Table of Contents (Overview)

Chapter 1 Introduction to WPF

Chapter 2 XAML

Chapter 3 WPF Controls

Chapter 4 Layout

Chapter 5 Dialogs

Chapter 6 Menus and Commands

Chapter 7 Toolbars and Status Bars

Chapter 8 Dependency Properties and Routed Events
Chapter 9 Resources

Chapter 10 Data Binding

Chapter 11 Styles, Templates, Skins and Themes
Chapter 12 WPF and Windows Forms Interoperation
Appendix A Learning Resources

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC

All Rights Reserved

Directory Structure

e Install the course software by running the self-
extractor Install WpfCs_46.exe.

e The course software installs to the root directory
C:\OIC\WpfCs.

— Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02 and so
on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

— The Demos directory is provided for performing in-class
demonstrations led by the instructor.

e Data files install to the directory C:\OIC\Data.

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC iv
All Rights Reserved

Table of Contents (Detailed)

Chapter 1: Introduction t0 WPFoci i 1
HisStory of MICrOSOTt GUIooiiiiiii e 3
WY WPE? ..ttt b bbbt b bttt ne s 4
WhHeN ShOUI T USE WPF? ...t 5
WPF and .NET FrameWOrk 3.0ccooiiiiiiiiesieiee et 6
NET Framework 4.0/4.5.1ocooieeiiee ettt sra e enes 7
VISUAL STUAIO 2013 bbbttt 8
Visual Studio EXPress 2013cvi ittt ae e nres 9
TaArget FrAMEBWOIKcciiiiieiiiie ettt sttt et st sbeebeenee s 10
WPF Core Types and INFraStrUCUIES.coiiieiieriiiesic e 11
AL ..ttt bbb bbbt bbbttt een s 12
(O] 01 o] LS F TSRS 13
Data BINGING ...ttt e bbb et ne e be et e neenne s 14
AAPPEATAINCE ...ttt e e 15
(Yo UL a0 = T SRS 16
LC] o] ot 17
=T L T ST RRTRTTPRPROPRN 18
DocumMENtS AN PIINTING.....cveiviiieiiiie it 19
PIAN OF COUISE ...ttt bbbttt bbb bbbt 20
ApPPLication and WINAOWceiuiiiciicie ettt sae e sraenre e 21
FirstWpf EXample Program ... 22
Demo — Using Visual STUdIO 2013c.ooiiiiiiiiiiisiee e 23
Creating @ BUITONocvvi e ettt e te e e s e e sneennenne e 24
Providing an EVent HanAIErc.o i 25
Specifying INitial INPUL FOCUS.oiiiiieiieiinieeeee et 26
COMPIELE FIrSt PrOQIaMi ittt ettt bbbt 27
Device-INdependent PIXEISccvoiveiiieiie et 29
ClaSS HIBIAICNYot sr e e te e re e reenes 30
CONLENT PrOPEITY ..ttt ettt sttt ebe e ee e e nneeenee 31
SIMPIE BIUSNES ...t ab i 32
PANEIS ... bbbttt 33
Children Of PANEIS.ooiiiiiee ettt are s 34
EXample — TWOCONTIOIScoueiiiieeiie et 35
TWOCONTIOIS — COUR ...ttt s e st et sre e reeneeeneenneans 36
AULOMALIC SIZING c.vvevvieiieieeie ettt e e e e e e s re e teesaeesesanaeneeareesraeseaneens 37
. oI TP SRRTRP 39
SUMIMAIY ...ttt bttt ekt e e s bt e be e e ae e ekt e esb e e ke e ese e e beesae e e beesbbe s sbe e sreeennes 40

ChAaPLEr 22 XAML ..ottt ettt et be e beeneenneas 45
WAL IS XAMLT? ..ottt bbb ne et 47
Default NAMESPACEcovieiiiiie ettt b et nbesreenes 48
XAML Language NAMESPACE.cccreerriirierieeiiiesiee e nes 49

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC Y

All Rights Reserved

NET Class and NAMESPACEccueiiiriiiieiiieite ettt st ne e b be e e 50

Elements and ATIIIDULES..........oi i 51
XAML in Visual Studio 2013......c..ooieiieeciece e 52
Demo: One BUttON Via XAMLccviiiiicc ettt 53
Adding AN EVENEHANGIEE ... s 56
LAYOUL TN WPE ... bbbttt bbbttt 58
000011 (0] | 11T TS - TS 59
Margin and PaddiNng.........ccciieiiiiiiieie et 60
THICKNESS SEIUCTUIE......viiiiie et e e be e e ree e 61
Children OF PANEIS.........covieiie ettt ae e snee s 62
Example — TWOCONTIOISXaMIcooiieiicie e 63
TWOCONLIOIS = XAML ...ttt s re e teareenne e 64
AULOMALIC SIZING tvtiitieiiieie ettt a et e et e e s beesbeeneesreebeaneens 65
TWOCONIOIS — COUEot et e e ae e e e ree e 66
L@ =] o1 7= [0 ST 67
AACCESS KBY S ..ttt sttt ettt ettt e e a e Rt et e e b e r e ba e nr s 68
ACCESS KEYS 1N XAIML ...ttt ettt bean et e b snee e 69
CONTENT PIOPEITY ...ttt 70
Checked and UNChecked EVENLS...........cciveieiieiiece e 71
LD 2 bbbt e e 72
Property EIBMENT SYNTAXoiiiiiiiiiiiiiiieiiie ettt 73
TYPE CONVEITEES. ...ttt ettt bttt be et be e bt e e sb e e be e sab e e nbeesnbeenbeesnnaen 74
SUIMIMIATY ..tttk e ettt e ekt e ettt e e kbt e ekt e e e ab e e e esb e e enbe e e e bt e e e bbeeenbneeenbeeeanes 75
Chapter 3: WPF CONTIOISoiiieie ettt ae e nneas 81
BULIONS IN VWP ... et te e e s be e s be e s rae e saeesnteenree s 83
BUttoNDEMO EXAMPIE......c.eiiieiiee ettt 84
USING the BULLON CIASSccvveiiiiieiiecie sttt ettt et sre s 85
TOQGIE BUTONS. ...ttt ettt ettt sttt sbe et ne e b e e b 86
ISTRFEESTALE ...t er e et e s e e st e et e e et e e s te e eaeeesbeeaneeenree e 87
L0 1= o3 4= T) oSSR 88
ChECKBOX COUE ...ttt ettt et e e s s et e et e ere e s anentesnaesaeenneenne e 89
LI 1oL I T O SO TRPRRI 90
10 [To] =0 1 (o] o I SRRSO 91
LCT(0N] 0] =10) GO TSRO PR PR PP RPPR 92
LT [PR SPRUPPROPPPPRS 93
.10 JRC No oUSSPR S 94
=) 1 = 0) SO SPPRR 95
INItIAlIZING the TEXIBOXeiiviiiiiieiieee ettt e st e e b e eneesreenreeneeas 96
(08 [T0] o o= T o IS U o] 10] USSR 97
ITEMS CONTIOIS ... i et e e e ra e e be e re e 98
Y] LoTot (o] g @0 o1 o] 3PS TR 99
USING @ LISEBOX ...evveieeieciie ettt et e st e e s esnaenneenaesneenne e 100
ShOWLIStSINGIE EXAMPIE......cviiieiieece et 101
MUItiple-Selection LIStBOX........cccuuiuiiiriiieieiie et 102
SEIECTEA ITEBIMS ...ttt e sae e e te e s b e e te e sraeebeeaneeas 103
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC vi

All Rights Reserved

USING the COMDOBOX.......ccuiiiiiiieiesie ettt nae e 104

COomMbDOBOX EXAMPIE ...t 105
Storing Objects iN LiSt CONIOIScccveiieiiie e 107
Collection IemMS IN XAIMLcviiiiiiee et 108
LD BB ittt b Reereene et e e 109
SUMMEBIY .t b bbbt s b b e bt et e be b nne s 110
ChapPTer 42 LAYOUL.......cciiiiiieiiieeeie ettt 119
LaYOUL TN WPE ...ttt be et re e be b 121
CoNntrolling SIZE: REVIEWcouiiiiieiee et 122
Margin and Padding: REVIEWcccveiuiiieiieiieieseese e se et e s sae e see e snae s e 123
ThICKNESS STrUCTUIE: REVIEWoviiiiiiieiieiieie s 124
SIZEDEIMO PrOGIAIM ..ttt sttt ettt et e e er et eebeaneesneeeas 125
TOP PANEL ..t 126
CONLENT PIOPEITY ...eeeeiee ittt ettt etttk et b e e e e b e e nnnee s 127
XAML VS, COUE.......couiiuieiieiieieiie ettt sttt bbbt s ettt st st nbesbesbeeneeneenes 128
TYPE CONVEITET ...ttt ettt ettt ettt et e e hr e et e e e bn e et e e nneeanbeeareeas 130
ATIGNMENT L.ttt ettt b ettt 131
Default AHGNMENT EXAMPIEcoivieiiiiieiie et 132
Alignment inside a Stack Panelcccooveiiiiiiii e 133
VErtical ANGNMENToveiiie e et ee s 134
HOrzontal AlIGNMENT ..o 135
Vertical Agnment in @ WINAOW..........oouviieiieiecic e 136
Content ALGNMENT........ociiii e a et e sre e teaneesreenas 137
Content AIGNMENt EXAMPIE.......oooiiiiiiit e 138
(0TI T [=Tod 1 o] USSR 139
TEANSTOIMIS ..t b bbbkttt et et b e bbbt e e 140
Rotate Transform EXampPle ..ot 141
PANEBIS ..ttt bbb e e nbeena e re e b e 142
SAPES .ttt 143
SHZE AN POSITION ...ttt bbbttt b 144
SIimple Shapes EXAMPIE........coui it sre s 145
ATEACNET PrOPEITIES ... ettt ettt bbb st ne s 146
SEACKPANELo et 147
Children of STACKPANENc.oiviiiiiie e 148
WWIEAPPANELottt e nraeneenes 149
DOCKPANEL ...t nbe e 150
Dock Example XAML and COUE.......cc.oiiiiriiiiiieiieieie e 151
LAD A bbbt 152
] 1 o ST SPRR 153
G EXAMPIE ..ottt 154
(€] ¢ o =T o' T TSRS PSSRS 155
Using the COlECtIONS EQITON.........ccuiiieiiecee e 156
SEAT SHZINQ .eevieie ittt et e et et et e e e et e e ere e te et e e e nreeneereas 160
Grid.COIUMNSPAN ...ttt be e nreas 161
SCIOIING .t 162
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC vii

All Rights Reserved

SCAIING ettt bt re et e b e nreas 163

ScrollViewer and ViewboX COMPAredccceieieiiiiiiniiieiee e 164
LAD 4Bt bbbttt 165
SUMMIATY ettt ettt ekt e et e e e bt e e et e e e et e e e e ab e e anb e e e ns b e e e nbb e e e nbbeeebneeanteae s 166
(O T T o] (] T B TT- | [0[RP 183
Dialog BOXES INWWPFE ..ottt ettt e e neenee e 185
V[T ToTo o] = T) PRSPPI 186
MessageBoxX SHOW MEhOdooiiiii e 187
CloSING @ FOIM: REVIBW ...ttt 190
CommMON DIAlOY BOXES.....ccuieieiieiiieiie ettt se ettt sraeste e e e e ste e e sneenaeeneenneas 191
FIHEOPEN EXAMPIE ..ot 192
FileOpen EXample COUEoooiiiieie e e e 193
CUSTOM DHAIOGS ...ttt bbb 194
oo F U I -1 [0 1SR 195
Modal Dialog EXAMPIEcviiiiiiecie et 196
NEW PrOAUCTE DIIOG. . ..eiieeeiieiieie ettt 197
XAML for New Product DIalogcccuvieiiieiiieii s 198
Code for NeW ProduCt DIAI0G......c.uueviiieieeieiieseese ettt enae e nneas 199
Bringing up the DIalogc.coviieeeee s 200
DIalOg BOX OWNEL ...ttt sttt sttt sttt be e be et reenbeeneenre e 201
Modeless Dialog BOX EXAMPIEc..oiiiiiiiiiiiiceeee s 202
Displaying the DIAl0Qcueireiiiieiiesie et sre e naenne e 203
Communicating With Parentccoocveiiiiiiciieiise e 204
XAML for MOdeless DIalog........ouveiiiiiiieiieesie et 205
Handler for the ApPlY BUTTON ..o 206
Handler for the CloSE BULION ..ot 207
Instances of @ Modeless Dialogcceoiiiiiiiiiiiiic e 208
Checking fOr @n INSTANCEcoiiiieieie sttt 209
7. o1 T TP UPRPSSSRSS 210
SUMIMIATY ..ttt ettt e ettt e et e e b et e et e e et et e eab e e e sabe e e s bt e e ns e e e nbbeeenbneeantenens 211
Chapter 6: Menus and COMMANGScccueiuriiriieiesireseee e ee e sre e eesneens 219
MENUS IN VWP ...ttt nr et s e b et e sha e e e r e abeenee e 221
MENU CONIOIS ..ttt b e bbb b b ere s 222
MenuCalculator EXAMPIEcooiieieeie et ane e 223
A SIMPIE IMBNU ..ttt sb et n e b e et e ane e ebenineenes 224
The Menu USING XAML ..ot b 225
Handling the CHCK EVENL...........ooiviiiecee et 226
The Menu Using Procedural COUE...........ccviiieireiieiiese et 227
ICONS TN IMIBINUS ...ttt ettt e bbb s be s eenne e 228
CONEEXE IMIBNU ...ttt ettt b ettt e bt esae e e nbeenbseenbe e 229
XAML TOr CONEXE IMBINU ...t 230
T CT 0T L2 (0] PRSP PPRPOPRRRPRN 231
LD BA ettt b nbe e beereene et e es 232
KEYDOAId SNOMCULS.......c.eiiiitiitiiiieiieee et 233
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC viii

All Rights Reserved

COMMANS ... 234

Simple CommANd DEIMOc..oviiiiiiiicie e 235
WPF Command ArChITECIUIE.coiiiiieieiee e 238
CommaNd BINAINGS ...cuvviieiieciecieseece e re e s re e sbe e sreesteensesreenaeennenneas 239
Command BiNdING DEMOoouiiiiiiiie ettt nneas 240
CUSLOM COMMEANTSviivieiieeieeie sttt te et e te e e sreesbeeneesreesteeneesseenseeneenrens 243
Custom Command EXAMPIEooveiiie et 244
MenuCalculator Command BindiNgSc.ooveiiiiiiiiic i 246
INPUE BINAINGS. ...ttt be bbb e e b ene e 247
MIBNU TEBIMIS <.ttt e b e e s b e e e e bn e e s nn e e enreean 248
RUNNING MeNUCAICUIALON...........ooieece e 249
ChecKing MENU TTBIMScivieii ittt e ae e e 250
CommON EVENE HANGIETSoviiieiieeee e e s 251
MENU ChECKING LOGICc.viviiuieiieieieite sttt bbbt 252
LOF: 1ol U] F=Uu o] o I8 o T | [SRS 253
AULOMALIC CRECKING .ottt re e 254
Automatic Checking EXampPIe ..o 255
(.10 1] O SPRSSSSRSS 256
SUMIMIATY ..ttt ettt ekttt ekt e ettt e ekt e et b e e et et e eab e e eabe e e sbb e e e nbb e e e bbeeanbneeanteeeas 257
Chapter 7: Toolbars and Status Barsccccccevveieiieiecic e 265
TOOIDAIS IN WP ...ttt e re et e ne e sreeteaneesneeeas 267
XAML TOF TOOIDAIS ...ttt bbb 268
Commands AN EVENES........ciiiiiiiiieii ittt es 269
IMAGES ON BULLONS. ... 270
TO0] TaPS ettt bbbttt bbbt 271
Other EIements 0N TOOIDAIScoiiiiiiiiieeie s 272
SEALUS BAIS ...tttk h et r e bt b et b e e b n e nne e nneas 273
7. oI SR PSPPSR 274
SUIMMEBIY .ttt bbbt bt nb e e bt sn b e b nnnenne s 275
Chapter 8: Dependency Properties and Routed EVENtS..........cccoeveieiieieniesienennens 283
DependenCy PrOPEITIESc.ooiiiiiiieieiie ettt st sreenbe e nee e e 285
Change NOTITICATIONcc.viiiiie bbb 286
Property Trigger EXAMPIEccveivei et nna e 287
Property Value INNEITANCEcovi i nr e 288
Property Value Inheritance EXample ... 289
Support for MUIEIPIE PrOVIEISoviiiiiiiieeees e 290
0o ot I =TSSR 291
WISUBL T ..ttt ettt bbbttt s et e e bbbt s b et e et sbe b 292
ViSUAI TTEE EXAMPIE.eiiiiieiie ettt 293
ROULE EVENTS ...ttt ettt e s reenteenaenseenne e 294
EVENE HANAIEIS. ...t 295
ROULING SEFALEGIES .. .cvieuieiieite ettt re e e s e e be e e s reenreenneareenneens 296
Ready-made Routed EVENtS INWPF.........ccooiiiiiie e e 297
Routed EVENT EXAMPIEoiiiiiiiieeee e 298
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC iX

All Rights Reserved

SUIMMEBIY . bbbttt e bt b e s e nb e et e b e e b nnnenne s 302
ChaPTEr 92 RESOUICES.....c.vitiitiiteitieiieiie ettt ettt bbbt b bbb b eneas 307
RESOUICES 1N .NET ...ttt 309
RESOUICES INWWPF ...ttt be et e e sreeneennee e 310
BINAIY RESOUICTESeeuviieieitieite e stee st ie st ettt e te et eane e s te e e e e neesteeneeaneenseeneenee e 311
LOO0SE FilES @S RESOUITESeviivieiieiieie ittt sttt sttt bbb 312
Binary ResoUrces EXAMPIEcoovoiiiiiie e 313
LOQICAI RESOUITES........eiuiiiieiitt ettt bttt nre s 314
LOgiCal RESOUICES DEMOc.viieeeiieeie e ie ettt e e sre e nnee s 316
Logical RESOUICES IN COUEcuecueeiieeiecie ettt sre e sne e 319
SEALIC RESOUITESceuveiieitieie ettt bttt sttt et et enbeebe e st e beenbeeneenreas 321
DYNAMIC RESOUITES ...ttt sttt bbbttt bbb 322
DynamiCReSOUrce EXamMPIe........cooiiiieiie e 323
LD O bbbt e et eas 324
SUMIMAIY .ottt ettt ettt ket b e e st e e e b e e st e e Re e e st e e ehe e e mb e e sbeeambeenrneenbeeanneas 325
Chapter 10: Data BiNGINGc.ooveeiiiieiieiieie et 331
What is Data BINGING?ccceiiiiiiii et saa s 333
Binding in Procedural COOE.ccoiiiiiiieiierieee et 334
Procedural Code EXamMPIE.........coiiiiiiiiiiiie s 335
BiNAING IN XAML ...ttt e sae e e s raenreenaeanaenneens 337
Binding to Plain .NET PrOPErtiescc.coviiieiiee ettt 338
Binding to .NET Properties EXamPpPIec.oocoiiiiiiiniiie e 339
Binding t0 @ COIIECTIONoiuiiiiieic s 341
Binding to a Collection EXamMPIE........ccccveiiiieiiee et 342
LAD LOA e ettt b bbb re et r e 343
Controlling the Selected ITBMccoiiiii s 344
ComboBox Synchronization EXampPIe.........ccoccieiiiiiiiiiiciieeesc e 345
[= O 0] 1 (=) A TR TR PSP 346
Data CONLEXE DEIMO.......c.uieiiiiiiie ittt ettt et e b sr e n e nne e 347
Data TEMPIALESeeeieiie e et sb et be et e enbe et ere e 350
Data Template EXAMPIE........ooiie b 351
Specifying a Data TEMPIALE.........ccveieiieeiiee ettt eaenneas 352
VAIUE CONVEITELS ...ttt sttt bbbt e s e e nbe bt b e st 353
Value ConVerter EXAMPIE.........ooi ittt 354
Using a Value Converter i XAML ..ot 355
COIIECTION WVIBWS.......eiiiiieiiee ettt bbb bbb bbbt 357
ST 13T OSSR SRRSO 358
(€] o107][oo RPN 359
Grouping EXAMPIEcc.oiiiieeee e 360
0= o SO 362
FIering EXAMPIE ...ooeeeecee et 363
Collection VIEWS IN XAML ..ot 364
Collection Views in XAML EXaMPIe.......cccoiiiiiee e 365
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC X

All Rights Reserved

DAL PrOVITRTS. ..ttt s s e s s nnnnnnnnnnnnnnn 366

ODjJECIDALAPIOVIAET ...ttt 367
ObjectDataProvider EXaMPIEccvoiiieiieiiee e 368
XIMIDAEAPTOVITET ...ttt bttt sttt nes 370
XMIDataProvider EXAMPIE ..ot 371
LD L0B ... oottt e aeere e e e e 372
Data Access With Visual Studio 2013.........cccooiiiiiiiiiee s 373
SMAIIPUD DAADASEecvveiieiieieiie sttt bbb 374
ADO.NET Entity FrameWOrK.........cccooiiiiiiiieiie e 376
BOOK BIrOWSEI DEIMO........eiuiiiiiiiiieieeiie sttt esneenee e sreenaeaneenneens 377
Add a Model using Database FirSt.........ccccviiieiieieiiiesiere e 378
A0 8 DAEA SOUICEvevieiieiieiesie ettt sb et e e 380
Book Browser Demo COmMPIEtEdcoveiieiiiieiiei e 384
NAVIGATION COUR ...ttt bbbt 385
DataGrid CONIOLc..oiiiiiiiiiciee ettt sb et ere s 386
Editing the BOOK Tablecoviiieiiece e 389
ClASS LIDIAIY ...ttt na e nneas 390
Database UPUALES.cc.ecuiriiriiiiieiiiieee ettt bbb 391
Refreshing the DataGridc.coieiiiieiieiicc e 392
SUMIMIATY .ttt ettt e e s b b ek e e b e e et e e et e e e st e e eab e e e ns b e e e nnb e e e nbbeeabneeantnae s 393
Chapter 11: Styles, Templates, SKins and ThemMES..........ccccceviiveiii e 405
WPF @Nd INTEITACESeeiiiee ittt sttt nne s 407
RS 17 L= USSP 408
SEYIE EXAMPIE ...ttt ettt bt b et eas 409
SEYIE DETINITION ...ttt b e 410
F N o] 01 Y T TR YA [SRS 411
StYIE INNEIITANCE ...t sre et re e teete s e nre s 412
YA (@Y =T ¢ o 1o T ST U ORI RTRUPRT 413
SAING STYIES ... bbb 414
Style Sharing EXAmMPIe.......c.ooi it 415
DemO: RESLIHCHING STYIESviieiciieee et 417
TYPEUA SEYIES ..ottt 420
Typed Style EXAMPIE........ooiiieee e 421
LI 10T =] O PSSR 423
Property Trigger EXAMPIEccvoiuiii ettt 424
Data Trigger EXAMPIE......c.ooiiiiieee e st 426
MUIEIPIE CONAITIONS ... bbb 428
VAIAALION. ...ttt bbb e b en e e b b 429
Validation EXAMPIEcoouiiieiiece e 430
TOMPIALES ...ttt e b nes 431
A Simple Template EXAMPIE ..o 432
IMpProving the TemMPIate.........cccvoiiiie e 433
Templated Parent’s PrOPEIrtiES.......c.civeiieiieiieie et 434
Respecting Properties EXample ..o 435
RESPECTING ViISUAI STALES.......ccuiiiiiiiiieiei s 438
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC xi

All Rights Reserved

Using Templates With STYIESc.ooiiiiiiee s 440
Templates with Styles EXample........ccooviiieieccceee e 441
SKINS ettt bbbt e e 442
ChanNGING SKINScoiuiiiiiie ettt sttt bt st beebesneenneas 443
SKINS EXAMPIE ...t 444
TS ..ttt bt bbbttt n s 446
THEMES EXAMPIE.....c.eiiiiiieie ettt e re e e s nas 447
7. oI SR PURPRPSPSRRR 449
SUMMEBIY .. b et b bt e bt bt e b e et e sn e be b e nne s 450
Chapter 12 WPF and Windows FOrms INteroperation.............cccocevereneninnesiieniennen, 463
Interoperating With WINdoWSs FOIMS ..o 465
Add a Form to @ WPF APPHCALIONccueiiiiiiiic e 466
Demo: FOorm in WPF APPLICALION.........ccviiieiieie e 467
Add a WPF Window to a Windows Forms Application............cccccccevveveiiciieneccie s, 471
Mixing WPF and Windows Forms in the Same Window............ccccceveivniinneniieseennnn, 472
Hosting a Windows Forms Control USing COOEccccvviiiiiiiiieienc e 473
WindoWSFOrMSHOSE VIA COURviiviiiiiiiiiiiiieie e 474
Windows FOrms MonthCalendar ..o 475
WindowSFOrMSHOSE Via XAMLooiiiiiieiieiceie e 476
SUMMEBIY .t bbbt b e bt e b bt be e b e nne s 477
AppendixX A: Learning RESOUICES.........ccuuiiiiiiriiesisieseseeee e 479
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC xii

All Rights Reserved

WpfCs Chapter 1

Chapter 1

Introduction to WPF

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 1
All Rights Reserved

WpfCs Chapter 1

Introduction to WPF

Objectives

After completing this unit you will be able to:

Discuss the rationale for WPF.

Describe what WPF is and its position in the .NET
Framework 4.5.1.

Give an overview of the main features of WPF.

Describe the role of the fundamental Application and
Window classes.

Implement a “Hello, World” Windows application
using WPF.

Create, build and run simple WPF programs using
Visual Studio 2013.

Use simple brushes in your WPF programs.

Use panels to lay out Windows that have multiple
controls.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 2

All Rights Reserved

WpfCs Chapter 1

History of Microsoft GUI

e WPF is an extremely sophisticated and complex
technology for creating GUI programs.

e \Why has Microsoft done this when Windows Forms
and Web Forms in .NET are relatively new
themselves?

e To understand, let’s take a look back at various
technologies Microsoft has employed over the years
to support GUI application development:

— Windows 1.0 was the first GUI environment from Microsoft
(ignoring OS/2, which is no longer relevant), provided as a
layer on top of DOS, relying on the GDI and USER
subsystems for graphics and user interface.

— Windows has gone through many versions, but always using
GDI and USER, which have been enhanced over the years.

— DirectX was introduced in 1995 as a high-performance
graphics system, targeting games and other graphics-
intensive environments.

— Windows Forms in .NET used a new enhanced graphics
subsystem, GDI+.

— DirectX has gone through various versions, with DirectX 9
providing a library to use with managed .NET code,

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 3
All Rights Reserved

WpfCs Chapter 1

Why WPF?

e The various technologies support development of
sophisticated graphics and GUI programs, but there
are several different, complex technologies a
programmer may need to know.

e The goal of Windows Presentation Foundation is to
provide a unified framework for creating modern
USer experiences.

— It is built on top of .NET, providing all the productivity
benefits of the large .NET class library.

e Benefits of WPF include:

— Integration of 2D and 3D graphics, video, speech, and rich
document viewing.

— Resolution independence, spanning mobile devices and 50
inch televisions.

— Easy use of hardware acceleration when available.

— Declarative programming of objects in the WPF library
through a new Extensible Application Markup Language, or
XAML.

— Easy deployment through Windows Installer, ClickOnce, or
by hosting in a Web browser.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 4
All Rights Reserved

WpfCs Chapter 1

When Should | Use WPF?

e DirectX can still provide higher graphics
performance and can exploit new hardware features
before they are exposed through WPF.

— But DirectX is a low-level interface and much harder to use
than WPF.

e WPF is better than Windows Forms for applications
with rich media, but what about business applications
with less demanding graphics environments?

— Initially, WPF lacks some Windows Forms controls.

— But future development at Microsoft will be focused on WPF
rather than Windows Forms, so the long range answer is
clearly to migrate to WPF development.

— Visual Studio 2013 provides strong tool support for WPF.

e Is WPF a replacement for Adobe “Flash” for Web
applications with a rich user experience?

— Viewing rich WPF Web content requires Windows and .NET
Framework 3.0 or higher.

— Microsoft Silverlight, a small lightweight subset of the WPF
runtime, does offer a significant alternative to Flash.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 5
All Rights Reserved

WpfCs Chapter 1

WPF and .NET Framework 3.0

e WPF originated as a component of a group of new
NET technologies, formerly called WinFX and later
called .NET Framework 3.0.

e It layers on top of NET Framework 2.0.

Windows Windows Windows Windows
Presentation Communication Workflow
) . . CardSpace
Foundation Foundation Foundation (WCS)
(WPF) (WCF) (WF)
.NET Framework 2.0
Windows ASP.NET ADO.NET
Forms

Base Class Libraries

Common Language Runtime

e WPF provides a unified programming model for
creating rich user experiences incorporating Ul,
media and documents.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 6
All Rights Reserved

WpfCs Chapter 1

NET Framework 4.0/4.5.1

e The .NET Framework 3.5 added a number of
important features beyond those of .NET 3.0.

— Notable was integration with the tooling support provided by
Visual Studio 2008.

— Language Integrated Query (LINQ) extends query
capabilities to the syntax of the C# and Visual Basic
programming languages.

— Enhancements to the C# programming language, largely to
support LINQ.

— Integration of ASP.NET AJAX into the .NET Framework.
e NET 3.5 still layered on top of the .NET 2.0 runtime.

e NET 4.0/4.5.1 provides a new runtime and many new
features, such as:

— New controls and other enhancements to WPF.

— New bindings, simplified configuration and other
enhancements to WCF.

— A dynamic language runtime supporting dynamic languages
such as IronRuby and IronPython.

— ASP.NET MVC 5 for Web development.
— A new programming model for parallel programming.

— And much more!

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 7
All Rights Reserved

WpfCs Chapter 1

Visual Studio 2013

e Visual Studio 2013 provides effective tooling support
for NET Framework 4.5.1.

— Early support for WinFX involved add-ons to Visual Studio,
but now there is a fully integrated environment.

e Visual Studio 2013 has a new IDE with an attractive
new graphical appearance.

— VS 2013 is implemented using WPF.

e [eatures in Visual Studio 2013 include:

— Improvements in the Integrated Development Environment
(IDE), such as better navigation and easier docking.

— Automatic settings migration from earlier versions of Visual

— Multi-targeting to .NET 2.0, .NET 3.0, .NET 3.5, .NET 4.0,
NET 4.5 0r .NET 4.5.1.

e There are many project templates, including:
— WPF projects
— WCF projects
— WF projects
— Reporting projects

e There are a number of designers, including
WPF/Silverlight Designer, an object/relational
designer, and a workflow designer.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 8
All Rights Reserved

WpfCs Chapter 1

Visual Studio Express 2013

e A noteworthy aspect of Visual Studio 2013 is strong
free Express versions of the tool.

e In this course we will rely on Visual Studio Express
2013 for Windows Desktop.

— It supports multiple language development (C#, Visual Basic,
and C++).

— It supports the creation of WPF projects.

— It also supports unit testing.

I Recent Sort by: Default _— -j i |i= Search Installed Templates (Ctrl+E) P~
4 Installed c* o "
D Windows Forms Application Visual C# Type: Visual C=
4 Templates Windows Presentation Foundation dient
)) - —_—
: 33:: ETIC Ej WPF Application Visual C# application
Windows c*
Test E Console Application Visual C#
b Wisual C++ cx
SQL Server ?Qi! Class Library visual C#
Visual Studio Solutions
Samples
I Online

Click here to go online and find templates.

Mame: WpfaApplication 1
Location: C:\OICYWpfCs'\Demost, -
Solution name: Wpfapplication 1 Create directory for solution

[] Add to source control

OK | Cancel

e However, the Express edition does lack features
present in higher editions, such as support of WCF
and WF projects.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 9
All Rights Reserved

WpfCs

Chapter 1

Target Framework

e You can specify the version of NET Framework that
your application targets by bringing up the
properties for your project.

— Right-click over the project in Solution Explorer and choose
Properties.

Build

Build Events
Debug
Resources
Services
Settings
Reference Paths
Signing

Security

Publish

Code Analysis

WpfApplication1 A > JUETTlsl el MainWindow. xaml.cs

Application
_ Configuration: |M/A j Platform: II-J_.",-'J\ j

Assembly name; Default namespace: =
I'u’u'pf.ﬂ\pplicaﬁan 1 I'u"a'pf.-'-\pplicaﬁun 1

Target framework: Output type:

.MET Framework 4.5 j I't"'l'il'ldD'A'S Application

MET Framework 2.0
MET Framework 3.0
{NET Framewaork 3.5 Assembly Information.
NET Framework 3.5 Client Profile
NET Framework 4

MET Framework 4 Client Profile
MET Framework 4.5

Install other framewarks... |

<

Icon:

I(DEfauIt Icon) j

Manifest:

IEmbeu:I manifest with default settings j—
" Resource file! ~|

A manifest determines specdific settings for an application. To embed a custom manifest, first
add it to your project and then select it from the list below.

e Many example programs were originally targeted for
an earlier version of the .NET Framework, but will
run fine under .NET 4.5.1.

Rev. 4.6

Copyright © 2013 Object Innovations Enterprises, LLC 10

All Rights Reserved

WpfCs Chapter 1

WPF Core Types and Infrastructures

e A great many classes in WPF inherit from one of four
different classes:

— UIElement
— FrameworkElement
— ContentElement

— FrameworkContentElement

e These classes, often called base element classes,
provide the foundation for a model of composing user
interfaces.

e WPF user interfaces are composed of elements that
are assembled in a tree hierarchy, known as an
element tree.

e The element tree is both an intuitive way to lay out
user interfaces and a structure over which you can
layer powerful Ul services.

— The dependency property system enables one element to
implement a property that is automatically shared by
elements lower in the element tree hierarchy.

— Routed events can route events along the element tree,
affording event handlers all along the traversed path to
handle the event.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 11
All Rights Reserved

WpfCs Chapter 1

XAML

o Extensible Application Markup Language (XAML,
pronounced “zammel”) provides a declarative way to
define user interfaces.

e Here is the XAML definition of a simple button.

<Button
FontSize="16"
HorizontalAlignment=""Center"
VerticalAlignment="Center"
>

Say Hello
</Button>

e To see this button displayed, we’ll need some more
program elements, which we’ll discuss later.

e XAML has many advantages, and we’ll study it
beginning in the next chapter.

— Using XAML facilitates separating front-end appearance
from back-end logic.

— XAML is the most concise way to represent user interfaces.

— XAML is defined to work well with tools.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 12
All Rights Reserved

WpfCs Chapter 1

Controls

e WPF comes with many useful controls, and more
should come as the framework evolves:

— Editing controls such as TextBox, CheckBox, RadioButton.
— List controls such as ListBox, ListView, TreeView.

— User information such as Label, ProgressBar, ToolTip.

— Action such as Button, Menu and ToolBar.

— Appearance such as Border, Image and Viewbox.

— Common dialog boxes such as OpenFileDialog and
PrintDialog.

— Containers such as GroupBox, ScrollBar and TabControl.
— Layout such as StackPanel, DockPanel and Grid.

— Navigation such as Frame and Hyperlink.

— Documents such as DocumentViewer.

— WPF 4.5 includes a new Ribbon control that can be used to
customize the Ul for Microsoft Office applications.

e The appearance of controls can be customized
without programming with styles and templates.

e If necessary, you can create a custom control by
deriving a new class from an appropriate base class.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 13
All Rights Reserved

WpfCs Chapter 1

Data Binding

o WPF applications can work with many different
kinds of data:

— Simple objects

— Collection objects

— WPF elements

— ADO.NET data objects
— XML objects

— Objects returned from Web services

e WPF provides a data binding mechanism that binds
these different kinds of data to user interface
elements in your application.

— Data binding can be implemented both in code and also
declaratively using XAML.

— Visual Studio 2013 provides drag and drop data binding for
WPF.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC
All Rights Reserved

14

WpfCs Chapter 1

Appearance

e WPF provides extensive facilities for customizing the
appearance of your application.

e Ul resources allow you to define objects and values
once, for things like fonts, background colors, and so
on, and reuse them many times.

e Styles enable a Ul designer to standardize on a
particular look for a whole product.

e Control templates enable you to replace the default
appearance of a control while retaining its default
behavior.

e With data templates, you can control the default
visualization of bound data.

e With themes, you can enable your application to
respect visual styles from the operating system.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 15
All Rights Reserved

WpfCs Chapter 1

Layout and Panels

e Layout is the proper sizing and positioning of controls
as part of the process of composing the presentation
for the user.

e The WPF layout system both simplifies the layout
process through useful classes and provides
adaptability of the Ul appearance in the face of
changes:

— Window resizing

— Screen resolution and dots per inch

e The layout infrastructure is provided by a number of
classes:

— StackPanel
— DockPanel
— WorapPanel
— Grid

— Canvas

e The flexible layout system of WPF facilitates
globalization of user interfaces.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 16
All Rights Reserved

WpfCs Chapter 1

Graphics

e WPF provides an improved graphics system.

e Resolution and device-independent graphics: WPF
uses device-independent units, enabling resolution
and device independence.

— Each pixel, which is device-independent, automatically
scales with the dots-per-inch setting of your system.

e Improved precision: WPF uses double rather than
float and provides support for a wider array of colors.

e Advanced graphics and animation support.

— You can use animation to make controls and elements grow,
spin, and fade, and so on. You create interesting page
transitions, and other special effects.

e Hardware acceleration: The WPF graphics engine is
designed to take advantage of graphics hardware
where available.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 17
All Rights Reserved

WpfCs Chapter 1

Media

e WPF provides rich support for media, including
images, video and audio.

e WPF enables you to work with images in a variety of
ways. Images include:

— lcons
— Backgrounds

— Parts of animations

e \WPF provides native support for both video and
audio.

— The MediaElement control makes it easy to play both video
and audio.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 18
All Rights Reserved

WpfCs Chapter 1

Documents and Printing

e WPF provides improved support in working with text
and typography.

e WPF includes support for three different types of
documents:

— Fixed documents support a precise WYSIWYG
presentation.

— Flow documents dynamically adjust and reflow their content
based on run-time variables like window size and device
resolution.

— XPS documents (XPS Paper Specification) is a paginated
representation of electronic paper described in an XML-
based format. XPS is an open and cross-platform document
format.

e WPF provides better control over the print system,
including remote printing and queues.

— XPS documents can be printed directly without conversion
into a print format such as Enhanced Metafile (EMF), Printer
Control Language (PCL) or PostScript.

e WPF provides a framework for annotations,
including “Sticky Notes.”

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 19
All Rights Reserved

WpfCs

Chapter 1

Plan of Course

e As you can see, Windows Presentation Foundation is

a large, complex technology.

e In ashort course such as this one, the most we can do
IS to provide you with an effective orientation to this
large landscape.

e We provide a step-by-step elaboration of the most
fundamental features of WPF and many small,
complete example programs.

e We follow this sequence:

Rev. 4.6

In the rest of this chapter we introduce you to several, small
“Hello, World” sample WPF applications.

The second chapter introduces XAML.
The third chapter covers a number of simple WPF controls.
We discuss layout in more detail.

We then cover common user interface features in Windows
programming, including dialogs, menus and toolbars.

Resources and dependency properties are discussed.

The course concludes with chapters on data binding and
styles and interop with Windows Forms.

Copyright © 2013 Object Innovations Enterprises, LLC
All Rights Reserved

20

WpfCs Chapter 1

Application and Window

e The two most fundamental classes in WPF are
Application and Window.

— A WPF application usually starts out by creates objects of
type Application and Window.

— For an example, see the file Program.cs in the folder
FirstWpf\Stepl in the chapter directory for Chapter 1.

using System;
using System._Windows;

namespace FirstWpT

{
public class MainWindow : Window
{
[STAThread]
static void Main(string[] args)
{
Application app = new Application();
app-Run(new MainWindow());
+
public MainWindow()
{
Title = "Welcome to WPF (Code)';
width = 288;
Height = 192;
+
+
+

e A program can create only one Application object,
which is invisible. A Window object is visible,
corresponding to a real window.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 21
All Rights Reserved

WpfCs Chapter 1

FirstWpf Example Program

e Our example program has the following features:

— Import the System.Windows namespace. This namespace
includes the fundamental WPF classes, interfaces, delegates,
and so on, including the classes Application and Window.

— Make your class derive from the Window class.

— Provide the attribute [STAThread] in front of the Main()
method. This is required in WPF and ensures interoperability
with COM.

— In Main(), instantiate an Application object and call the
Run() method.

— Inthe call to Run() pass a new instance of your Window-
derived class.

— In the constructor of your Window-derived class, specify any
desired properties of your Window object. We set the Title,
Width and Height.

e Build and run. You’ll see:

—lol x|
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 22

All Rights Reserved

WpfCs Chapter 1

Demo — Using Visual Studio 2013

e Although you can compile WPF programs at the
command-line, for simplicity we will use Visual
Studio 2013 throughout this course.

— To make clear all the details in creating a WPF application,
we’ll create our sample program from scratch in the Demos
directory.

1. Use the New Project dialog (File | New Project) to create a new
WPF Application called FirstWpf in the Demos directory.

2. In Solution Explorer, delete the files App.xaml and
MainWindow.xaml.

Solution Explorer - I %
@l o-ena@mlo s -
Search Solution Explorer (Cirl+;) P~

n:]'__| Solution 'FirstWpf (1 project)
4 FirstWpf

b & Properties

[+ =B References
?'__'I App.config

‘ b B App.xaml

b W MainWindow.xaml

3. Add a new code file Program.cs to your project.

4. Enter the code shown two pages back. If you like, to save
typing, you may copy/paste from the FirstWpf\Step1l folder.

5. Build and run. You are now at Step 1. That’s all there is to
creating a simple WPF program using Visual Studio 2013!

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 23
All Rights Reserved

WpfCs Chapter 1

Creating a Button

6. Continuing the demo, let’s add a button to our main window.
Begin with the following code addition.

public Helloworld()

{
Title "First WPF C# Program;
width = 288;
Height = 192;

Button btn = new Button();
btn.Content = "'Say Hello";
btn.FontSize = 16;

Content = btn;
}

7. Build the project. You’ll get a compile error, because you need
an additional namespace, System.Windows.Controls.

using System;
using System.Windows;
using System.Windows.Controls;

8. Build and run. You’ll se the button fills the whole client area of
the main window.

9. Add the following code to specify the horizontal and vertical
alignment of the button.

btn.HorizontalAlignment =
HorizontalAlignment.Center;
btn.VerticalAlignment = VerticalAlignment.Center;

10. Build and run. Now the button will be properly displayed,
sized just large enough to contain the button’s text in the
designated font.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 24
All Rights Reserved

WpfCs Chapter 1

Providing an Event Handler

11. Continuing the demo, add the following code to specify an
event handler for clicking the button.

btn.Click += ButtonOnClick;

Content = btn;
}

void ButtonOnClick(object sender, RoutedEventArgs
args)

{
}

MessageBox.Show("'"Hello, WPF", "Greeting');

12. Build and run. You will now see a message box displayed
when you click the “Say Hello” button

ccome to i oix

Say Hell0|

Greeting ‘ |

Hella, WPF

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 25
All Rights Reserved

WpfCs Chapter 1

Specifying Initial Input Focus

13. You can specify the initial input focus by calling the Focus()
method of the Button class (inherited from the UIElement
class).

btn_Focus();

14. Build and run. The button will now have the initial input
focus, and hitting the Enter key will invoke the button’s Click
event handler. You are now at Step 2.

e Note that specifying the focus programmatically in
this manner is deprecated, because it violates
accessibility guidelines.

— When run for the visually impaired, setting the focus will
cause the text of the button to be read out.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 26
All Rights Reserved

WpfCs Chapter 1

Complete First Program

o See FirstWpf\Step2.

using System;
using System.Windows;
using System.Windows.Controls;

namespace FirstWpf

{

public class MainWindow : Window
{
[STAThread]
static void Main(string[] args)
{
Application app = new Application();
app-Run(new MainWindow());

public MainWindow()

{
Title "Welcome to WPF (Code)';
Width 288;
Height = 192;

Button btn = new Button();
btn.Content = "'Say Hello";
btn.FontSize = 16;
btn.HorizontalAlignment =
HorizontalAlignment.Center;
btn.VerticalAlignment =
VerticalAlignment.Center;

btn.Click += ButtonOnClick;

// Setting focus is deprecated for
// violating accessibility guidelines
btn_.Focus();

Content = btn;

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 27
All Rights Reserved

WpfCs Chapter 1

Complete First Program (Cont’d)

void ButtonOnClick(object sender,
RoutedEventArgs args)

MessageBox.Show(**Hello, WPF',
"Greeting'');
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 28

All Rights Reserved

WpfCs Chapter 1

Device-Independent Pixels

e The Width and Height properties for the main
window are specified in device-independent pixels (or
units).

— Each such unit is 1/96 inch.

— Values of 288 and 192 thus represent a window that is 3
inches by 2 inches.

e If you get a new monitor with a much higher
resolution, the window will still be displayed with a
size of 3 inches by 2 inches.

e Note that this mapping to inches assumes that your
monitor is set to its “natural” resolution.

— Any differences will be reflected in a different physical size.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 29
All Rights Reserved

WpfCs Chapter 1

Class Hierarchy

e The key classes Application, Window and Button all
derive from the abstract class DispatcherObject.

Object
DispatcherObject (abstract)
Application
DependencyObject
Visual (abstract)
UlElement
FrameworkElement
Control
ContentControl
Window
ButtonBase
Button

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 30
All Rights Reserved

WpfCs Chapter 1

Content Property

e The key property of Window is Content.

— The Content property also applies to all controls that derive
from ContentControl, including Button.

e You can set Content to any one object.

— This object can be anything, such as a string, a bitmap, or any
control.

— In our example program, we set the Content of the main
window to the Button that we created.

Button btn = new Button();

Content = btn;

o We will see a little later how we can overcome the
limitation of one object to create a window that has
multiple controls in it.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 31
All Rights Reserved

WpfCs Chapter 1

Simple Brushes

e You may specify a foreground or background of a
window or control by means of a Brush.

— We will look at the simplest brush class, SolidColorBrush.

e You can specify a color for a SolidColorBrush in a
couple of ways:

— By using the Colors enumeration.

— By using the FromRgb() method of the Color class.

e The program SimpleBrush illustrates setting
foreground and background properties.

public SimpleBrush()
{
Title "Simple Brushes";
wWidth = 288;
Height = 192;
Background = new SolidColorBrush(Colors.Beige);

Button btn = new Button();

btn.Background = new SolidColorBrush(
Color.FromRgbh(0, 255, 0));

btn.Foreground = new SolidColorBrush(
Color.FromRgbh(0, 0, 255));

Content = btn;

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 32
All Rights Reserved

WpfCs Chapter 1

Panels

e As we have seen, the Content of a window can be set
only to a single object.

e What do we do if we want to place multiple controls
on a window?

e \We use a Panel, which is a single object and can have
multiple children.

e Panel is an abstract class deriving from
FrameworkElement. There are several concrete
classes representing different types of panels.

UIElement
FrameworkElement

Panel (abstract)
Canvas
DockPanel
Grid
StackPanel
UniformGrid
WrapPanel

e Rather than specify precise size and location of
controls in a window, WPF prefers dynamic layout.

— The panels are responsible for sizing and positioning
elements.

— The various classes deriving from Panel each support a
particular kind of layout model.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 33
All Rights Reserved

WpfCs Chapter 1

Children of Panels

e Panel has a property Children that is used to store
child elements.

— Children is an object of type UIElementCollection.

— UlElementCaollection is a collection of UIElement objects.

e There is a great variety of elements that can be stored
in a panel, including any kind of control.

e You can add a child element to a panel via the Add()
method of UIElementCollection.

StackPanel panel = new StackPanel();
Button btnGreet = new Button();

panel .Children.Add(btnGreet);

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 34
All Rights Reserved

WpfCs Chapter 1

Example — TwoControls

e The example program TwoControls illustrates use of
a StackPanel, whose children are a TextBox and a
Button.

— See Step2.

— We provide a beige brush for the panel to help us see the
extent of the panel in the window.

8 1vo Conto -l

|Bob

Say Hellol x|

Hello, Bob

— The program also illustrates various automatic sizing features
of WPF.
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 35

All Rights Reserved

WpfCs Chapter 1

TwoControls — Code

e The TwoControls class derives from Window in the
usual manner.

e A private member txtName is defined in the class,
because we need to reference the TextBox in both the
constructor and in the event handler.

class TwoControls : Window
{
[STAThread]
static void Main(string[] args)
{
Application app = new Application();
app-Run(new TwoControls());

}

private TextBox txtName;

public TwoControls()

{
Title = "Two Controls Demo';
Width = 288;
const Int MARGINSIZE = 10;

e A StackPanel is created and the Content of the main
window is set to this new StackPanel.

StackPanel panel = new StackPanel();
Content = panel;

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 36
All Rights Reserved

WpfCs Chapter 1

Automatic Sizing

e Only the width of the main window is specified.

e The height of the main window is sized to its content,
which is a panel containing two controls.

public TwoControls()
{

Title = "Two Controls Demo';
Width = 288;
const int MARGINSIZE = 10;

StackPanel panel = new StackPanel();
Content = panel;

SizeToContent = SizeToContent.Height;

panel .Background = Brushes.Beige;
panel .Margin = new Thickness(MARGINSIZE);

— Note that we are specifying a brush for the panel, and we are
specifying a margin of 10 device-independent pixels.

e The TextBox specifies its width and horizontal
alignment, and also a margin.

txtName = new TextBox();

txtName.FontSize = 16;

txtName.HorizontalAlignment =
HorizontalAlignment.Center;

txtName _Margin = new Thickness(MARGINSIZE);

txtName _Width = Width / 2;

panel .Children._Add(txtName) ;

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 37
All Rights Reserved

WpfCs Chapter 1

TwoControls — Code (Cont’d)

e The Button also specifies its horizontal alignment and
a margin.

Button btnGreet = new Button();

btnGreet.Content = "'Say Hello";

btnGreet.FontSize = 16;

btnGreet.Margin = new Thickness(MARGINSIZE);

btnGreet.HorizontalAlignment =
HorizontalAlignment.Center;

btnGreet.Click += ButtonOnClick;

panel .Children.Add(btnGreet);

e Both the TextBox and the Button are added as
children to the panel.

txtName = new TextBox();
panel .Children_Add(txtName) ;
Button btnGreet = new Button();

panel .Chi Idren.Add(btnGreet):

e The Click event of the Button is handled.

btnGreet.Click += ButtonOnClick;
panel .Children.Add(btnGreet);
+
void ButtonOnClick(object sender,
RoutedEventArgs args)

MessageBox.Show("*Hello, " + txtName.Text,
"Greeting™);
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 38

All Rights Reserved

WpfCs Chapter 1

Lab 1

A Windows Application with Two Controls

In this lab you will implement the TwoControls example program
from scratch. This example will illustrate in detail the steps needed
to create a new WPF application using Visual Studio, and you will
get practice with all the fundamental concepts of WPF that we’ve
covered in this chapter.

Detailed instructions are contained in the Lab 1 write-up at the end
of the chapter.

Suggested time: 30 minutes

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 39
All Rights Reserved

WpfCs Chapter 1

Summary

e The goal of Windows Presentation Framework is to
provide a unified framework for creating modern
user experiences.

e WPF is a major component of the .NET Framework.
— In .NET 3.0/3.5, it is layered on top of .NET Framework 2.0.
— In .NET 4.0/4.5.1 there is a new 4.0 runtime.

e The most fundamental WPF classes are Application
and Window.

e You can create, build and run simple WPF programs
using Visual Studio.

e You may specify a foreground or background of a
window or control by means of a Brush.

e You can use panels to lay out Windows that have
multiple controls.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 40
All Rights Reserved

WpfCs Chapter 1

Lab 1

A Windows Application with Two Controls

Introduction

In this lab you will implement the TwoControls example program from scratch. This
example will illustrate in detail the steps needed to create a new WPF application using
Visual Studio 2013, and you will get practice with all the fundamental concepts of WPF
that we’ve covered in this chapter.

Suggested Time: 30 minutes

Root Directory: OIC\WpfCs

Directories: Labs\Labl (do your work here)
Chap01\TwoControls\Stepl (answer to Part 1)
Chap01\TwoControls\Step2 (answer to Part 2)

Part 1. Create a WPF Application with a StackPanel

In Part 1 you will use Visual Studio to create a WPF application. You will go on to create
a StackPanel that has as children a TextBox and a Button. This first version does not
provide an event handler for the button. Also, it does not handle sizing very well!

1. Use Visual Studio to create a new WPF application TwoControls in the Lab1 folder.
2. In Solution Explorer, delete the files App.xaml and MainWindow.xaml.
3. Add a new code file Program.cs to your project.

4. In Program.cs enter the following code, which does the minimum of creating
Application and Window objects.

using System;
using System.Windows;
using System._Windows.Controls;

namespace TwoControls
class TwoControls : Window

[STAThread]
static void Main(string[] args)

{
Application app = new Application();
app-Run(new TwoControls());

}

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 41
All Rights Reserved

WpfCs Chapter 1

public TwoControls()
{
}

}

5. Build and run. You should get a clean compile. You should see a main window,
which has no title and an empty client area.

6. Add the following code to the TwoControls constructor.

public TwoControls()

{
Title
Width

"Two Controls Demo';
288;

}

7. Build and run. Now you should see a title and the width as specified.

8. Now we are going to set the Content of the main window to a new StackPanel that we
create. To be able to visually see the StackPanel, we will paint the background with a
beige brush, and we’ll make the Margin of the StackPanel 10 device-independent
pixels.

public TwoControls()

{

Title = "Two Controls Demo";

Width = 288;

const int MARGINSIZE = 10;

StackPanel panel = new StackPanel();

Content = panel;

panel .Background = Brushes.Beige;

panel .Margin = new Thickness(MARGINSIZE);
}

9. Build. You’ll get a compiler error because you need a new namespace for the
Brushes class.

10. Bring in the System.Windows.Media namespace. Now you should get a clean build.
Run your application. You should see the StackPanel displayed as solid beige, with a
small margin.

11. Next we will add a TextBox as a child of the panel. Since we will be referencing the
TextBox in an event-handler method as well as the constructor, define a private data
member txtName of type TextBox.

private TextBox txtName;
12. Provide the following code to initialize txtName and add it as a child to the panel.
txtName = new TextBox();

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 42
All Rights Reserved

WpfCs Chapter 1

txtName.FontSize = 16;

txtName.HorizontalAlignment = HorizontalAlignment.Center;
txtName._Width = Width / 2;

panel .Children_Add(txtName);

13. Build and run. Now you should see the TextBox displayed, centered, at the top of the
panel.

14. Next, add code to initialize a Button and add it as a child to the panel.
Button btnGreet = new Button();
btnGreet.Content = "Say Hello";
btnGreet.FontSize = 16;

btnGreet.HorizontalAlignment = HorizontalAlignment.Center;
panel .Children.Add(btnGreet);

15. Build and run. You should now see the two controls in the panel. You are now at
Stepl.

Part 2. Event Handling and Layout

In Part 2 you will handle the Click event of the button. You will also provide better
layout of the two controls.

1. First, we’ll handle the Click event for the button. Provide this code to add a handler
for the Click event.

btnGreet.Click += ButtonOnClick;

2. Provide this code for the handler, displaying a greeting to the person whose name is
entered in the text box.

void ButtonOnClick(object sender, RoutedEventArgs args)
{

}

3. Build and run. The program now has its functionality, but the layout needs improving.

MessageBox.Show(*'"Hello, " + txtName.Text, ''Greeting');

4. Provide the following code to size the height of the window to the size of its content.

SizeToContent = SizeToContent._Height;

5. Build and run. Now the vertical sizing of the window is better, but the controls are
jammed up against each other.

6. To achieve a more attractive layout, provide the following statements to specify a
margin around the text box and the button. You have a reasonable layout (Step2).

txtName._Margin = new Thickness(MARGINSIZE);

btnGreet.Margin = new Thickness(MARGINSIZE);

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 43
All Rights Reserved

WpfCs Chapter 11

Chapter 11

Styles, Templates, Skins and
Themes

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 405
All Rights Reserved

WpfCs Chapter 11

Styles, Templates, Skins and Themes

Objectives

After completing this unit you will be able to:

Understand how to group layout properties together
using styles.

Share and restrict styles within the application.

Use typed styles to obtain the effect of a default style
for some controls.

Use triggers to improve styles.
Improve user input validation using styles.

Understand how templates are used in WPF controls
and how to create your own templates.

Respect the control's properties in the template
definition.

Specify a template within a style definition.
Implement skins using style concepts.

Respect themes from the operating system.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 406

All Rights Reserved

WpfCs Chapter 11

WPF and Interfaces

e WPF is known for its powerful resources for restyling
interfaces.

e Itis possible to change completely the appearance of
any control.

— This includes controls that are difficult to restyle in HTML
such as combo boxes, check boxes and so on.

e There are four main concepts regarding WPF’s
restyling support:

— Styles

— Templates
— Skins

— Themes

e \We’ll deal with each one of these concepts in this
chapter.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 407
All Rights Reserved

WpfCs Chapter 11

Styles

e WPF comes with a simple mechanism for grouping
property values together in a single object.

— These property values could be set individually.

— The main advantage of grouping these values is to reuse them
in multiple objects.

e The System.Windows.Style class is responsible for this
mechanism.

e The main purpose of a style is to separate property
values that are related to the control’s appearance
from the element itself.

— This feature is similar to the way that HTML and Cascading
Style Sheets (CSS) work together.

e Other restyling concepts such as templates, skins and
themes are based on styles.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 408
All Rights Reserved

WpfCs Chapter 11

Style Example

e Let’s explain with an example when we can use styles
and how to declare them in XAML.

— See StyleDemo\Step1 in the chapter directory.

— Build and run the application.

=[Ol =]

e There are three buttons declared with similar
property values.

— Most of these property values are responsible for the buttons’
appearance.

— This suggests they can be combined into a style definition.

<Button Margin=""10"
Background=""LightBlue™
Foreground=""Green"
FontWeight=""Bold"
Height="40"
Width=""80"
Click="CGreet">
<Button.LayoutTransform>
<RotateTransform Angle="30" />
</Button.LayoutTransform>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 409
All Rights Reserved

WpfCs

Chapter 11

Style Definition

e A style can be defined using the properties mentioned
in the previous page.

— Styles are defined in the Resources collection of some
element in XAML code.

— You can define them in the Window’s resources collection,
so that they will be visible to all elements in the window.

— The style properties are defined using setters, which will set
the target dependency properties in the elements that have the
style applied.

<Window.Resources>
<Style x:Key="buttonStyle'>

<Setter
<Setter

<Setter
<Setter
<Setter

<Setter
<Setter

Property=""Button.Margin' Value="10"/>
Property=""Button.Background"
Value="LightBlue"/>
Property=""Button.Foreground"
Value="Green"/>
Property=""Button.FontWeight"
Value="Bold"/>
Property="Button.Height" Value="40"/>
Property="Button.Width"™ Value="80"/>
Property=""Button.LayoutTransform">

<Setter.Value>
<RotateTransform Angle="'30"/>
</Setter.Value>
</Setter>

</Style>

</Window.Resources>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 410

All Rights Reserved

WpfCs Chapter 11

Applying Styles

e To apply the style to an element, just set its Style
property referencing the key you assigned in the style
definition.

<Button Style="{StaticResource buttonStyle}"

Click="CGreet'>

Button 1
</Button>

e See the StyleDemo\Step2 folder in the chapter
directory.

— If you build and run the application, you’ll notice that it has
the same look as before.

— However, this version uses a style instead of repeating many
property values.

— The style is reused in all three buttons.

— The XAML code is cleaner and the logic is better separated
from layout.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 411
All Rights Reserved

WpfCs Chapter 11

Style Inheritance

e You can create styles that inherit from an existing
one.

— Just use the BasedOn property when defining the style and
you can add or overwrite style setters.

<Style x:Key="'specialButtonStyle"
BasedOn=""{StaticResource buttonStyle}">
<Setter Property="Button.FontWeight"
Value=""Normal'/>
<Setter Property="Button.FontStyle"
Value="l1talic"/>
<Setter Property="Button.BorderBrush
Value="DarkOrange' />
</Style>

e See the Stylelnheritance folder in the chapter
directory for an example of the BasedOn property
usage.

[ErE— _iojx

8, 8 &

— Note that the third button uses the specialButtonStyle style,
which inherits the buttonStyle style.

— This new style inherits all property values defined in the base
style, but it overwrites the Button.FontWeight and defines
two additional properties, Button.FontStyle and
Button.BorderBrush.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 412
All Rights Reserved

WpfCs Chapter 11

Style Overriding

e When you apply a style to an element, you can still
override a property from the style definition by

setting it directly in the element’s definition.
<Button Style="{StaticResource buttonStyle}"
Click="CGreet"
Background=""LightGreen">

Button 1
</Button>

e Because of the order of precedence for dependency
properties, the local value set directly in the element
overrides the value set in the style definition.

e See the StyleOverride folder in the chapter directory
for an example.

— Build and run the application. You’ll see that the style is
applied to all the three buttons.

— However, the first button overrides the Button.Background
property by setting a local value.

=[Ol =]

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 413
All Rights Reserved

WpfCs Chapter 11

Sharing Styles

e You may have noticed that the property setters in the
styles defined so far are fully qualified.

— For example, when referencing the Button’s Background
property inside the style definition, we use
Button.Background as the property name, instead of just
Background.

— WPF styles need this full reference to know which
dependency property to look for in the element when they are
being applied.

e From this concept we can infer that we could change
the Button prefix in the property names by a Control
prefix.

— Instead of Button.Background, we can use
Control.Background.

— This way we can use the style in any class that derives from
Control.

— This is what we call style sharing between different element
types.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 414
All Rights Reserved

WpfCs Chapter 11

Style Sharing Example

e See the StyleSharing folder in the chapter directory
for an example of style sharing between
heterogeneous elements.

<Style x:Key="'shareableStyle">
<Setter Property="Control _Margin"” Value="10"/>
<Setter Property="Control.Background"
Value="LightBlue"/>
<Setter Property="Control_.Foreground"
Value=""Green" />
<Setter Property="Control._FontWeight"
Value=""Bold"/>
<Setter Property="Control.Height" Value="40"/>
<Setter Property="Control.Width" Value="100"/>
<Setter Property="TextBox.TextAlignment"
Value="Right"/>
<Setter Property="Control.LayoutTransform">
<Setter_.Value>
<RotateTransform Angle="'30"/>
</Setter.Value>
</Setter>
</Style>

e Note that the TextAlignment property is not defined
In the Control class, so it must be referenced as a
member of another class, such as TextBox.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC
All Rights Reserved

WpfCs Chapter 11

Style Sharing Example (Cont’d)

e The style is applied to different element types.

<Button Style="{StaticResource shareableStyle}"
Click="CGreet'>
Button
</Button>
<ComboBox Style="{StaticResource shareableStyle}''>

</ComboBox>

<TextBox Style="{StaticResource shareableStyle}'">
TextBox

</TextBox>

<RadioButton Style="{StaticResource

shareableStyle}'>
RadioButton

</RadioButton>

e Build and run the application to see how it looks like.
@svie =10 x|

e Invalid properties are ignored.

— As the TextBox.TextAlignment property is implemented
only in the TextBox, the style setter ignores this property in
the other elements.

— This same behavior occurs whenever a style has a property
that does not exist in the element being applied.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 416
All Rights Reserved

WpfCs Chapter 11

Demo: Restricting Styles

e When defining a style, it is possible to restrict the
element types that can use it.

— You can set the TargetType property to say which element
type that can use the style.

— By using the TargetType property, you don’t need to prefix
the property names anymore.

e To better understand how we can restrict the usage of
a style, we’ll modify the solution in the
Demos\StyleRestricted folder, backed up in the
StyleRestricted\Stepl folder in the chapter directory.

1. Build and run the solution. You’ll see this window:

[_nix|

2. Open the MainWindow.xaml file. You’ll notice a style
definition that is shared among the four controls in the window.
Create a new style based on the existing one, to modify the text
alignment in the TextBox.

<Style x:Key=""textboxStyle"
BasedOn=""{StaticResource controlStyle}'>
<Setter Property="TextBox.TextAlignment"
Value="Right"/>
</Style>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 417
All Rights Reserved

WpfCs Chapter 11

Demo: Restricting Styles (Cont’d)

3. Apply the new style to the TextBox.

<TextBox Width=""100"
VerticalAlignment="Center"
Style=""{StaticResource textboxStyle}'>
TextBox
</TextBox>

4. Build and run. Notice that the text is aligned to the right in the
TextBox.

_lafx]

5. Apply this new textboxStyle style to the first button too. You
won’t notice any change in the appearance, since the
TextAlignment property doesn’t exist in the button. Hence, the
style setter is ignored.

6. It is possible to avoid the misuse of our newly created style. We
can assure that the style will be used only in text boxes by
setting its TargetType property. By doing that, we can remove
the TextBox prefix from the setter in the style definition.

<Style x:Key=""textboxStyle"
BasedOn=""{StaticResource controlStyle}"
TargetType="{x:Type TextBox}''>
<Setter Property="TextAlignment"
Value="Right"/>
</Style>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 418
All Rights Reserved

WpfCs Chapter 11

Demo: Restricting Styles (Cont’d)

7. Build the application. Notice that it doesn’t build successfully
anymore. That’s because the textboxStyle is being used in the
first button, which is not allowed. Change the style of that
button to controlStyle again.

8. Build and run the application. Now it works, and you have
successfully created a separate style for text boxes in the
application.

e You could do the same thing creating a new separate
style for the buttons.

e The working demo is saved in the
StyleRestricted\Step2 folder in the chapter directory.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 419
All Rights Reserved

WpfCs Chapter 11

Typed Styles

e There is an additional feature of the TargetType
property in the style definition.

— If you do not set a key for the style, but you set the
TargetType property, the elements of that type will have the
style applied implicitly unless they have their Style property
set locally.

— This is valid only for the scope of the Resources collection in
which the style is defined.

e The styles that don’t have a name set in the x:Key
property but have the TargetType property set are
called typed styles.

— The styles that have the x:Key property set are called named
styles.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 420
All Rights Reserved

WpfCs Chapter 11

Typed Style Example

e Open the solution in the TypedStyle folder in the
chapter directory.

e Open the MainWindow.xaml file. Notice that the
interface is built based on three StackPanels.

— The first one is just for grouping the other two panels.

— The second one is the upper panel in the window, and it
contains two buttons and a text box. Notice that this
StackPanel has a Resources collection with a typed style
defined.

<StackPanel .Resources>
<Style TargetType="{x:Type Button}'>
<Setter Property="Button.Margin"™ Value="10"/>
<Setter Property="Button.Background"
Value="LightBlue'"/>
<Setter Property="Button.Foreground"
Value="Green"/>
<Setter Property="Button.FontWeight"
Value="Bold"/>
<Setter Property="Button.Height'" Value="40"/>
<Setter Property="Button.Width" Value="80"/>
<Setter Property="Button.LayoutTransform">
<Setter.Value>
<RotateTransform Angle="30"/>
</Setter.Value>
</Setter>
</Style>
</StackPanel .Resources>

— The third StackPanel is the bottom panel in the window, and
it has only a simple button.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 421
All Rights Reserved

WpfCs Chapter 11

Typed Style Example (Cont’d)

e Build and run the application to see how it looks.

_inix]
% \/ IT&xtBu:ux 11|
Buiton 3|

e Note that the typed style was applied only in the two
buttons that are in the scope of the upper StackPanel.

— The text box, despite being in the scope, does not get the
style because it isn’t a Button.

— The Button 3, despite being a Button, does not get the style
because it isn’t on the upper StackPanel’s scope.

e If we move the style definition to the Window’s
Resources collection, Button 3 will have the style
implicitly applied to it.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 422
All Rights Reserved

WpfCs Chapter 11

Triggers

e Triggers define a collection of setters just like styles
do, but their setters are applied based on some
conditions.

e The conditions can be set using dependency
properties or plain .NET properties, depending on
the trigger type.

— Property triggers have their conditions set with dependency
property values.

— Data triggers have their conditions set with plain .NET
property values.

e The property trigger checks a dependency property
to see if it has a specific value.

— When the value matches the condition, the trigger executes
the setters.

— When the value changes again, the trigger “undoes” the
setters automatically.

e Data triggers use binding to check the value of a plain
NET property.

— Then the process of matching the condition works the same
as with property triggers.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 423
All Rights Reserved

WpfCs Chapter 11

Property Trigger Example

e Open the solution in the StylePropertyTrigger folder
in the chapter directory.

e Open the file MainWindow.xaml and analyze the Style
declaration.

<Style x:Key="buttonStyle"
TargetType="{x:Type Button}'>
<Style.Triggers>
<Trigger Property="IsMouseOver' Value="True">
<Setter Property="Background"
Value="Blue'/>
<Setter Property="Foreground"
Value="White"/>
</Trigger>
</Style.Triggers>
<Setter Property="Margin' Value="10"/>
<Setter Property="Background"
Value="LightBlue'/>
<Setter Property="Foreground”™ Value="Green'/>
<Setter Property="FontWeight" Value="Bold"/>
<Setter Property="Height" Value="40"/>
<Setter Property="Width" Value="80"/>
</Style>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 424
All Rights Reserved

WpfCs Chapter 11

Property Trigger Example (Cont’d)

e The Style has a property trigger that depends on the
Button.IsMouseOver property.

— When the property has the True value, the trigger will set the
background to blue and the foreground to white.

— When the property changes to False, the trigger will undo
these setters.

e Build and run the application to see the behavior.

— Before the mouse is over the button:

8 stvie SITE]

— After the mouse is over the button:

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 425
All Rights Reserved

WpfCs Chapter 11

Data Trigger Example

e Open the solution in the StyleDataTrigger folder in
the chapter directory.

e Open the file MainWindow.xaml and analyze the Style
declaration.

<Style x:Key="labelStyle"
TargetType="{x:Type Label}">
<Style.Triggers>
<DataTrigger Binding="{Binding
ElementName=txtVisibility, Path=Text}"
Value=""Hidden">
<Setter Property="Visibility"
Value=""Hidden"/>
</DataTrigger>
</Style.Triggers>
<Setter Property="Background"
Value="{Binding
ElementName=txtBackgroundColor,
Path=Text}''></Setter>
<Setter Property="Foreground"
Value="{Binding
ElementName=txtForegroundColor,
Path=Text}'"'></Setter>
<Setter Property="BorderBrush"
Value="{Binding
ElementName=cmbBorderColor,
Path=Text}'"></Setter>
</Style>

e This example shows how a style can dynamically
modify the appearance of a control, which is a Label
In this case.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 426
All Rights Reserved

WpfCs Chapter 11

Data Trigger Example (Cont’'d)

e The style has a data trigger that depends on the value
of the Text property of the txtVisibility text box.

— Actually, there’s only one value that invokes this trigger:
“Hidden”. Try typing this value in the Visibility text box to
see the setter in action.

e The other setters within the style show an additional
feature that you can use to have the setters working
dynamically.

— There are setters changing the background, foreground and
the border of the label.

— These setters have their values bound to the appropriate input
control in the interface, so that the user can choose the colors
dynamically.

e Build and run the application to see these features.

— We’ve typed in some different values.

_lalx]

Visibility: | visible

Background color: ILigf'tGra}'

Foreground color: |Dark3lue

Border color: | Red |
Text Sample
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 427

All Rights Reserved

WpfCs Chapter 11

Multiple Conditions

e Itis possible to obtain a logical OR condition if you
define more than one trigger in the style.

— To achieve this, we just have to create two triggers with the
same setters, but different conditions.

e But how can we handle a logical AND condition?

e That’s why WPF provide us with two additional
trigger classes:

— MultiTrigger, for property triggers with multiple conditions.

— MultiDataTrigger, for data triggers with multiple conditions

e You can see an example of the MultiDataTrigger
usage in the StyleMultiDataTrigger folder in the
chapter directory.

 soie WI=IE]

[+ Enable Highlight

e The trigger will be invoked only if both conditions
are satisfied: the mouse is over the button, and the
CheckBox is checked.

— See MainWindow.xaml for the MultiDataTrigger syntax.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 428
All Rights Reserved

WpfCs Chapter 11

Validation

e \We can combine a property trigger with a binding
validation rule to have a more complicated style
example.

e See the Validate folder in the chapter directory.

— The style is defined to be applied to all text boxes in the
window every time the Validation.HasError property is
true.

— An additional tweak is done by setting the ToolTip property
of the text box with the first error message returned by the
validator.

<Style TargetType="{x:Type TextBox}''>
<Style.Triggers>
<Trigger Property="Validation.HasError"
Value=""true">
<Setter Property="ToolTip"
Value="{Binding
RelativeSource={x:Static RelativeSource.Self},
Path=(VvValidation.Errors)[0].ErrorContent}"/>
<Setter Property="Background"
Value="LightPink"/>
</Trigger>
</Style.Triggers>
</Style>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 429
All Rights Reserved

WpfCs Chapter 11

Validation Example

e A validation rule is added to each editable text box.

<TextBox Name="txtName"™ Margin="10"" Width=""72"">
<Binding ElementName="'‘cmbAccounts"
Path=""Selectedltem.Name">
<Binding.ValidationRules>
<local :NameValidationRule/>
</Binding.ValidationRules>
</Binding>
</TextBox>

e Then, if we try to enter invalid data in some of the
text boxes, the validation rule will fail and the style
trigger will be executed.

W _loix|
Name -
— Account Information
Mumber I 1
MName
—|Pleas-e provide a namel
Balance I 100

e The following rules are being validated:
— Name must be provided and the maximum length is 10.

— Balance must be an integer number.

e Validation occurs at time of dropping down the list
box.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 430
All Rights Reserved

WpfCs Chapter 11

Templates

e WPF allows us to completely replace a control’s
visual tree by using a template.

— Actually, this concept is so important that every control in
WPF comes with its default visual tree defined in a template.

— These templates are also called control templates.

e Here is how a template definition looks like.

<ControlTemplate x:Key="buttonTemplate''>
<Grid>

<Rectangle Height="'30"
Stroke="Black"
Width="100""
RadiusX=""5"
RadiusY=""5"
Fill="Orange">

</Rectangle>

<Rectangle Height="22"
Width="92"
RadiusX=""5"
RadiusY=""5">

<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0"
EndPoint="0,1"">
<GradientStop Offset="0"
Color="Beige'"/>
<GradientStop Offset=""1"
Color="LightBlue"/>
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
</Grid>
</ControlTemplate>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 431
All Rights Reserved

WpfCs Chapter 11

A Simple Template Example

e Open the solution in the SimpleControlTemplate
folder in the chapter directory.

— Note that the template is defined as a resource in the
MainWindow.xaml file.

o Applying a template is similar to applying a style.

<Button Margin=""10"
Click="Button Click"
Template=""{StaticResource buttonTemplate}''>
My Button
</Button>

e The template replaces completely the default visual
tree of the Button.

— The entire Button’s visual implementation is replaced by our
template.

— The shades, content text and pressing effect don’t exist
anymore for this button, since we didn’t implement these
features in this new simple template.

— However, note that the click event handler is still working,
since this is not part of the visual tree.

_in/x|

)

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 432
All Rights Reserved

WpfCs Chapter 11

Improving the Template

e As with styles, it’s possible to use all sorts of triggers
in the template definition.

— We can use a trigger to implement the hover and pressing
effects in the previous example.

e Open the example in the TemplateTrigger folder in
the chapter directory.

<ControlTemplate x:Key="buttonTemplate"
TargetType="{x:Type Button}'>

<ControlTemplate.Triggers>
<Trigger Property=""I1sMouseOver""
Value=""True'>
<Setter TargetName="‘outerBorders"
Property="'StrokeThickness"
Value="2"/>
</Trigger>
<Trigger Property=""IsPressed"
Value="True"'>
<Setter Property="RenderTransform'>
<Setter.Value>
<ScaleTransform ScaleX="_.9"
ScaleY="_.9"/>
</Setter _.Value>
</Setter>
<Setter Property="RenderTransformOrigin®'
Value=".5, .5"/>
</Trigger>
</ControlTemplate.Triggers>
</ControlTemplate>

e Run the application, and then try passing the mouse
over and clicking the button to see the resulit.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 433
All Rights Reserved

WpfCs Chapter 11

Templated Parent’s Properties

e The problem with the previous template examples is
that they don’t respect some control properties.

— For example, they don’t show the Content that was set for the
Button.

e \We must provide implementation to respect such
properties.

— We can do this through data binding, optionally using special
lightweight class named TemplateBindingExtension.

— Here is an example of how we can include the Button’s
Content property inside the template definition.

<TextBlock Margin="10"
Text="{TemplateBinding Button.Content}'/>

e But what if the Content is not a text value?
— In this situation, a more generic solution should be used.

— WPF provides a special class for this purpose, named
ContentPresenter.

<ContentPresenter Margin="10"
Text="{TemplateBinding Button.Content}"/>

e By design, ContentPresenter has a built-in shortcut
that allows omitting the binding in case you just want
to show the Content property.

<ContentPresenter Margin="10" />

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 434
All Rights Reserved

WpfCs Chapter 11

Respecting Properties Example

e An example of the ContentPresenter usage is saved on
the RespectingProperties\Stepl folder in the chapter
directory.

— Build and run the application to see the Button’s Content.

o

=)

e Other properties such as Height, Width, Background
and Padding should be respected by the template too.

— In our example, the border is built by placing one rectangle
on top of another bigger rectangle, resulting in a double
border effect.

— To respect Height and Width, we’ll bind these properties
from the Button to the outer rectangle, and implement a value
converter to have a lower size in the inner rectangle.

— The difference between the size of the outer and inner
rectangles is responsible for the border thickness.

— A similar example is implemented in detail in this chapter’s
lab.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 435
All Rights Reserved

WpfCs Chapter 11

Respecting Properties (Cont’'d)

e Here is a new version of the rectangles respecting
Height and Width from the Button.

— Open the solution in the RespectingProperties\Step2 folder
in the chapter directory.

<Rectangle Name="outerBorders"

Height="{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Height}"

Stroke="Black"

width=""{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Width}"

RadiusX="5"

RadiusY="5"

Fill="Orange">

</Rectangle>
<Rectangle Name=""innerBorders"

width="{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Width,
Converter={StaticResource sizeConverter},
ConverterParameter=4}"

Height="{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Height,
Converter={StaticResource sizeConverter},
ConverterParameter=4}"

RadiusX="5"

RadiusY="'5">

e Notice the usage of the value converter.

— It is responsible for decreasing the Height and Width to give
the thickness idea of the double border.

— Examine the converter code in the SizeConverter.cs file.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 436
All Rights Reserved

WpfCs Chapter 11

Respecting Properties (Cont’'d)

e The Background property is respected too.

— It is implemented through the background gradient in the
inner rectangle.

<GradientStop Offset=""1" Color="{Binding
RelativeSource={RelativeSource TemplatedParent},
Path=Background.Color}"/>

e The template implements the Button’s Padding
property by setting the ContentPresenter’s Margin.

— In fact, this is exactly the definition of padding: the margin of
an inner element.

<ContentPresenter
Margin="{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Padding}"

e Look how our Button looks now with different sizes.

[N ButtonTemplate I

N\

=101 x|

My Button 2

[&}

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 437
All Rights Reserved

WpfCs Chapter 11

Respecting Visual States

e In addition to respecting the control properties, it’s
important to consider visual states too.

— Properties such as IsEnabled and IsDefaulted can modify
the visual state, which implies layout changes.

— A progress bar, for example, must implement the visual
representation of the VValue property to give the idea of
progress.

e Let’s add to our example the support for the
IsEnabled property.

— Open the solution in the RespectingProperties\Step3 folder
in the chapter directory.

— Notice that we respect the Disabled visual state just by using
triggers!

<Trigger Property="I1sEnabled"”
Value="False">
<Setter TargetName="outerBorders"
Property="Stroke""
Value="0range''>
</Setter>
<Setter TargetName="outerBorders"
Property="Rectangle.Fill"
Value="White">
</Setter>
<Setter TargetName="innerBorders"
Property="Rectangle.Fill"
Value="LightGray'>
</Setter>
</Trigger>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 438
All Rights Reserved

WpfCs Chapter 11

Respecting Visual States Example

e One of the buttons has its IsEnabled property set to
false.

<Button Margin=""10"
Click="Button_Click"
Width=""100""
Height="30"
Background=""LightBlue™
Padding=""10"
IsEnabled=""False"
Template="{StaticResource buttonTemplate}'>
My Button 1
</Button>

e And this is how our disabled visual state looks like for
Button 1.

-laix]

My Button 1

My Button 2

*}

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 439
All Rights Reserved

WpfCs Chapter 11

Using Templates with Styles

e It’s more likely that you’ll define templates inside a
style definition.

— The template examples seen so far were set directly in the
controls for the sake of simplicity.

— To use a template inside a style, just add the template
definition to the style and then apply the style to the control.

e There are some advantages in defining a template
within a style.

— We can set additional properties in the style to make the
template’s appearance more attractive.

— When used along with typed styles we can obtain the effect
of a default template, since it will be applied to all controls of
that type by default.

— We can provide default values for properties that modify the
look of the template, yet allowing these values to be
overridden in the control definition.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 440
All Rights Reserved

WpfCs Chapter 11

Templates with Styles Example

e Open the solution in the StyleAndTemplate folder in
the chapter directory.

— Note that in the file MainWindow.xaml we use a setter to
modify the template property.

<Style TargetType="{x:Type Button}'>
<Setter Property="Background"
Value="LightBlue'/>
<Setter Property="Template'>
<Setter.Value>
<ControlTemplate
TargetType=""{x:Type Button}'>

<ControlTemplate.Triggers>
</ControlTemplate.Triggers>
</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

e There are two buttons defined in the window.
— Both buttons get the template because of the typed style.

— Note that one of them doesn’t set the Background property,
but gets the LightBlue background because of the typed style.

— The other button overrides the style background by setting a
different brush to the Background property locally.

— Build and run the application to see the result.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 441
All Rights Reserved

WpfCs Chapter 11

Skins

e Skins are a set of predefined appearance changes that
we can apply to the application on the fly.

e There is no formal definition for skins in WPF.

— However, WPF doesn’t need such definition as it provides
features to obtain skin functionality.

— Basically, skins are implemented by using dynamic resources
and styles.

o First of all, the styles used in the window must be set
using the DynamicResource markup.

— It’s good practice to use styles in most of the items, since it
gives the skin authors more control over the visual
experience.

<StackPanel
Style="{DynamicResource ButtonsPanelStyle}''>

e One good idea of skins implementation using WPF
relies on creating separate XAML files with styles
and/or templates definition for each skin.

— Each XAML file is a resource repository.

— We can achieve this by creating the files with a
ResourceDictionary as the root element.

— The default application skin should be defined in the
application resources dictionary, in App.xaml.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 442
All Rights Reserved

WpfCs Chapter 11

Changing Skins

e To change a skin, we do the following:

— Read an XAML file with the resource dictionary that
contains the styles and templates.

— Replace the Application.Resources collection with this new
resource dictionary.

e As an example, open the solution in the SkinSelector
folder in the chapter directory.

— This is a hypothetical window for audio configuration.

— Build and run the application, and notice the ComboBox for
changing the skin on the top.

— Try changing the skin to see it working.

o]
Choose sk | -]

~ Recording Configuration

wicrophone: | ST -]

il

"

[~ 1am using 2 headset

Save Cancel

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 443
All Rights Reserved

WpfCs Chapter 11

Skins Example

Let’s examine the code to understand how it works.

— Notice in the Configuration.xaml file that many items have
their styles set using the DynamicResource markup.

— Examine the App.xaml file and check the default styles
definition. These styles are used when the application starts.

Skin files are provided.

— Notice the files GreenNature.xaml and SpecialGray.xaml,
which contains a ResourceDictionary with the same styles
of the App.xaml file, but with different property values.

The GreenNature skin shows an example of changing
many visual properties such as fonts and colors.

The SpecialGray skin shows an example of changing
the structures more deeply.

— Notice that the template for the GroupBox provided in
GroupBoxStyle has a completely different visual tree from
the original control.

— A StackPanel is responsible for the new appearance of the
GroupBox, with a Label being used to show the Header text.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 444
All Rights Reserved

WpfCs Chapter 11

Skins Example (Cont’d)

e Changing the skin is done by the method
cmbSkin_SelectionChanged().

ResourceDictionary newResources = null;
ComboBoxltem selectedSkin =
cmbSkin.Selectedltem as ComboBoxltem;

iT (selectedSkin.Content != null)

{
1T (selectedSkin.Content.ToString() !I=
"Default')

{

FileStream newResourceFile = new FileStream(
selectedSkin.Content.ToString() + ".xaml",
Fi1leMode.Open,

FileAccess.Read);

newResources =
XamlReader .Load(newResourceFile) as
ResourceDictionary;

newResourceFile.Close();

newResourceFile = null;

}
else
{
newResources = defaultResources;
+

Application.Current.Resources = newResources;

}

e This approach is interesting because it allows the skin
authors to edit the skin files independently.

— There is no need to rebuild the application.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 445
All Rights Reserved

WpfCs Chapter 11

Themes

e A theme has to do with respecting visual styles from
the operating system.

— However, when a designer develops custom templates or
skins, usually she is trying to avoid the OS themes.

— Despite that, it is a nice touch to have the default control
templates matching the OS appearance.

e \We can use the technique discussed in the skins
section to implement themes.

— Despite being flexible, this is a more complex approach
because we’d need to implement a separate resource file for
each theme.

o A simpler approach would be using .NET classes to
obtain some OS theme properties and apply them to
our styles.

— The classes SystemColors, SystemFonts and
SystemParameters allow us to get colors, fonts and
parameters being used in the OS theme.

— These classes get updated when the OS theme changes.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 446
All Rights Reserved

WpfCs Chapter 11

Themes Example

e Open the solution in the ProgressTheme folder in the
chapter directory.

— The application is a simple window containing a ProgressBar
simulating some processing.

— There is a typed style for the ProgressBar in the
MainWindow.xaml file.

<Style TargetType="{x:Type ProgressBar}''>
<Style.Resources>
<LinearGradientBrush x:Key="foregroundBrush"
StartPoint="0,0" EndPoint="1,1">
<GradientStop Offset="0"
Color="{DynamicResource {x:Static
SystemColors. InactiveCaptionColorKey}}'"/>
<GradientStop Offset="0.5"
Color="{DynamicResource {x:Static
SystemColors. InactiveCaptionColorKey}}'"/>
<GradientStop Offset=""1"
Color="{DynamicResource {x:Static
SystemColors.ActiveCaptionColorKey}}'/>
</LinearGradientBrush>
</Style.Resources>
<Setter Property="Foreground"
Value=""{StaticResource foregroundBrush}'"/>
<Setter Property="Background"
Value=""{DynamicResource {x:Static
SystemColors.ControlBrushKey}}'"/>
</Style>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 447
All Rights Reserved

WpfCs Chapter 11

Themes Example (Cont’'d)

e If we run the application in different OS themes, we’ll
get different results based on the SystemColors class
properties.

e Here is the result of running in Windows XP with the
default theme.

M Progress

Plzas= wait while the operation is completed...

e And now in Windows Vista with the Aero Theme.
rl Progress E@lﬁw

Please wait while the cperation is completed..

-

e Finally, running in Windows 7 with the Windows
Classic Theme.

_inix]

Pleass wait while the operation is completad...

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 448
All Rights Reserved

WpfCs Chapter 11

Lab 11

Improving the Account Manager with Styles

In this lab you will improve the Account Manager developed in the
Data Binding chapter by using styles. From the starter code, you’ll
need to create typed styles for the WPF controls used in the
interface, create a template for the buttons and enrich the user
experience by adding validation support and feedback.

I
vore [T nd)

— Account Information —
Delete]

)

Mumber

Mame Bob Save

Balance 200

Detailed instructions are contained in the Lab 11 write-up at the
end of the chapter.

Suggested time: 90 minutes

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 449
All Rights Reserved

WpfCs Chapter 11

Summary

e Styles can be used to group layout properties
together.

e Typed styles are used to obtain the effect of a default
style for some controls.

e Styles can be improved using triggers.
e Styles can be used to improve user input validation.

e Templates are used in WPF controls to store their
default representation and to customize them.

e There are means of respecting a control's properties
when defining a custom template.

e Template can be defined within a style definition.

e Skins are predefined changes in the application
appearance applied on the fly.

e Themes have to do with respecting visual styles from
the operating system.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 450
All Rights Reserved

WpfCs Chapter 11

Lab 11

Improving the Account Manager with Styles

Introduction

In this lab you will improve the Account Manager developed in the Data Binding chapter
by using styles. From the starter code, you’ll need to create typed styles for the WPF
controls used in the interface, create a template for the buttons and enrich the user
experience by adding validation support and feedback.

—[5ix]
neme NN -] add |
Account Informaticn]
Delete
Number I2
Name Bob Save
Balance 200
Suggested Time: 90 minutes
Root Directory: OIC\WpfCs
Directories: Labs\Lab11\AccountManager (do your work here)

Chap10\AccountManager\Step3 (backup of starter code)
Chapl1\AccountManager\Step4 (answer to part 1)
Chapl11\AccountManager\Step5 (answer to part 2)
Chapl1\AccountManager\Step6 (answer to part 3)

Part 1. Grouping Properties in Style Definitions

1. Build and run the starter code. There is a ComboBox for account selection, three text
boxes for showing account information, and three action buttons for account
management. You can add, remove and modify account data, and save the data back
to the XML source using the Save button.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 451
All Rights Reserved

WpfCs Chapter 11

2.

The first thing you should do to start using styles in this program is to create typed
styles for each WPF control in the Window, making it easier for the style designer to
control the application layout. Let’s add to the Window.Resources collection one
style for each existing WPF control in the Window: ComboBox, Label, TextBox,
GroupBox and Button. If we wanted to customize the layout of the StackPanels in
this example, we could add styles for them too, but this is not the case.

<Window.Resources>

<XmlDataProvider x:Key="dataProvider"
XPath=""Accounts"
Source=""AccountsData.xml*/>

<Style TargetType="{x:Type Label}">

</Style>

<Style TargetType="{x:Type ComboBox}'>

</Style>

<Style TargetType="{x:Type TextBox}'>

</Style>

<Style TargetType="{x:Type GroupBox}'>

</Style>

<Style TargetType="{x:Type Button}'>

</Style>

</Window.Resources>

3.

For each of these controls, let’s analyze the common properties that affect the
appearance of the control used in the XAML code and group them in the style
definition. Let’s start with the Label: if you take a look at its four occurrences in the
code, you’ll notice the Margin property being repeatedly used, so this is a nice
candidate to be in the style definition. Add a setter in the Label’s typed style for the
Margin property setting its value to 10.

<Style TargetType="{x:Type Label}">

<Setter Property="Margin'" Value="10"/>

</Style>

4.

Now, remove the Margin property from the four occurrences of Label in the code,
because you don’t need them anymore.

Build and run the application. Notice that your changes didn’t modify the
application’s appearance, but now the code is more organized with the shared layout
properties defined inside styles.

For each one of the controls listed in step 2, repeat what you did on steps 3 to 5 to
group the layout properties. Don’t forget to remove the properties set locally on each
control, as they are now defined in the style. After your changes, the typed styles for
these controls should look like this:

<Style TargetType="{x:Type Label}'">

<Setter Property="Margin" Value="10"/>

</Style>
<Style TargetType="{x:Type ComboBox}'>

<Setter Property="Margin" Value="10"/>

</Style>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 452

All Rights Reserved

WpfCs Chapter 11

<Style TargetType="{x:Type TextBox}">
<Setter Property="Margin' Value="10"/>

</Style>

<Style TargetType="{x:Type GroupBox}'>
<Setter Property="Margin' Value="10"/>

</Style>

<Style TargetType="{x:Type Button}'>
<Setter Property="FontSize" Value="14"/>
<Setter Property="Margin" Value="10"/>

</Style>

7. Now that we have separated the layout properties into these new styles, it’s easy to
modify all controls in the window by changing these styles. For example, let’s use
Verdana as the default font for all controls used in our window. Add a setter for the
FontFamily property with the value Verdana for all typed styles.

<Style TargetType="{x:Type Label}">

<Setter Property="Margin' Value="10"/>

<Setter Property="FontFamily' Value=""Verdana'/>
</Style>
<Style TargetType="{x:Type ComboBox}'>

<Setter Property="Margin" Value='"10"/>

<Setter Property="FontFamily" Value="Verdana'/>
</Style>
<Style TargetType="{x:Type TextBox}">

<Setter Property="Margin' Value="10"/>

<Setter Property="FontFamily' Value=""Verdana'/>
</Style>
<Style TargetType="{x:Type GroupBox}'>

<Setter Property="Margin' Value="10"/>

<Setter Property="FontFamily" Value="Verdana'/>
</Style>
<Style TargetType="{x:Type Button}'>

<Setter Property="FontSize" Value="14"/>

<Setter Property="Margin' Value="10"/>

<Setter Property="FontFamily' Value="Verdana'/>
</Style>

8. Build and run the application to see the result. In addition, you can think of other
layout properties to add to some or all of these typed styles, in order to get a nice
customized window. Don’t change the typed style for the Button now, since we’ll
change it on the next steps.

Part 2. Creating a Template for the Buttons

1. Let’s add a template to the Button’s typed style definition. Our goal is to obtain a
button with a double border effect, and with a gradient background. To obtain the
double border effect, create a rectangle overlapping another slightly bigger rectangle,
and the smaller one will be filled by a gradient. For now, set the sizes of the
rectangles manually, and set the Name property of the rectangles so that they can be
used later as a reference in this program.

<Style TargetType="{x:Type Button}''>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 453
All Rights Reserved

WpfCs Chapter 11

<Setter Property="FontSize" Value="14"/>
<Setter Property="Margin" Value="10"/>
<Setter Property="FontFamily' Value=""Verdana'/>
<Setter Property="Template'>
<Setter.Value>
<ControlTemplate TargetType="{x:Type Button}'>
<Viewbox>
<Grid>
<Rectangle Name="outerBorders"
Height="30"
Width="112"
Stroke="Black"
Radiusx="5"
Radiusy="5"
Fill="Gray'>
</Rectangle>
<Rectangle Name="innerBorders"
Width=""104"
Height="22"
RadiusX="5"
RadiusY="5">
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0"
EndPoint="0,1">
<GradientStop Offset="0"
Color="White'"/>
<GradientStop Offset="1"
Color="LightBlue"/>
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
</Grid>
</Viewbox>
</ControlTemplate>
</Setter._Value>
</Setter>
</Style>

2. Build and run the application. You’ll notice that the layout of the buttons was
replaced, but many properties were lost, including the text. Let’s fix the text first by
using the ContentPresenter control.

<ControlTemplate TargetType="{x:Type Button}'>
<Viewbox>
<Grid>
</Rectangle>
<ContentPresenter HorizontalAlignment=""Center"
VerticalAlignment="Center"'/>

</Grid>
</Viewbox>
</ControlTemplate>
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 454

All Rights Reserved

WpfCs Chapter 11

3. In this new template, the button’s Width and Height can be represented by the outer
rectangle’s Width and Height. Modify the values of these properties to bind them to
the button’s properties.

<Rectangle Name="outerBorders"

Height=""{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Height}"

width="{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Width}"

Stroke="Black"

RadiusX="5"

RadiusY="5"

Fill="Gray">
</Rectangle>

4. To create the double border effect, we’ll bind the inner rectangles Width and Height
properties to the button’s properties, but we’ll need a value converter to make them
smaller. Right-click the project in Solution Explorer, select Add and then New Item...
to add a class file named SizeConverter.cs. Provide the code below in this file, and
import the namespaces System.Windows.Data and System.Globalization.

public class SizeConverter : IValueConverter

{
public object Convert(object value, Type targetType, object
parameter, Culturelnfo culture)

double num = Double.Parse(value.ToString()):
double thickness = Double.Parse(parameter.ToString());

return (num - (2 * thickness));

public object ConvertBack(object value, Type targetType, object
parameter, Culturelnfo culture)

{
}

throw new NotSupportedException();

b
5. Add this value converter as a resource in MainWindow.xaml.

<Window x:Class="AccountManager.MainWindow"
xmIns=""http://schemas.microsoft.com/winfx/2006/xaml/presentation"’
xmIns:x="http://schemas._microsoft.com/winfx/2006/xaml"
xmIns: local=""clr-namespace:AccountManager"’
Title="ManageAccounts"™ SizeToContent="WidthAndHeight"
ResizeMode=""CanMinimize" Loaded="Window_ Loaded" >
<Window.Resources>

<local :SizeConverter x:Key="sizeConverter'/>

6. Bind the Width and Height of the inner rectangle in the Button’s template passing
the value converter as a parameter. In the code below, note that we’re passing the
value 4 as the converter parameter, which represents the thickness we want as a result
of the conversion.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 455
All Rights Reserved

WpfCs Chapter 11

<Rectangle Name="innerBorders"

Height=""{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Height, Converter={StaticResource
sizeConverter}, ConverterParameter=4}"

width="{Binding RelativeSource={RelativeSource
TemplatedParent}, Path=Width, Converter={StaticResource sizeConverter},
ConverterParameter=4}"

RadiusX="5"

RadiusY="5">

7. Because of these changes to the template, now we need the developer to always
provide values to Width and Height when creating buttons, as they are essential for
the double border effect. To avoid the need to always remember to provide these
values, we’ll define default values for them in the Button’s style definition.

<Style TargetType="{x:Type Button}'>
<Setter Property="FontSize" Value="14"/>
<Setter Property="Margin' Value="10"/>
<Setter Property="FontFamily' Value=""Verdana'/>
<Setter Property="Width" Value="112"/>
<Setter Property="Height" Value="30"/>
<Setter Property="Template'>

8. Build and run the application to see our updated buttons. Let’s modify the template
now to respect the Button’s Background.

<Rectangle Name="innerBorders"
<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0"
EndPoint="0,1">
<GradientStop Offset="0"
Color="White"/>
<GradientStop Offset="1"
Color="{Binding
RelativeSource={RelativeSource TemplatedParent},
Path=Background.Color}'"/>
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>

9. The last change depends on the developer providing a value for the Button’s
Background property. So let’s add a default value for this property to the template.

<Style TargetType="{x:Type Button}'>
<Setter Property="FontSize" Value="14"/>
<Setter Property="Margin' Value="10"/>
<Setter Property="FontFamily" Value="Verdana'/>
<Setter Property="Width" Value="112"/>
<Setter Property="Height" Value='30"/>
<Setter Property='"Background" Value="LightBlue"/>

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 456
All Rights Reserved

WpfCs Chapter 11

10. Now, let’s add some triggers to the Button’s template to obtain a better response from
the user interactions. Add one trigger for increasing the thickness of the outer
rectangle border in case the mouse is over the button, and another for shrinking the
button when it is pressed.

<ControlTemplate TargetType="{x:Type Button}'>
<Viewbox>

</Viewbox>
<ControlTemplate.Triggers>
<Trigger Property=""IsMouseOver"
Value="True'>
<Setter TargetName="outerBorders"
Property="StrokeThickness"
Value=""2"/>
</Trigger>
<Trigger Property="IsPressed"
Value="True">
<Setter Property="RenderTransform">
<Setter.Value>
<ScaleTransform ScaleX="_9"
ScaleY="_.9"/>
</Setter _Value>
</Setter>
<Setter Property=""RenderTransformOrigin"
Value=".5,.5"/>
</Trigger>
</ControlTemplate.Triggers>
</ControlTemplate>

Part 3. Adding Validation Rules

1. Add atrigger to the TextBox typed style to mark it in LightPink in case there are any
validation errors in the control. Additionally, we want the error message to be shown
in the TextBox’s ToolTip property.

<Style TargetType="{x:Type TextBox}'>
<Setter Property="Margin' Value="10"/>
<Setter Property="FontFamily' Value="Verdana'/>
<Style.Triggers>
<Trigger Property="Validation.HasError" Value="true'>
<Setter Property='"Background” Value="LightPink"/>
<Setter Property="ToolTip"
Value="{Binding RelativeSource={x:Static
RelativeSource.Self}, Path=(Validation.Errors)[0].ErrorContent}'/>
</Trigger>
</Style.Triggers>
</Style>

2. To add a validation rule to a binding relationship, we need first the validation class,
which inherits ValidationRule. Add a new class file to the project named
NameValidationRule.cs, and provide the code below. You will need to import the
namespace System.Windows.Controls. This class will return the validation as failed
in case the value is blank or larger than 10 characters.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 457
All Rights Reserved

WpfCs Chapter 11

public class NameValidationRule : ValidationRule

{
public override ValidationResult Validate(object value,
System.Globalization._Culturelnfo culturelnfo)

{

string name = value.ToString();

it (name.Length > 10)
return new ValidationResult(false, "Name length must be 10
characters or less™);
else if (name.Length == 0)
return new ValidationResult(false, "Please provide a name™);
else
return new ValidationResult(true, null);

3. Go to the file MainWindow.xaml.cs and find the data binding code for the txtName
TextBox in the BindAccountIinformation() method. Add the NameValidationRule to
the Binding’s ValidationRules collection.

Binding nameBinding = new Binding(Q);

nameBinding.Source = account;

nameBinding.XPath = "Name";
nameBinding.ValidationRules_Add(new NameValidationRule());
txtName.SetBinding(TextBox.TextProperty, nameBinding);

4. Build and run the application. Select one of the accounts from the ComboBox and try
leaving the Name text box empty or with more than 10 characters. You’ll notice the
trigger working when the TextBox loses focus, which is when it tries to update the
data source. We can modify this behavior to let the TextBox update the data source
whenever its value changes, and so we’ll see the validation working before the
TextBox loses focus. To do this, set the binding’s UpdateSourceTrigger property to
PropertyChanged.

Binding nameBinding = new Binding(Q);

nameBinding.Source = account;

nameBinding.XPath = "Name";

nameBinding.ValidationRules.Add(new NameValidationRule());
nameBinding.UpdateSourceTrigger = UpdateSourceTrigger.PropertyChanged;
txtName.SetBinding(TextBox.TextProperty, nameBinding);

5. Build and run the application. Notice the validation happening while you type in the
Name TextBox. When a validation error occurs, you can see the error message in the
TextBox’s tooltip by placing the mouse over the TextBox for a few seconds.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 458
All Rights Reserved

WpfCs Chapter 11

ST
Mame IDa'-.re "I [Add

Account Information

[Delete
Number I 1
Mame I Save
|Pleass provide a name |
Balance 400

6. You can add now a validation rule for the txtBalance TextBox. Add a new class file
named BalanceValidationRule.cs to the project, with the following code:

public class BalanceValidationRule : ValidationRule

{
public override ValidationResult Validate(object value,
System._Globalization.Culturelnfo culturelnfo)

{

int balance;

if (1Int32.TryParse(value.ToString(), out balance))
return new ValidationResult(false, '"Balance must be an integer
value™);
else
return new ValidationResult(true, null);

7. Add the validation rule repeating the same procedure done in steps 3 and 4. Build and
run the application to check the result.

8. Despite the validation done at the text boxes, the user can still click the Save button
when invalid data is entered in one of the text boxes. One approach to fix this issue is
disabling the Save button in XAML code, and enabling it in procedural code
whenever data is changed. Set the IsEnabled property of the btnSave button to False.

<Button
Name=""btnSave"’
Width=""112"

IsEnabled="False"
Click="btnSave Click">
Save

</Button>

9. By using this property, you can notice that the user cannot view that the button is
disabled. This can be easily fixed by adding one more trigger to the Button’s typed
style handling the IsEnabled property.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 459
All Rights Reserved

WpfCs Chapter 11

<ControlTemplate.Triggers>

<Trigger Property="IsEnabled"
Value=""False'>
<Setter TargetName="outerBorders"
Property="Stroke""
Value="LightGray">
</Setter>
<Setter TargetName="outerBorders"
Property="Rectangle.Fill"
Value="White">
</Setter>
<Setter TargetName="innerBorders"
Property="Rectangle_Fill"
Value="LightGray'>
</Setter>
</Trigger>
</ControlTemplate.Triggers>

10. Add an event handler to the txtName TextBox for the SourceUpdated event. This
event will be raised when the TextBox update the data source through the binding
relationship. Use this same handler in the txtBalance TextBox.

<StackPanel Orientation="Horizontal">
<Label Width="60'">Name</Label>
<TextBox
Name=""txtName""
Width="72"
SourceUpdated=""textBox_SourceUpdated"
>
</TextBox>
</StackPanel>
<StackPanel Orientation="Horizontal">
<Label Width=""60"">Balance</Label>
<TextBox
Name=""txtBalance""
Width="72"
SourceUpdated=""textBox_SourceUpdated"’
>
</TextBox>
</StackPanel>

11. The handler code will enable the btnSave Button to allow the changes to be saved to
the XML file.

private void textBox_SourceUpdated(object sender, DataTransferEventArgs
e)
{

}

12. This handler will be called only if we set the binding’s NotifyOnSourceUpdated
property is set to true. Do this in the binding code for the txtName and txtBinding
text boxes.

btnSave. lIsEnabled = true;

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 460
All Rights Reserved

WpfCs Chapter 11

Binding nameBinding = new Binding(Q);

nameBinding.Source = account;

nameBinding.XPath = "Name";

nameBinding.ValidationRules_Add(new NameValidationRule());
nameBinding.UpdateSourceTrigger = UpdateSourceTrigger.PropertyChanged;
nameBinding.NotifyOnSourceUpdated = true;
txtName.SetBinding(TextBox.TextProperty, nameBinding);

Binding balanceBinding = new Binding();

balanceBinding.Source = account;

balanceBinding.XPath = "Balance";

balanceBinding.ValidationRules.Add(new BalanceValidationRule());

balanceBinding.UpdateSourceTrigger =
UpdateSourceTrigger.PropertyChanged;

balanceBinding.NotifyOnSourceUpdated = true;

txtBalance.SetBinding(TextBox.TextProperty, balanceBinding);

13. Build and run the application. Select an account and try editing name or balance.
Notice that when you type in some information in either one of the text boxes the
Save button is enabled.

14. Some additional places require enabling the btnSave Button too: the methods which
add and delete accounts.

private void btnAdd _Click(object sender, RoutedEventArgs e)

{
try

{

BiﬁSave.lsEnabled = true;

}

catch (Exception ex)

{

}
}

private void btnDelete Click(object sender, RoutedEventArgs e)

{
try

{

MessageBox.Show(ex.Message, "Accounts'™);

int index = cmbAccounts.SelectedIndex;
if (index I= -1)
{

BiﬁSave.lsEnabled = true;

}

catch (Exception ex)

{
}

MessageBox.Show(ex.Message, "Accounts™);

}

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 461
All Rights Reserved

WpfCs Chapter 11

15. Finally, modify the code in the btnSave_Click() method to check if there are no
validation errors before saving, and to disable the Save button back again when the
saving is complete.

try
i - _
if (ItxtName.GetBindingExpression(TextBox.TextProperty).HasError &&
ItxtBalance.GetBindingExpression(TextBox.TextProperty) .HasError)
{
XmlDataProvider dp =
this.FindResource(''dataProvider') as XmlDataProvider;
dp.Document.Save("*AccountsData.xml');
MessageBox.Show(*"'The data was successfully saved™);
btnSave.lsEnabled = false;
}
else
{
MessageBox . Show(
"Please solve all the validation problems before saving');
}
¥ _
catch (Exception ex)
{

MessageBox.Show(ex.Message, '‘Accounts™);

}

16. Build and run the application. Now your program should be fully functional, and you
can test the Add, Delete and Save buttons thoroughly.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 462
All Rights Reserved

