the Acme Computer case study database and
perform simple queries against it.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 2
All Rights Reserved

AdoCs Chapter 1

Microsoft Data Access Technologies

e Over the years Microsoft has introduced an alphabet
soup of database access technologies.

— They have acronyms such as ODBC, OLE DB, RDO, DAO,
ADO, DOA,... (actually, not the last one, just kidding!).

e The overall goal is to provide a consistent set of
programming interfaces that can be used by a wide
variety of clients to talk to a wide variety of data
sources, including both relational and non-relational
data.

— Recently XML has become a very important kind of data
source.

¢ In this section we survey some of the most important
ones, with a view to providing an orientation to where
ADO.NET fits in the scheme of things, which we will
begin discussing in the next section.

e Later in the course we’ll introduce the newest data
access technologies from Microsoft, Language
Integrated Query or LINQ and ADO.NET Entity
Framework.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 3
All Rights Reserved

AdoCs Chapter 1

ODBC

e Microsoft's first initiative in this direction was
ODBC, or Open Database Connectivity. ODBC
provides a C interface to relational databases.

Application

QDBC Interface

Driver Manager

Driver Driver
Data Data
Source Source

e The standard has been widely adopted, and all major
relational databases have provided ODBC drivers.

— In addition some ODBC drivers have been written for non-
relational data sources, such as Excel spreadsheets.

e There are two main drawbacks to this approach.

— Talking to non-relational data puts a great burden on the
driver: in effect it must emulate a relational database engine.

— The C interface requires a programmer in any other language
to first interface to C before being able to call ODBC.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 4
All Rights Reserved

AdoCs Chapter 1

OLE DB

e Microsoft's improved strategy is based upon the
Component Object Model (COM), which provides a
language independent interface, based upon a binary
standard.

— Thus any solution based upon COM will improve the
flexibility from the standpoint of the client program.

— Microsoft's set of COM database interfaces is referred to as
“OLE DB,” the original name when OLE was the all-
embracing technology, and this name has stuck.

e OLE DB is not specific to relational databases.

— Any data source that wishes to expose itself to clients
through OLE DB must implement an OLE DB provider.

— OLE DB itself provides much database functionality,
including a cursor engine and a relational query engine. This
code does not have to be replicated across many providers,
unlike the case with ODBC drivers.

— Clients of OLE DB are referred to as consumers.
e The first OLE DB provider was for ODBC.

e A number of native OLE DB providers have been
implemented, including ones for SQL Server and
Oracle. There is also a native provider for Microsoft's
Jet database engine, which provides efficient access to
desktop databases such as Access and dBase.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 5
All Rights Reserved

AdoCs Chapter 1

ActiveX Data Objects (ADO)

e Although COM is based on a binary standard, all
languages are not created equal with respect to COM.

— Inits heart, COM “likes” C++. It is based on the C++ vtable
interface mechanism, and C++ deals effortlessly with
structures and pointers.

— Not so with many other languages, such as Visual Basic. If
you provide a dual interface, which restricts itself to
Automation compatible data types, your components are
much easier to access from Visual Basic.

— OLE DB was architected for maximum efficiency for C++
programs.

e To provide an easy to use interface for Visual Basic
Microsoft created ActiveX Data Objects or ADO.

— The look and feel of ADO is somewhat similar to the popular
Data Access Objects (DAQ) that provides an easy to use
object model for accessing Jet.

— The ADO model has two advantages: (1) It is somewhat
flattened and thus easier to use, without so much traversing
down an object hierarchy. (2) ADO is based on OLE DB and
thus gives programmers a very broad reach in terms of data
sources.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 6
All Rights Reserved

AdoCs Chapter 1

Accessing SQL Server before
ADO.NET

e The end result of this technology is a very flexible
range of interfaces available to the programmer.

— If you are accessing SQL Server you have a choice of five
main programming interfaces. One is embedded SQL, which
Is preprocessed from a C program. The other four interfaces
are all runtime interfaces as shown in the figure.

Application
ADO
OLE DB
QODBC DB-Library
SQL Server
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

AdoCs Chapter 1

ADO.NET

e The .NET Framework has introduced a new set of
database classes designed for loosely coupled,
distributed architectures.

— These classes are referred to as ADO.NET.

e ADO.NET uses the same access mechanisms for local,
client-server, and Internet database access.

— It can be used to examine data as relational data or as
hierarchical (XML) data.

e ADO.NET can pass data to any component using
XML and does not require a continuous connection
to the database.

e A more traditional connected access model is also
avalilable.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 8
All Rights Reserved

AdoCs Chapter 1

ADO.NET Architecture

e The DataSet class is the central component of the
disconnected architecture.

— A dataset can be populated from either a database or from an
XML stream.

— From the perspective of the user of the dataset, the original
source of the data is immaterial.

— A consistent programming model is used for all application
interaction with the dataset.

e The second key component of ADO.NET architecture
is the .NET Data Provider, which provides access to a
database, and can be used to populate a dataset.

— A data provider can also be used directly by an application to
support a connected mode of database access.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 9
All Rights Reserved

AdoCs

ADO.NET Architecture (Cont’d)

Chapter 1

e The figure illustrates the overall architecture of

ADO.NET.

Application

Connected

Disconnected
Access

Access

DataSet

.NET Data Provider

XML Data

Database

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

10

AdoCs Chapter 1

.NET Data Providers

e A .NET data provider is used for connecting to a
database.

— It provides classes that can be used to execute commands and
to retrieve results.

— The results are either used directly by the application, or else
they are placed in a dataset.

e A .NET data provider implements four key
interfaces:

— IDbConnection is used to establish a connection to a specific
data source.

— IDbCommand is used to execute a command at a data
source.

— IDataReader provides an efficient way to read a stream of
data from a data source. The data access provided by a data
reader is forward-only and read-only.

— IDbDataAdapter is used to populate a dataset from a data
source.

e The ADO.NET architecture specifies these interfaces,
and different implementations can be created to
facilitate working with different data sources.

— A .NET data provider is analogous to an OLE DB provider,
but the two should not be confused. An OLE DB provider
implements COM interfaces, and a .NET data provider
implements .NET interfaces.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 11
All Rights Reserved

AdoCs Chapter 1

Programming with ADO.NET

Interfaces

e In order to make your programs more portable, you
should endeavor to program with the interfaces
rather than using specific classes directly.

— In our example programs we will illustrate using interfaces to

talk to an Access database (using the OleDb data provider)
and a SQL Server database (using the SqlServer data
provider).

e Classes of the OleDb provider have a prefix of OleDDb,
and classes of the SqlServer provider have a prefix of

Sql.

— The table shows a number of parallel classes between the two

data providers and the corresponding interfaces.

Interface OleDb SQL Server
IDbConnection OleDbConnection SqglConnection
IDbCommand OleDbCommand SglCommand
IDataReader OleDbDataReader SglDataReader
IDbDataAdatpter OleDbDataAdapter SglDataAdapter
IDbTransaction OleDbTransaction SqlTransaction
IDataParameter OleDbParameter SqlParameter

— Classes such as DataSet that are independent of any data
provider do not have any prefix.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

12

AdoCs

Chapter 1

.NET Namespaces

e Namespaces for ADO.NET classes include the
following:

Rev. 4.6

System.Data consists of classes that constitute most of the
ADO.NET architecture.

System.Data.OleDb contains classes that provide database
access using the OLE DB data provider.

System.Data.SqlClient contains classes that provide
database access using the SQL Server data provider.

System.Data.SqlTypes contains classes that represent data
types used by SQL Server.

System.Data.Common contains classes that are shared by
data providers.

System.Data.EntityClient contains classes supporting the
ADO.NET Entity Framework.

Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

13

AdoCs Chapter 1

Connected Data Access

e The connection class (OleDbConnection or
SglConnection) is used to manage the connection to
the data source.

— It has properties ConnectionString, ConnectionTimeout,
and so forth.

— There are methods for Open, Close, transaction
management, etc.

e A connection string is used to identify the information
the object needs to connect to the database.

— You can specify the connection string when you construct the
connection object, or by setting its properties.

— A connection string contains a series of argument = value
statements separated by semicolons.

e To program in a manner that is independent of the
data source, you should obtain an interface reference
of type IDbConnection after creating the connection
object, and you should program against this interface
reference.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 14
All Rights Reserved

AdoCs Chapter 1

Sample Database

e Our first sample database, SimpleBank, stores
account information for a small bank. Two tables:

1. Account stores information about bank accounts. Columns are
Accountld, Owner, AccountType and Balance. The primary
key is Accountld.

2. BankTransaction stores information about account
transactions. Columns are Accountld, XactType, Amount and
ToAccountld. There is a parent/child relationship between the
Account and BankTransaction tables.

BankTransaction *
#ccountId

Chaner KackType
AccounkType Arnount

Balance TodcoountId

e There are SQL Server and Access versions of this
database.

e The SQL Server version is in the file SimpleBank.mdf
in the folder C:\OIC\Data.

e The Access version is in the file SimpleBank.mdb in
the folder C:\OIC\Data.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 15
All Rights Reserved

AdoCs Chapter 1

Example: Connecting to SQL Server

— See SqlConnectOnly.
// SqlConnectOnly.cs

using System;
using System.Data.SqglClient;

class Classl

{

static void Main(string[] args)
{
string connStr = @"Data Source=(LocalDB)\v11.0;"
+ @"AttachDbFilename=C:\OIC\Data\SimpleBank._mdf;""
+ "Integrated Security=True";
SglConnection conn = new SqlConnection();
conn.ConnectionString = connStr;
Console._WriteLine(
"Using SQL Server to access SimpleBank');
Console._WriteLine(''Database state: ™ +
conn.State.ToString());
conn.Open();
Console._WriteLine(''Database state: " +
conn.State.ToString());

Output:

Using SQL Server to access SimpleBank
Database state: Closed
Database state: Open

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 16
All Rights Reserved

AdoCs Chapter 1

SQL Express LocalDB

e This course uses the LocalDB version of SQL Server
2012, which is installed automatically with Visual
Studio 2013.

e LocalDB is an improved version of SQL Server 2012
Express intended for use by developers.

— It is easy to install and requires no management.
— It provides the same API as full-blown SQL Server.

— You can access a SQL Server 2012 database by specifying
the filename of the database in your connect string.

string connStr = @'"Data Source=(LocalDB)\v11.0;"
+ @"AttachDbFilename=C:\OIC\Data\SimpleBank._.mdf;""
+ "Integrated Security=True";

e LocalDB isonly available for SQL Server 2012
databases.

e If you attempt to connect to an earlier version
database file you will be given an opportunity to
convert the database to SQL Server 2012.

— The database will then no longer be accessible to earlier
versions of SQL Server.

e LocalDB does not create any database services.

— A LocalDB process is created as a child process of the
application that invokes it. It is stopped automatically a few
minutes after the last connection is closed.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 17
All Rights Reserved

AdoCs Chapter 1

SqglLocalDB Utility

e SqglLocalDB.exe is a simple command line tool* that
you can use to create and manage instances of SQL
Server 2012 Express LocalDB.

— See MSDN documentation for SQL Server 2012:
http://msdn.microsoft.com/en-us/library/hh212961.aspx

e A practical use is to stop an instance of LocalDB
without having to wait the few minutes for the
automatic shutdown.

>sqllocaldb stop v11.0

— Here v11.0 is the name of the automatic instance, where 11.0
IS the version number of SQL Server 2012.

e You can list instances of LocalDB with the “info”
command.

>sqllocaldb i1nfo
v11.0

e You can start an instance of LocalDB with the “start”
command.

>sqllocaldb start v11.0

— Doing this will eliminate the possibility of a time-out the first
time you try to access a database.

L You may run this program from the Visual Studio command prompt.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 18
All Rights Reserved

AdoCs Chapter 1

Visual Studio Server Explorer

e You can examine databases and perform queries
using Visual Studio Server Explorer?.

— If not already shown, use menu View | Server Explorer.

e To set up a new connection, right-click over Data
Connections and choose Add Connection.

— Then choose Microsoft SQL Server Database File as the data
source and browse to the database file.

Enter information to connect to the selected data source or
dick "Change” to choose a different data source andjor
provider.

Data source:

IMiausuFt S0L Server Database File (SglClien Change... |

Database file name (new or existing):

IC: YWOIC\Data\SimpleBank. mdf Browse, ..

—Log on to the server

% |ze Windows Authentication
" Use SQL Server Authentication

IJser nanme: I

Password; I

™| savemy password

Advanced... |

Test Connection | QK | Cancel |

4

— Click OK. If the database uses an older version of SQL
Server you will be given an opportunity to convert it to SQL
Server 2012.

% In Visual Studio Express 2013 for Windows Desktop the corresponding tool is Data Explorer.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 19
All Rights Reserved

AdoCs Chapter 1

Server Explorer (Cont’'d)

e After you have set up a connection to a database, you
can examine the database using Server Explorer.

e You can create or modify tables, show table data, and
SO on.

| Database Explarer '@ dbo.Account [Data] + X

Q%] R Q| 5 [MexRowsi 000 -|| T @
4 ﬁ Data Connections AccountId | Owner | AccountType | Balance
N ?‘ Simlfll_zsh‘la;k'mdf b s Bob C 100.0000
yv—— Mary C 200.0000
b EH BankTran: Add New Table 5 C 3000000
[[: :E?zd Pracec; Add New Trigger i‘i‘.ﬂ ETDDDD
[Functions | Mew Query
b Synonyms Open Table Definition
E Izzeersnblies ¢* Show Table Data
[} Copy ctrl4C
X, Delete Del
#) Refresh
& Properties
|
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 20

All Rights Reserved

AdoCs Chapter 1

Queries

e With the context menu item “New Query” you can
create a database query using T-SQL (the SQL
Server version of SQL).

e Click the wedge-shaped button * to execute the
query.

SQLQueryl.sgl * R > [lEaaabyig ==
B~ v EH | md |C:'n,OIC'nDATA'nSIMPLEB.ﬁ.NK.MDF v| ‘" | -5 | =]
select * from Account where AccountType = 'C'|
100 % -

ST50L 4 EResuls B Message |

Accourtld | Cwner I Account Type I Balance I

Bob C 100.00
110 Mary C 200.00
111 Chares C 300.00

e You can open files with an extension .sgl and execute
the corresponding file. See Chap01\Queries folder.

e \When you do this, make sure that the dropdown
contains the path to the desired database.

CheddngAccounts.sgl = 2 [alalal=taas 0 gig [8E=r]!
P~ v EH | md |C:'gOIC'n,DATA'nSIMF‘LEB.ﬁ.NK.MDF v| = | -5 | =]

kelect * from Account where AccountType = 'C'

— If you are not connected, you can do so by the ™ button.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 21
All Rights Reserved

AdoCs Chapter 1

SQL Server Management Studio

e SQL Server Management Studio (SSMS) is a more
full-blown management tool than Server Explorer in
Visual Studio.

— ltis available as a free download from Microsoft.

http://www.microsoft.com/en-us/download/details.aspx?id=29062

e In order to use SSMS to manage databases using the
LocalDB engine, you need to know the proper server
name to use:

(LocalDB)\v11.0

;_l,' Connect to Server El

B, Micrasoft:
- SQLServer2012

Iser name: I N-4UASTOZAEUA D

Servertype: j
Server name: j
Authentication: I‘.".n'inu:h:uws Authentication j

Fa

Fassword: I

I Remember password

| Connect I Cancel | Help | Options =3 |

— This server name will come up automatically if LocalDB is
the only version of SQL Server 2012 you have installed.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 22
All Rights Reserved

AdoCs Chapter 1

ADO.NET Class Libraries

e To run a program that uses the ADO.NET classes,
you must be sure to set references to the appropriate
class libraries. The following libraries should usually
be included:

— System.dll
— System.Data.dll

— System.Xml.dll (needed when working with datasets)

o References to these libraries are set up automatically
when you create a Windows or console project in
Visual Studio.

— |If you create an empty project, you will need to specifically
add these references.

— The figure shows the references in a console project, as
created by Visual Studio.

uu'__| Solution 'ConsoleApplication1’ (1 project)

CATHOM

onsoleAp,
b M Properties
4 uW peferences

5-B Microsoft. CSharp

-0 System

5B System.Core

-0 System.Data

-0 System,.Data.DatasetExtensions

-0 System, Xml

5-B System.Xml.Ling

1|"'__'| App.config

f* ©* Program.cs

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 23
All Rights Reserved

AdoCs Chapter 1

Connecting to an OLE DB Data

Provider

e To connect to an OLE DB data provider instead, you
need to change the namespace you are importing and
Iinstantiate an object of the OleDbConnection class.

— You must provide a connection string appropriate to your
OLE DB provider.

— We are going to use the Jet OLE DB provider, which can be
used for connecting to an Access database.

— The program JetConnectOnly illustrates connecting to the
Access database SimpleBank.mdb

using System;
using System.Data.OleDb;
class Classl {
static void Main(string[] args)

{
string connStr =
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source =" +
"C:\\OIC\\Data\\SimpleBank.mdb";
OleDbConnection conn =
new OleDbConnection();
conn.ConnectionString = connStr;
Console._WriteLine(
"Using Access DB SimpleBank.mdb');
Console._WriteLine(''Database state: " +
conn.State.ToString());
conn.Open();
Console._WriteLine('Database state: " +
conn.State.ToString());

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 24
All Rights Reserved

AdoCs Chapter 1

Using Commands

o After we have opened a connection to a data source,
we can create a command object, which will execute a
guery against a data source.

— Depending on our data source, we will create either a
SqlCommand object or an OleDbCommand object.

— In either case, we will initialize an interface reference of type
IDbCommand, which will be used in the rest of our code,
again promoting relative independence from the data source.

e The table summarizes some of the principle
properties and methods of IDbCommand.

Property or Description

Method

CommandText Text of command to run against the data
source

CommandTimeout Wait time before terminating command
attempt

CommandType How CommandText is interpreted (e.g. Text,
StoredProcedure)

Connection The IDbConnection used by the command

Parameters The parameters collection

Cancel Cancel the execution of an IDbCommand

ExecuteReader Obtain an IDataReader for retrieving data
(SELECT)

ExecuteNonQuery Execute a SQL command such as INSERT,
DELETE, etc.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 25

All Rights Reserved

AdoCs Chapter 1

Creating a Command Object

e The code fragments shown below are from the
ConnectedSqgl program, which illustrates performing
various database operations on the SimpleBank
database.

— For an Access version, see ConnectedJet.

e The following code illustrates creating a command
object and returning an IDbCommand interface
reference.

private static IDbCommand CreateCommand(
string query)

{
}

return new SqlCommand(query, sqlConn);

e Note that we return an interface reference, not an
object reference.

— Using the generic interface IDbCommand makes the rest of
our program independent of a particular database.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 26
All Rights Reserved

AdoCs Chapter 1

ExecuteNonQuery

e The following code illustrates executing a SQL
DELETE statement using a command object.

— We create a query string for the command, and obtain a
command object for this command.

— The call to ExecuteNonQuery returns the number of rows
that were updated.

private static void RemoveAccount(int id)

{
string query =

"delete from Account where Accountld = " + 1d;
IDbCommand command = CreateCommand(query);
int numrow = command.ExecuteNonQuery();
Console._WriteLine("{0} rows updated', numrow);

}

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 27
All Rights Reserved

AdoCs Chapter 1

Using a Data Reader

e After we have created a command object, we can call
the ExecuteReader method to return an IDataReader.

— With the data reader we can obtain a read-only, forward-only
stream of data.

— This method is suitable for reading large amounts of data,
because only one row at a time is stored in memory.

— When you are done with the data reader, you should
explicitly close it. Any output parameters or return values of
the command object will not be available until after the data
reader has been closed.

e Data readers have an Item property that can be used
for accessing the current record.

— The Item property accepts either an integer (representing a
column number) or a string (representing a column name).

— The Item property is the default property and can be omitted
If desired.

e The Read method is used to advance the data reader
to the next row.

— When it is created, a data reader is positioned before the first
row.

— You must call Read before accessing any data. Read returns
true if there are more rows, and otherwise false.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 28
All Rights Reserved

AdoCs Chapter 1

Data Reader: Code Example

e The code illustrates using a data reader to display
results of a SELECT query.

— Sample program is still in ConnectedSql.

private static void ShowList()

{
string query = "select * from Account';
IDbCommand command = CreateCommand(query);
IDataReader reader = command.ExecuteReader();
while (reader.Read())

{
Console _WriteLine("{0} {1,-10} {2:C} {3}",
reader["'Accountld'], reader[''Owner'],
reader["Balance'], reader["AccountType']);

}

reader.Close();

}

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 29
All Rights Reserved

AdoCs

Disconnected Datasets

Chapter 1

e A DataSet stores data in memory and provides a
consistent relational programming model that is the

same whatever the original source of the data.

— Thus, a DataSet contains a collection of tables and
relationships between tables.

— Each table contains a primary key and collections of columns
and constraints, which define the schema of the table, and a
collection of rows, which make up the data stored in the

table.

— The shaded boxes in the diagram represent collections.

DataSet

Relationships Tables
Relation Table
Constraints Primary Key Columns Rows
Constraint Data Column Data Row
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 30

All Rights Reserved

AdoCs Chapter 1

Data Adapters

e A data adapter provides a bridge between a
disconnected data set and its data source.

— Each .NET data provider provides its own implementation of
the interface IDbDataAdapter.

— The OLE DB data provider has the class
OleDbDataAdapter, and the SQL data provider has the class
SqlDataAdapter.

e A data adapter has properties for SelectCommand,
InsertCommand, UpdateCommand, and
DeleteCommand.

— These properties identify the SQL needed to retrieve data,
add data, change data, or remove data from the data source.

e A data adapter has the Fill method to place data into
a data set. It has the Update command to update the
data source using data from the data set.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 31
All Rights Reserved

AdoCs Chapter 1

Acme Computer Case Study

e We used the Simple Bank database for our initial
orientation to ADO.NET.

— We’ll also provide some additional point illustrations using
this database as we go along.

e To gain a more practical and in-depth understanding
of ADO.NET, we will use a more complicated
database for many of our illustrations.

e Acme Computer manufactures and sells computers,
taking orders both over the Web and by phone.

— The Order Entry System supports ordering custom-built
systems, parts, and refurbished systems.

— A Windows Forms front-end provides a rich client user
interface. This system is used internally by employees of
Acme, who take orders over the phone.

— Additional interfaces can be provided, such as a Web
interface for retail customers and a Web services
programmatic interface for wholesale customers.

e The heart of the system is a relational database,
whose schema is described below.

— The Order Entry System is responsible for gathering
information from the customer, updating the database tables
to reflect fulfilling the order, and reporting the results of the
order to the customer.

— More details are provided in Appendix A.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 32
All Rights Reserved

AdoCs

Buy Computer

Chapter 1

e The first sample program using the database

provides a Windows Forms or Web Forms front-end®
for configuring and buying a custom-built computer.

— See BuyComputerWin or BuyComputerWeb in the
chapter directory.

— This program uses a connected data-access model and is

— Additional programs will be developed later using
disconnected datasets.

developed over the next several chapters.

Model IE‘:DHDW j Price ISEDDDD

Components Choices

|4E}{ £150.00

Corfigured System

CPU: 1.8GHz 550.00 Buy I
Memary: 64 MB 520.00

Hard Drive: 10GE $100.00

Manitor: 17 inches Fatscreen $200.00 Plea |
Keyboard: Standard £35.00

Mouse: Optical £50.00
CDROM: 24X $100.00 — |15_
Total Price |5355.|:-[:- Systemld |2[:-[:-3

=10l x|

® Windows Forms programs are provided for Course 4120 and Web Forms programs are provided for

Course 4121. The screen captures in this student guide show the Windows Forms programs. The Web
Forms user interfaces are similar.

Rev. 4.6

Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

33

AdoCs Chapter 1

Model

e The Model table shows the models of computer
systems available and their base price.

— The total system price will be calculated by adding the base
price (which includes the chassis, power supply, and so on)
to the components that are configured into the system.

— Modelld is the primary key.

ModelId MaodelMarne BasePrice
1 Econarmy 300.0000
2 Skandard 350.0000
3 Deluxe 4000000
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

AdoCs

Chapter 1

Component

e The Component table shows the various components
that can be configured into a system.

— Where applicable, a unit of measurement is shown.

— Compld is the primary key.

Rev. 4.6

CompId Descripkion
ZPU
Mermory
Hard Drive
MIC
Manitor
Kevboard
Maouse
CDROM
CvD

L I = T o B S W R % Rl

—_
o]

Tape Backup

Linik
aHz
ME
1]

inches

GE

Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

35

AdoCs

Chapter 1

Part

e The Part table gives the details of all the various
component parts that are available.

— The type of component is specified by Compld.

— The optional Description can be used to further specify
certain types of components. For example, both CRT and
Flatscreen monitors are provided.

— Although not used in the basic order entry system, fields are
provided to support an inventory management system,
providing a restock quantity and date.

— Note that parts can either be part of a complete system or
sold separately.

— Partld is the primary key.

Partld
1001
1002
1003
1004
1005
1008
1007
1002
1009
1010
1011
1mma

Compld = Price

Dl LD LD L D P e

50.00
F0.00
100.00
150.00
20.00
50.00
125.00
300.00
100.00
150.00
200.00
300.00

PartSize Descrption | QdnHand |- RestockOty | RestockDate

1.8 78 HULL MULL
22 46 MULL MULL
28 43 HULL MULL
3.2 45 MHULL MULL
B4 85 MULL MULL
128 23 HULL MULL
256 100 MHULL MULL
512 100 MULL MULL
10 MULL | HULL MULL
20 MULL 33 MULL MULL
40 MULL 30 HULL KULL
a0 NULL 35 MHULL MULL

... and additional rows

Rev. 4.6

Copyright © 2014 Object Innovations Enterprises, LLC 36

All Rights Reserved

AdoCs Chapter 1

PartConfiguration

e The PartConfiguration table shows which parts are
available for each model.

— Besides specifying valid configurations, this table is also
important in optimizing the performance and scalability of
the Order Entry System,

— In the ordering process a customer first selects a model. Then
a dataset can be constructed containing the data relevant to
that particular model without having to download a large
amount of data that is not relevant.

— Modelld and Partld are a primary key.

— We show the PartsConfiguration table for Modelld = 1
(Economy).

Maodelld PartId
1001
1002
1005
1006
1009
1010
1011
1013
1014
1015
1016
1017
1015
1019
10z0
1021

= = = e e e e e e e e e e e e

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 37
All Rights Reserved

AdoCs

Chapter 1

System

e The System table shows information about complete
systems that have been ordered.

Rev. 4.6

Systems are built to order, and so the System table only gets
populated as systems are ordered.

The base model is shown in the System table, and the various
components comprising the system are shown in the
SystemDetails table.

The price is calculated from the price of the base model and
the components. Note that part prices may change, but once a
price is assigned to the system, that price sticks (unless later
discounted on account of a return).

A status code shows the system status, Ordered, Built, and so
on. If a system is returned, it becomes available at a discount
as a “refurbished” system.

Systemld is the primary key.

The System table becomes populated as systems are ordered.

SystemId ModelId Price Skatus

Copyright © 2014 Object Innovations Enterprises, LLC 38
All Rights Reserved

AdoCs Chapter 1

Systemld as Identity Column

e SQL server supports the capability of declaring
identity columns.

— SQL server automatically assigns a sequenced number to this
column when you insert a row.

— The starting value is the seed, and the amount by which the
value increases or decreases with each row is called the
Increment.

e Several of the primary keys in the tables of the
AcmeComputer database are identity columns.

— Systemld is an identity column, used for generating an ID
for newly ordered systems.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 39
All Rights Reserved

AdoCs Chapter 1

Systemld as Identity Column (Cont’d)

e You can view the schema of a table using Server
Explorer.

— Right-click over the table and choose Open Table Definition.

dbo.System [Design] + X -

4 |pdate | SciptFile: dbo.System.sql -

Mame Data Type Allow Muls Default E Keys (1)
w0 SystemId it H PK_Product (Primary Key, Clustered: SystemId)
) Check Constraints (0)
Modelld int v Todens (0]
Price money v El Foreign Keys (2)
Status int v FK_Product_StatusCode (Status)
FK_System_Model (ModelId)
[Triggers (0)

— You can see details of the column definition in the Properties
window.

Froperties = 1 %
SystemId Column -

=

E General
(Mame) SystemId
Allow Mulls False
Data Type int
Default Value or Binding
Description

[l Table Designer

Computed Column Specdifica

Full Text Spedfication False

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 40
All Rights Reserved

AdoCs Chapter 1

SystemDetails

e The SystemDetails table shows the parts that make
up a complete system.

— Certain components, such as memory modules and disks, can
be in a multiple quantity. (In the first version of the case
study, the quantity is always 1.)

— Systemld and Partld are the primary key.

— The SystemDetails table becomes populated as systems are
ordered.

— As with all tables, the T-SQL data definition statements are
also shown.

dbo.SystemDetails [Design] R 2 GhEEEELR]|
? Update | Script File: |dbo.5ystemDetaiIs.sqI v|
‘ Name | Data Type | Allow Nulls | Default | 4 Keys (1)
w0 Systemld int = PK_ProductDetails (Primary Key, Clustered: !
—) Check Constraints (1)
| ™o Partld int T Indexes (1)
Qty int - (1)) 4 Foreign Keys (2)
Price money v FK_PrDcIucﬂ}eta!Is_Part (Partld)
_ FK_ProductDetails_Product (SystemId)
B r Triggers (1)
—l 3 Design 11 & T50L] ==
CREATE TABLE [dbo].[SystemDetails] |
[SystemId] INT NOT NULL,
[PartId] INT NOT NULL,
[Qty] INT CONSTRAINT [DF_ProductDetails Qty] DEFAULT { (1)) NOT HULL,
[Price] MONEY HULL,
CONSTRAINT [PK_ProductDetails] PRIMARY KEY CLUSTERED ([SystemId] ASC, [PartId] AsC)
CONSTRAINT [FK_ProductDetails Part] FOREIGN KEY ([PartId]) REFERENCES [dbo].[Part]
CONSTRAINT [FK_ProductDetails Product] FOREIGN KEY ([SystemId]) REFERENCES [dbo].[S
13

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 41
All Rights Reserved

AdoCs Chapter 1

StatusCode

e The StatusCode table provides a description for each
status code.

— In the basic order entry system the relevant codes are
Ordered and Returned.

— As the case study is enhanced, the Built and Ship status codes
may be used.

— Status is the primary key.

Skakus Descripkion
1 Crdered
z Biuil
3 Shipped
4 Returned
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 42

All Rights Reserved

AdoCs

Relationships

Chapter 1

e The tables discussed so far have the following
relationships:

Component

7 | CompId
Description
Linit

Model

|Modelld
ModelMarme
BasePrice

= ComponentConfiguration

T |Modelld
% [CompId

ooy

oo | Part

StatusCode

7 | Stakus
Description

7 |Partld
CompId
Price
PartSize
Description
QbvOrHand
RestockQty
RestockDate

7 [Modelld
7 [Partid

PartConfiguration

[=2— System

Rev. 4.6

7 | SvskemId
ModelId
Price
Skatus

3

SystemDetails

% | Swstemld
| Partld
Qty
Price

Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

43

AdoCs Chapter 1

Stored Procedure

e A stored procedure splnsertSystem is provided for
inserting a new system into the System table.

— This procedure returns as an output parameter the system ID
that is generated as an identity column.

CREATE PROCEDURE splnsertSystem
@Model 1d 1Int,
@Price money,
@Status Int,
@Systemld int OUTPUT
AS

insert System(Modelld, Price, Status)
values(@Modelld, @Price, @Status)

select @Systemld = @@identity
return

GO

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 44
All Rights Reserved

AdoCs Chapter 1

Lab 1

Querying the AcmeComputer Database

In this lab, you will set up a connection to the AcmeComputer
database on your system. You will also perform a number of
queries against the database. Doing these queries will both help to
familiarize you with the database and serve as a review of SQL.

Detailed instructions are contained in the Lab 1 write-up in the Lab
Manual.

Suggested time: 45 minutes

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 45
All Rights Reserved

AdoCs Chapter 1

Summary

e ADO.NET is the culmination of a series of data access
technologies from Microsoft.

e ADO.NET provides a set of classes that can be used
to interact with data providers.

e You can access data sources in either a connected or
disconnected mode.

e The DataReader can be used to build interact with a
data source in a connected mode.

e The DataSet can be used to interact with data from a
data source without maintaining a constant
connection to the data source.

e The DataSet can be populated from a database using
a DataAdapter.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 46
All Rights Reserved

AdoCs Chapter 8

Chapter 8

Concurrency and Transactions

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 215
All Rights Reserved

AdoCs Chapter 8
Concurrency and Transactions

Objectives

After completing this unit you will be able to:

e Discuss the fundamental issue of handling
concurrency in disconnected database applications
using DataSets.

e Describe destructive, optimistic, and pessimistic
concurrency.

e Implement optimistic concurrency solutions using
DataSets and handle concurrency violations.

e Explain how to implement pessimistic concurrency.
e Implement transactions using ADO.NET.

e Implement transactions in the database via a stored
procedure.

e Call a stored procedure from ADO.NET client code
and handle both errors returned via a return code
and those that are raised by an exception.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 216
All Rights Reserved

AdoCs Chapter 8

DataSets and Concurrency

e A fundamental issue in working with disconnected
DataSets is concurrency.

— What happens when update the database from your DataSet
and a conflicting change has been made to the database in the
meantime?

e In the connected scenario, the database itself handles
concurrency.

¢ In the disconnected scenario, you must be prepared
to deal with concurrency issues in your own
application.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 217
All Rights Reserved

AdoCs Chapter 8

Demo — Destructive Concurrency

e Let’s first look at what can happen if you are not
careful in the use of DataSets.

e Run two instances of Step 2 of the ModelDataSetWin
or ModelDataSetWeb program from Chapter 5.

— For convenience we’ve also provided a copy of Step 2 of this
program in the Chapter 8 folder, along with a new Step 2C.

— Run a second instance of the Windows version from
Windows Explorer

— To run a second instance of the Web version, start a second
instance of Internet Explorer and copy the URL from the first
Instance.

1. In the first instance, change the price of the Economy model
from $300.00 to $250.00. Update both the DataSet and the
database.

Model DataSet - Step 2 72 =10j]
Model il DataSet |
2 Standard £350.00
3 Deluxe 2400.00 |
= n [=1
Clear Dataset
Id |-| |
AddRow |
MName IE,:,:“-":,,-,T._Ir |
|Ipdate Row
Price [250.00
Delete Row |
Update Database
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 218

All Rights Reserved

AdoCs Chapter 8

Demo — Destructive Concurrency

2. In the second instance, without filling the DataSet again, update
the price of the Economy model to $200.00. Update the DataSet
and the database.

3. Now go back to the first instance and fill the DataSet again. You
will see the change made by the second instance, and the change
to $250.00 made by the first instance is lost.

-ioix]
Mode! | FiDataset |
2 Standard £350.00
3 Delwe 2400.00 -) |
Clear DataSet
Id |-| |
AddRow |
MName IECDFIDW |
Update Row
Price |2[:-|:-.[:-[:-
Delete Row |
Update Database

e This form of concurrency control (or lack of it) is
sometimes called destructive concurrency.

— It is also sometimes called “Last In Wins Concurrency.”

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 219
All Rights Reserved

AdoCs Chapter 8

Demo — Optimistic Concurrency

e A better way to handle concurrency in DataSets is to
assume there will be no concurrency violation, but
then check the assumption prior to updating the
database with changes in the DataSet.

e This requires more complex SQL in the commands in
the DataAdapter.

e The CommandBuilders provided by .NET Data
Providers should generate the correct SQL.

e As an example, run two instances of Step 2C of the
ModelDataSetWin or ModelDataSetWeb program.

— Start the first instance from Visual Studio by running in the
debugger.

1. Observe the SQL for the UPDATE command that is created by
the CommandBuilder. This is shown in the Output window
when the program is run in the debugger. This SQL verifies that
the values of the columns currently in the database are the same
as the original values stored in the DataSet.

UPDATE [Model] SET [Modelld] = @pl, [ModelName] =
@p2, [BasePrice] = @p3 WHERE (([Modelld] = @p4) AND
([ModelName] = @p5) AND ([BasePrice] = @p6))

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 220
All Rights Reserved

AdoCs Chapter 8

Demo — Optimistic Concurrency

2. In the first instance again change the price of the Economy
model to $250.00 (this time from $200.00), updating first the
DataSet and then the database.

3. In the second instance, without filling the DataSet again, update
the price of the Economy model to $100.00. Update the DataSet
and try to update the database. You will hit a Concurrency
exception!

Concurrency Exception: Concurrency violation: the
UpdateCommand affected O of the expected 1 records.

4. If you fill the DataSet again, you will see that the DataBase
reflects the change made by the first instance, which was
allowed because it did not violate concurrency.

) -l x]
Model Fil DataSet |
2 Standard £350.00
3 Deluxe 2400.00 ; [|
foccept Changes
Rejeat Changes |
Clear DatasSet
Id |-| |
AddRow |
MName IE,:,:“-":,,-,T._Ir |
|pdate Row
Price [250.00
Delete Row |
Update Database
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 221

All Rights Reserved

AdoCs Chapter 8

Handling Concurrency Violations

e How you handle concurrency violations depends on
the requirements of your particular application.

e The essential thing you must always do is to perform
the call to the UpdateDatabase() method in a try block
and catch exceptions.

string msg;

try

{
int numrow = DB.UpdateDatabase();
msg = numrow + " row(s) updated;
UpdateUl (false);

iatch (DBConcurrencyException ex)

{ msg = "Concurrency Exception: " + ex.Message;
iatch (Exception ex)

{ msg = ex.Message;

%howMessage(msg);

e \Where you go next depends on your application.

— A simple approach is to inform the user of the problem, fill
the DataSet with the current data in the database, and ask the
user to make desired changes from there.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 222
All Rights Reserved

AdoCs Chapter 8

Pessimistic Concurrency

e Another approach to handling concurrency is
pessimistic concurrency.

e In this approach rows of the database are locked,
even after the connection is closed, and not unlocked
until the locking client has finished work on the rows.

e ADO.NET does not provide support for pessimistic
concurrency, so you have to roll your own.

e The typical way to implement pessimistic
concurrency is through a check-out/check-in
procedure.

— You could do this by adding a CheckedOut column to the
database table.

— When retrieving rows into a DataSet, you set the CheckedOut
column to true for the rows retrieved into the DataSet for
updating.

— When updating the database from your DataSet, you will
then set the CheckedOut column back to false.

— This approach requires that all updates to the table be done
by stored procedures that observe the protocol.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 223
All Rights Reserved

AdoCs Chapter 8

Transactions

e A fundamental issue in all data access technologies is
dealing with transactions.

e A transaction is a means to ensure that several
operations are treated together as an atomic unit—
they all succeed, or else everything is rolled back and
the original state is restored.

e As an example, consider a bank account transfer
between two accounts.

— An amount is deducted from the first account.

— The same amount is added to the second account.

e If only one operation succeeds and the other fails, the
accounts could wind up in an inconsistent state, with
either one account having too little or the other too
much.

e Transactions can be handled either with SQL in the
database or in ADO.NET.

— A third mechanism is using the support provided for
distributed transactions in COM+, wrapped in .NET by the
NET Enterprise Services. This topic is beyond the scope of
this course.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 224
All Rights Reserved

AdoCs Chapter 8

Demo — ADO.NET Transactions

e | et’s implement the bank account transfer example
using ADO.NET transaction support.

— See the program BankTransferWin or BankTransferWeb
in the chapter folder. This program has two steps. Run Stepl.

1. Bob has two accounts, a checking and savings account. Try to
transfer an amount from checking to savings that is greater than

the balance in checking.

=101 x|
Orwner [Bob =] Refresh
From IF To Ir Transfer |
Amount |1 50

Accountld | Owiner | AccountType | Balance

4 109 Bob C 100.0000
112 Bob 5 1000.0000

2. Click Transfer. You will see an error message about a CHECK
constraint violated (balance must not be negative). One
operation fails, but the other succeeds. One row is updated.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 225
All Rights Reserved

AdoCs

Chapter 8

Demo — ADO.NET Transactions

3. Refresh the display of account information for Bob.

=101
—_— -
From IF Tao Ir Transfer |
Amount |1 5D

Accountld

4 109
118

| Owiner | AccountType | Balance

Bob C 100.0000
Bob 5 1150.0000

4. The savings account balance has been increased, but the
checking account balance remains the same. This is good for

Bob but bad for the bank!

5. Now build and run Step 2 and attempt to perform exactly the
same operations. This time the two operations are performed
under a transaction, and with the failure everything is rolled
back. A message box explains. After you refresh the display,

you will see that the database remains as it had been.

The UPDATE statement conflicted with the CHECK constraint "CK_Account™,
The conflict occurred in database "C:\OIC\DATAVSIMPLEEAMNK.MDF™, table
“dbo. Account”, column 'Balance',

The statement has been terminated. Transaction has been rolled badk,

x|

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC

All Rights Reserved

226

AdoCs Chapter 8

Programming ADO.NET Transactions

e Transaction support is implemented in the Command
class.

— Initiate the transaction by calling BeginTransaction().
— If everything succeeds, call Commit().

— If there is a failure, call Rollback().

e In our Step 2 example program, the actual transfer is
done by plain vanilla ADO.NET code in a helper
method.

private void UpdateBalance(int i1d, decimal amount)

{

cmd.CommandText = "update Account " +
"set Balance = Balance + " + amount +
' where Accountld = " + id;

int numrow = cmd.ExecuteNonQuery();
MessageBox.Show(numrow + " row(s) updated",
"Info");

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 227
All Rights Reserved

AdoCs Chapter 8

ADO.NET Transaction Code

e Here is the code for the actual transaction handling.

private void cmdTransfer_Click(object sender,
System.EventArgs e)

{

}

int from = Convert.Tolnt32(txtFrom.Text);
int to = Convert.Tolnt32(txtTo.Text);
decimal amount =
Convert.ToDecimal (txtAmount.Text);
conn.Open();
cmd.Transaction = conn.BeginTransaction();
try
{
UpdateBalance(from, -amount);
UpdateBalance(to, amount);
cmd.Transaction.Commit();

}
catch (Exception ex)
{
cmd.Transaction.Rollback();
MessageBox.Show(ex.Message +
Environment.NewLine +
"Transaction has been rolled back.",
"Error™);
+
finally
{
conn.Close();
}

It is important to always close the connection whether
the transaction succeeds or fails.

— Otherwise you will hit an exception the next time you
attempt to open the connection.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 228

All Rights Reserved

AdoCs Chapter 8

Using ADO.NET Transactions

e This example provides a simple illustration of the
mechanism of ADO.NET transactions.

e But it is not a good example of when to use ADO.NET
transactions.

¢ In the simple case of multiple operations on the same
database, ADO.NET transactions are not efficient.

— Multiple trips to the database are required.

e ADO.NET transactions are useful when you have
operations on heterogeneous data sources.

— For example, one operation is against a database, and another
operation is through a Web service.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 229
All Rights Reserved

AdoCs Chapter 8

DataBase Transactions

e In our bank account example, a more efficient
solution is to make use of SQL support of
transactions directly in the database.

e You would typically do this through a stored
procedure.

e For example, the SimpleBank SQL Server database
has the stored procedure spTransfer.

e Inyour ADO.NET code you would then implement
the transfer by calling the stored procedure.

éﬁa-CommandType
cmd.CommandText

CommandType.StoredProcedure;
"spTransfer';

// Set up parameters

// Execute the command

conn.Open();

int numrow = cmd.ExecuteNonQuery();
conn.Close();

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 230
All Rights Reserved

AdoCs Chapter 8

Transaction in Stored Procedure

e Here is the T-SQL for the stored procedure:

CREATE PROCEDURE spTransfer
@From iInt,
@To Int,
@Amount money

AS

begin tran
update Account set Balance = Balance + @Amount
where Accountld = @To

iT @@error '= 0
begin
rol lback tran
return 98
end

update Account set Balance Balance - @Amount

where Accountld = @From

iT @@error =0
begin
rol lback tran
return 99
end

commit tran
return O
GO

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC
All Rights Reserved

231

AdoCs Chapter 8

Testing the Stored Procedure

e The script TestTransfer.sql in the Queries folder for
the chapter provides a simple test of the stored
procedure, showing the accounts afterwards.

exec spTransfer 109, 118, 150;
select * from Account where Owner = "Bob*

e Running this script in SQL Server Management
Studio you get the following message:

(1 row(s) affected)

Msg 547, Level 16, State 0, Procedure spTransfer,
Line 17

The UPDATE statement conflicted with the CHECK
constraint "CK_Account'. The conflict occurred iIn
database "SimpleBank', table "dbo.Account, column
"Balance”.

The statement has been terminated.

(2 row(s) affected)

— You will see the following in the Results tab:

1 Results 3 Messages

Accountld | Owner | AccountT ype Balahce
1 108 Bk C 10080
2 118 Bob 5 1150.00

— At the end, the database is left in its original state. (The
balance in account 118 reflects the previous attempt to
transfer 150 from account 109 in a manner not protected by a
transaction.)

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 232
All Rights Reserved

AdoCs Chapter 8

ADO.NET Client Example

e The program BankSqglWin or BankSqlWeb illustrates
ADO.NET client code that calls the spTransfer stored
procedure.

e The same user interface is provided for testing the
transfer operation.

Bank Account Transfer - SQL Version =10l x|
Chwner IE.;.|:. j Refresh |
Amourt |1 50

Accountld | Orwner | AccountType | Balance

k 109 Bob C 100.0000
118 Bob 5 1150.0000

e Attempting too large a transfer raises an exception:
< kd

SqlException: See Debug Cutput window for details

— A Refresh at end will show balances are unchanged.

— If you run the program in the debugger, you will be able to
see additional exception information in the Output window.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 233
All Rights Reserved

AdoCs Chapter 8

Transfer Method

e The Transfer() method, in file DB.cs, sets up a

command for calling the stored procedure, sets up
parameters, and executes the query in a try block.

public string Transfer(int fromld, int told,

{

decimal amount)

cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandText = “spTransfer';
cmd.Parameters.Clear();

SglParameter p = new SglParameter(
"@From', SqlDbType.Int);

p.Direction = ParameterDirection. Input;

p-Value = fromld;

cmd.Parameters.Add(p);

p = new SglParameter(
"@To", SqlDbType.Int);
p-Direction = ParameterDirection. Input;
p.Value = told;
cmd.Parameters.Add(p);

p = new SglParameter(

"@Amount', SglDbType.Int);
p.Direction = ParameterDirection.Input;
p.-Value = amount;

cmd.Parameters.Add(p);
p = new SglParameter(

"@RETURN_VALUE™, SglDbType.Int);
p.Direction = ParameterDirection.ReturnValue;
cmd.Parameters.Add(p);

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 234

All Rights Reserved

AdoCs Chapter 8

Transfer Method (Cont’d)

try

conn.Open();

int numrow = cmd.ExecuteNonQuery();

conn.Close();

int status = (int)
cmd.Parameters["@RETURN_VALUE'"] .Value;

1T (status !'= 0)

{
MessageBox.Show(status.ToString(),
"RETURN_VALUE™);
return false;
+
MessageBox.Show(numrow + ' rows updated",
"Info'™);
return true;
+
catch (SqlException ex)
{
conn.Close();
DisplaySqlErrors(ex);
+
return false;
+
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 235

All Rights Reserved

AdoCs Chapter 8

Exception Information

e In the catch block we display the SQL Server
exception via a helper method, which writes all the
error information for all the errors to the debug
window.

private void DisplaySglErrors(SqlException e)
{

for (int 1 = 0; 1 < e.Errors.Count; i++)
{
Debug.WriteLine("'Index #" + 1);
Debug.WriteLine("'Source: ™ +
e.Errors[i].Source);
Debug.-WriteLine("'Number: " +
e.Errors[i]-Number.ToString());
Debug.WriteLine(''State: " +
e.Errors|[i].State.ToString());
Debug.-WriteLine("'Class: ' +
e.Errors|[i].Class.ToString());

Debug.WriteLine("'Server: " +
e.Errors[i].Server);
Debug.WriteLine(''Message: " +
e.Errors|[i].Message);
Debug.WriteLine("'Procedure: ™ +
e.Errors|[i].Procedure);
Debug.WriteLine("'LineNumber: " +
e.Errors|[i].LineNumber.ToString());
+
+
Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 236

All Rights Reserved

AdoCs Chapter 8

SQL Server Error

e Here is the debug output for the first error:

A Tirst chance exception of type
"System.Data.SqlClient.SglException®™ occurred iIn
System.Data.dll

Index #0

Source: .Net SqlClient Data Provider

Number: 547

State: O

Class: 16

Server: _\SQLEXPRESS

Message: The UPDATE statement conflicted with the
CHECK constraint "CK_Account'. The conflict
occurred i1n database "SimpleBank'™, table
"dbo.Account”, column "Balance-”.

Procedure: spTransfer

LineNumber: 17

e Note that although the SQL Server stored procedure
attempts to return error information through a
return code, an exception is raised for a CHECK
constraint violation.

— The “class” or severity of this kind of error is 16, which is
quite high.

— Thus it is important for the client program to both check the
return code and handle any exception thrown.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 237
All Rights Reserved

AdoCs Chapter 8

Summary

e Concurrency is a fundamental issue in disconnected
database applications using DataSets.

e The types of concurrency are destructive, optimistic,
and pessimistic.

e The CommandBuilder class generates the complex
SQL required to implement optimistic concurrency.

e You have to implement pessimistic concurrency
yourself, such as through a check-out/check-in
mechanism.

e ADO.NET provides support for transactions in the
Command class.

e Typically, it is more efficient to implement
transactions in the database via a stored procedure.

e \When calling a stored procedure from ADO.NET
client code, you should handle both errors returned
via a return code and those that are raised by an
exception.

Rev. 4.6 Copyright © 2014 Object Innovations Enterprises, LLC 238
All Rights Reserved

