Table of Contents (Overview)

Chapter 1 NET Fundamentals

Chapter 2 Class Libraries

Chapter 3 Assemblies, Deployment and Configuration
Chapter 4 Metadata and Reflection

Chapter 5 I/0 and Serialization

Chapter 6 NET Programming Model

Chapter 7 NET Threading

Chapter 8 NET Security

Chapter 9 Interoperating with COM and Win32
Chapter 10 ADO.NET and LINQ

Appendix A .NET Remoting

Appendix B Learning Resources

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC

All Rights Reserved

Directory Structure

e The course software installs to the root directory
C:\OIC\NetCs.

— Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and so
on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently
supplied, and answers are provided in the chapter directories.

— The Demos directory is provided for hand-on work during
lectures.

e Data files install to the directory C:\OIC\Data.

e The directory C:\OIC\Deploy is provided to practice
deployment.

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC iv
All Rights Reserved

Table of Contents (Detailed)

Chapter 1 .NET FUNamENTalS..........ccccooeiieiiiie e 1
What 1S MICIOSOTt INET 2.t ene e 3
Open Standards and INteroperabilitycccvveiieereiieieese e 4
Windows Development ProbIemS............cov i 5
Common Language RUNTIMEc.eoiiiiiiieieiie ettt 6
Serialization EXAMPIEc.ooiiiee e 7
Attribute-Based Programmingccceoeerieiienieiieseeseeieseesieeseeseesseessesseesseessesssessesssenns 10
YL = To = v TSRS SRR 11
B 0L T T OO PP TPPTUPPRTPPPRPPPS 12
NET Framework Class LIDIAIY........ccoccoeiiiiiiiinisieieeese e s 13
Interface-Based Programimingcceoveieiieieeseeie et 14
EVerything is @an ODJECL...........coiiieie et ere s 15
COMMON TYPE SYSTEM ...ttt e et e ne e b e e seeeens 16
ILDASM Lttt ettt e et et e teereene e e et et e renrs 17
NET Framework SDK TOOIScoiiiiiiiiiiisieee e 19
Language INteroperabilitycccooiii e 20
MANAGEA COUER ...ttt sttt ettt e st e b e et e s st e sbeesbeeneesbeenbeaneeneeas 21
ASSEIMDIIES ...t nre et enes 22
ASSEMDBIY DEPIOYMENT......ociiiiiiieie e sne e nre e e 23
JIT COMPIALION ... sttt e s reesteaneestaeteaneens 24
ASP.INET and WED SEIVICES......coieiiieiiiiiesieiite ettt sttt nneas 25
THhE ROIE OF XIML.....oiiiciee ettt et e ste et eareenne e 26
PEITOMMANCEottt e b bbbttt ettt b bbbt 27
SUMMIATY .ttt e et e e bt e et e e e A b e e et b e e e st e e eR bt e e e sb e e e bt e e e bt e e e be e e ansneeanes 28

Chapter 2 Class LiDraries ...ttt 29
ODbjects and COMPONENTScviiieieeieeie e este et e iae st e e e te e e ssee st aseesreesbeeseeaseesseeneenneenes 31
Limitation of COM COMPONENESccuviieiieiieeie e sie sttt ae e e eas 32
ComPONENES IN INET ..o ettt sre e 33
Class Libraries at the Command LiNE..........ccoiveriiieiieiieiie e eie et 34
Component Example: Customer Management SYStEMccccovvevvereiieeneenesie e 35
Monolithic VErsuS COMPONENT.......c.iiiiiieie ettt et s r e e sraenresnneaneas 37
Demo: Creating @ Class LIDrary ..ot 38
Demo: A Console CHENT PrOgramcccoeiiiiiiniiisieieese ettt 40
Class Libraries Using Visual StUAIOc.ccviieiieiiiie e 41
Demo: Creating a Class LIDraryccoveiieiiiic i 42
References in Visual STUAIO.........ooiiiiiiiii e 44
References at Compile Time and RUN TIME ..o 46
Project DEPENAENCIES.civieieeiesieesie e see e e s re et s e et e e e e teeseesreesteeaesneesreeneeanes 47
Specifying Version NUMDEIS...........ooi i 48
[o 1SR PRSPPSO 49
SUMMABIY .ttt b et b e bt b et be et nbe e s 50

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC Y

All Rights Reserved

Chapter 3 Assemblies, Deployment and Configuration...........ccccccoeceeeevveiciiesnennn. 53

ASSEMBIIES ... bbbt 55
Customer Management SYSTEIMccuuiiiiiieiiiie e arre e 56
ILDASM Lttt bttt et te bt re e ettt e 57
ASSEMBDIY MANITEST ... 58
Assembly Dependency Metadata...........cccoueiieiieieiieieee e 59
ASSEMDIY MEtadata.........ccve i 60
Versioning an ASSEMDIY ..o 61
ASSEMBIYVErsion AIHDULEooviie e 62
SEIONG NAIMES ...ttt e e st e e sab e e e bt e e e nbb e e e beeeanbeeennes 63
DIgital SIGNALUIESveiieiecie ettt s esre e aeeneesbe e teaneenne s 64
Verification with Digital SIGNAtUIESccoiiiiiiiiieee e 65
HASN COUBS ...ttt sttt et s e s st e beaseesre e teeneesreesreaneenneas 66
Digitally Signing an ASSEMDIYccvciiiieiieie e sre e 67
Digital Signing FIOWCNAIT.............c.coiiiiiiece e 68
Signing the CuStomMEr ASSEMDIYcoiiiiiiieiee e s 69
Signed ASSEMBDIY MELAGALAc.veveeiiiiiiiiiiiesee e 70
Private Assembly DeplOYMENTcocviiiiieiee e 71
ASSEMDIY CACNE.... .o et 72
Deploying a Shared ASSEMDIYouiiiiiii e 73
Signed ASSEMBIY DEIMO........c.coiiiiiiiiiiiii i 74
Versioning Shared COMPONENTScoiuiiieieiieiieeseeie e e e seeseesae e sreesee e sraesaeeneesrens 76
How the CLR LOCates ASSEMDIIESc.oiiiiiiiiiieieieieie e 77
Resolving an Assembly REFEIENCEccviiiiiii s 78
Version Policy ina Configuration File..........cccoooiiiiiiiiiiiie e 79
FINdiNg the ASSEMDIYc.oiiiee e 80
.10 JRC TOPPRSRRR 81
APPHICALION SEIINGS. ...oveeiiiiie ettt b sttt aesre e be e b sneenreas 82
Application Settings Using Visual StUAIOcocueiiiiiiiiiiiineeeec e 83
Application SEttiNgS DEMOciuiiieiieie e ae e s ste e sreesreeneesreenee e 84
Application Configuration File...........c.coiiiiiiiii i 89
User ConfigUIation FIIEooiiiiiieie e 90
. 0T = SRS 91
SUIMIMIATY ..ttt ettt e et e e kbt e e ket e e bt e e ea e bt e s bt e n Rt e e be e e bt e e e beeeansneeanes 92
Chapter 4 Metadata and RefleCtionccccovvveiiiic i 99
L] To = U TSSO 101
RETIECTION ...t b bbbttt 102
Sample RefleCtion Programccocuiiieiiiie ettt 103
System.Reflection. ASSEMDIYooiiiiii s 106
YA (<] T Y/ 0 LT TSP U PP PR PPROR PRSP 107
System.Reflection.MethodINTO.........c.coveiiiiiiecc s 109
DYNamMIC INVOCALION.........cceiiiiiicciecie et ra e ene e 110
Late BINGING ...veeeeiiieciieeee ettt b e b et n e be e 111
LateBinding EXAMPIE ..o 112
LD 4 bbb bbbt es 113
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC vi

All Rights Reserved

SUMIMAIY ...ttt b etttk e et e b et e s b e e e be e e st e e he e e st e e nhe e e nb e e sbeeanbeesrneenbeearneas 114

Chapter 5 1/0 and Serializationcccoeiiiiinieiiiiee e 119
Input and OULPUL IN .NET ..cveiee e 121
D] (T3 (0] TSRS P TSR RRR 122
Directory EXample Programoooioioiiiiieee e 123
FIlES AN STIEAIMS ...ttt 126
“Read” COMMANG ..ottt bbbt ee 128
Code for “Write” COMMANGooviiiiieiie et 129
LT Fo LT 72 11 o] o USSR 130
ATITIDULES ..ot bbbttt bbbttt b e et 131
Serialization EXAMPIEcoviiiiiiece e et 133
.01 TSP PURPRPSPSRRS 136
SUIMMEBIY .ottt bbb bt s b e e b e enb e et e sn e be b s nne s 137

Chapter 6 .NET Programming Modelcccoooiiiiiiiiieees 139
Garbage COIECLION ...c...ovieice et ereas 141
FINAHZE METNOAo et nne e 142
C# DeStrUCTOr NOTALIONc.veviiieiiie et 143
DT 00 L USRS 144
Finalize/Dispose EXAMPIE ... e 145
Finalize/DiSp0Se TeSt PrOGIamcciiiieiciieiiniesiesie sttt 147
Garbage Collection Performance..........ccouveeiiiereeie i 149
GBINEIALIONS ...ttt es ettt ettt b et b et e s et et e b e be b e nn e e s et e ee e e 150
PrOCESSES ...ttt e b e e e e nree s 151
LI 216 3 OSSR 152
ASYNCNIONOUS CallS ..ottt nas 153
ASYNCAIONOUS DEIEGALES.ccveeieeieciiecie ittt ettt et e e reenesre e 154
Using a CallBack MEthOd..........covoiiiiiiiicie e 155
BaCKGrOUNAWOIKET ..ot 158
Asynchronous Programs in CH# 5.0cccveeiirieiieiie e sia e 159
Task and TaSKSTRESUITSooviiiiiiicee bbb 160
AYSNC IMEBENOUS ... ettt sttt et nee s 161
NEW ASYNC EXAMPIE....coiiiiieiee bbb 162
SYNCAIONOUS Call......ooiiieiiiic et ae e e nneees 163
F L[O 1 | USRS 164
LI G216 110 To TR P PR 165
LD BA ettt et et e b e aneereena e e e e e ns 166
LAD BBt bbbt e 167
F AN o] o] [or Lo o K10 1 4 o] PSR 168
F N o] o] [or A To] o o] 4o U] VRSP OP 169
Application Domains and ASSEMDBIIESooiiiiiiiiiiiee e 170
N o] 01T 11U o PR 171
(01 = 1T Lo 14T U] o USRS 172
APP DOMAIN EVENTS ...ttt et ne s 173
LD BC .. it e sttt aeere et e es 174

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC vii

All Rights Reserved

Chapter 7 .INET THreadingccoooviiiiieiiee et 183
I =T (o OSSO RPRRR 185
NET Threading MOGEL..........oooiiiiiii e 186
CoNnS0le LOG EXAMPIE......ociiiiiiiiiee e 187
RACE CONUITIONSovviiete ettt bbbttt st b ere s 191
Race Condition EXAMPIEc.ooieiiiieiic et 192
Thread SYNChrONIZAtIONcceoiiiiiee e e 196
0] T o] SRR 197
o o] =D o] o L SR 198
USING CH 10CK KEYWOIQ.........oiiiieiecece ettt et nne e 199
Synchronization of CollECTIONS.oiiiiie s 200
TRIEAUPOOI CIASS ... ittt et te e snee e 201
ThreadPoOl EXAMPIE......ccooiie e 202
Starting a ThreadPool Tread...........c.ccccveiviiiiieiiece e 203
Foreground and Background THreads...........cccoiiiriiniin e 204
SYNChronizing TRIEAUSc.coviiiiiiie e 205
Improved ThreadPool EXaMPIEcvviiiiicece e 206
Task Parallel Library (TPL)....ccoiii it 208
LI S = 101 o] PSPPSR 209
SEAMTING TASKS ...ttt r e 210
Waiting for Task COMPIELIONccceeiieiiiiesee e 211
Data ParalleliSMc..oiiiiiiiiiiee e e 212
7. oI O SR PURPRPSPSRRR 213
SUIMMEBIY .ttt bbb e bt e et e nn b b e s nne s 214

Chapter 8 .INET SECUNILY ...oc.oiviiiiiiiieieeie ettt 223
Fundamental Problem Of SECUFILYcocvoiiiiiiici e 225
T 11T 01 o U o] PSSR 226
AULNOTIZALION ..o ettt b bbbt nb e bbb 227
The Internet and .NET SECUTILYoiviiiiiecie et 228
COUE ACCESS SECUNLY ..vveeiieniieiiesiiesiesee st et ettt sbe et s bt e beasb e beesbeeseeseeenbeeneesneesaeeneas 229
ROIE-BASEU SECUILY ..ottt 230
INET SECUILY CONCEPLS ...vveieeeiieieesie e etie et ee sttt e e e srae s e aeenaesta e aeaneesraenseanee e 231
PEIMISSIONS ...ttt ettt bbbt s et sb e s bbb e nbeebe e s e e s e e sne b nnis 232
IPErmMISSION INTEITACEovieiice et 233
IPermission Demand MEtNOdc.coviiiiieiiie e 234
IPermission Inheritance HIErarChycocooviiiiii e 235
StACK WALKINGeeeiiie ettt et et e s esreeeas 236
AASSEIT ettt R e e e e bt e b e e b e e re e 237
31T 3= o o USRI 238
Other CAS METNOUS.cuiiieieiee bbb 239
Security Policy SImplIfiCationccccoveiiiiiie s 240
SImMple SANADOXING APL.......ooe e 241
SANADOX EXAMPIE ... e 242

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC viii

All Rights Reserved

SEtiNG UP PEIMISSIONSciiiiiiiiiieieitie sttt sttt sbe et st be e nreas 243

Creating the SANUDOX........cviiiii e 244
Role-Based SECUNItY IN .NETcciiiiiiiieiie e nne e 245
IAENEILY ODJECLS ... re e re e enes 246
PrINCIPAL ODJECES ... it beenne e 247
Windows Principal INFOrMation............ccoiiiiiiiiiiiieeeee e 248
Custom Identity and PrinCIPalccovueiieiiiie e 250
B F Yol 0 (=T] (] 2o USSR 251
BaASICSECUIEY.CS ..ttt ettt ettt be e be e bt e b e neenre e 252
O LT £ o2 TP PP PR OPRRTPPPP 255
ROIES.CS ..ttt bbb bbb bbbt e 257
ROIEDEIMO.CS ..ttt bbbttt sttt be b e nbeene e e e nees 259
SAMPIE RUN ...ttt e b et e b e e be e st e beenbesneenreas 260
PrINCIPAIPEIMISSION ...ttt 261
LD B bbbt 262
SUMMIATY .ttt ettt ettt ettt e e bt e et e e e b e e et e e et e e e e st e e sab e e e nab e e e nnb e e e nbbeeabneeanteae s 263
Chapter 9 Interoperating with COM and WiN32..........ccccceveiieieeie e, 267
Interoperating Between Managed and Unmanaged COodecccooveveeveereeieseeseennenns 269
COM Interop and PINVOKE.c.coiiiieiie ettt 270
Calling COM Components from Managed Codecccovvererieiieniiie e 271
The TIDIMP.EXE ULHITY ..o 272
TIDIMP SYNTAX .ttt et e e e ra e te e e ere e teeneesneeeas 273
USING TIDIMIP ettt e b s e e e neeerneareene e 274
Demonstration: Wrapping a Legacy COM SEIVEN........cccceiiriiiiinnieeiiesee e nie e, 275
ReQISLEr the COM SEIVETccuiiiiiiie et 277
OLE/COM ODJECE VIBWETveeiiesieeie et e e siessaesaaaeestaesneansessaesseansesseesseansesseessessenssens 278
64-bit System CONSIAErAtIONSccviiiiiireie ettt sreenas 279
RUN the COM CHIBNT ..o et ae e 280
Implement the .NET ClHENt Programccoeiiieniiiniinineieee e 282
The Client Target PIatform IS 32-Dit...........ccceiviiiiiieiise e 284
Import a Type Library Using Visual StUdiocccooviiiiiiiiciiee e 286
Platform Invocation Services (PINVOKE)cccouiiiiiiiiiiiiin it 288
A SIMPIE EXAMPIE ...t 289
Marshalling Out Parametersc.coviieiiericie e 291
TrANSIALING TYPES .oevveivieie ettt et te e b e art e ba et e e saenteeneaneesraannan 293
7. o1 SRS PSPPSRI 295
SUIMIMEBIY .t b bbbt b e bt enb et a ke be e n e nne s 296
Chapter 10 ADO.NET and LINQ......cccoiiiiiiiiiiisiiieieiee e 299
N L 28\ V1 TSP 301
ADO.NET AFCHITECIUIE ..ottt enes 302
INET Data PrOVIGEISiiviiiiiiieiieieie sttt sttt sttt 304
ADO.NET INEEITACES ...ttt 305
INET NAMESPACES......eeeeiiiieiiie ettt e e sbe e nn e 306
CONNECEEA DALA ACCESS ...eeveereieriesieeieaiesieesieeiesreesseesteaseesreesteaseeaseesseeseesseesseeseaneesseenes 307
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC iX

All Rights Reserved

ACINEPUD DAtADASE ... 308

Creating @ CONNEBCTIONeiiiiiieieeie bbbt 309
SQL EXPress LOCAIDB..........ccviiiiiee ettt e e naeanaenneas 310
SQILOCAIDB ULHILY ..ottt et 311
Using Database EXPIOTEooiiiiiie e 312
Performing QUETTES ...ttt bbbttt 313
ConNeCting t0 @ DAADASEcccveiuieieiieiie et 314
DataDaSE COURovveuveieitiiiieeeee ettt et bbb e b e e e 315
CONNECLION SEING 1.vtiiiiiiiie ettt ettt et et e b e e nbe e b e sneesaeeneas 317
USING COMIMANGS.......c.viitiitiiiieiieie ettt bbb bbbt e e e 318
Creating a Command ODJECT........cccueiiie et 319
USING @ Data REATENc.eoiveeiiciie ettt 320
Data Reader: Code EXaMPIE.......cooiiiiiiiiieiecie e 321
(€12 T o 0] | [Tox £ [] SS SRRSO 322
EXECULING COMMANTS ..ottt e e e sneenaeeraene e 323
Parameterized QUETIEScveeieiiireeitie et e ette et see et stre e sre e stte e sbe e s be e beesabeesbaesnbeesbeeenree e 324
Parameterized QUEry EXamPIec.ooo i 325
LAD LOA .ottt et e tenreeaeereena e e e e e es 326
DALASEL ... e 327
DataSet ArCNITECIUEoivi ettt bbbt 328
WY DALASEE?eoeieiieciieiee ettt sttt sb e bbb e et e neesre et nee e 329
DataSet COMPONENTS.oiiiirieriitieiei et n e 330
D U Vo = o] (-] USSR 331
DataSet EXample Program...... ..ot 332
Data ACCESS ClaSScutiiiiiiiieitieie ittt sttt nb et ene e 333
RELFEVING the DAoiuiiiiiiieieie ittt 334
FIIING @ DAIASELccveiiieciece ettt e e s te e e s e e naeeneennee e 335
ACCESSING @ DALASEL.......cciviiiciiccie ettt r e 336
Using a Standalone DataTable...........ccooiiioiiiie e 337
DataTable Update EXaMPIE ..o 338
AJAING 8 NEW ROW.....ccuiiiiiiiiicie ettt ettt e te s e ssaesaeannesraenteaneesneeneas 341
Searching and Updating @ ROWcc.cooviiiiiiic et 342
DEIELING @ ROW ...ttt bbb sttt e e e e b ene e 343
L0 A =T 61 o] o1 SRS 344
ROW STALE ... 345
Iterating Through DataROWScoiiiiiiiieic e 346
ComMMANG BUITAEIS ...ttt bbbt nne s 347
UpPdating @ DAtADASEoiviiiiiiiieieie e 348
D U B =10 To 1o oSSR 349
DataGridVIEW CONIOL........cviiiiiieieie et sre e 350
Language Integrated QUEry (LINQ)oouiiieiiiiieiiesene e 351
LINQ 0 ADO.NET oottt st na e ena e e e e e 352
Bridging ODJects and Data..........cceiverieiieiieiieie et nne e 353
LINQ DEIMO ..ottt sttt st bbb neeneeneas 354
ODbject Relational DESIGNETcc.eoiiiiieiie ettt 355
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC X

All Rights Reserved

DI I S ENSEttt nnnens 357

Basic LINQ QUETY OPEIALOISc.eiieieieierieste sttt sttt b sne s 358
ODbtaiNiNg @ DAt SOUICEcveiieiieeie ettt e e ste e sneesneeneas 359
LINQ QUENY EXAMPIE......ceiieieiieeie ettt et nne e 360
L1 T=] T Vo RS RUSP ST RTRI 361
(0] (0 (=] 81 oo TSP TP URPR PR 362
o [0 =0T 1[0 SRR S 363
ODbtaiNiNg LiStS @N0 ATTAYSciveeieiieiieite et e st see e ste e steeae e sreetesneesreenaesneesreas 364
DEfErred EXECULIONoouviieieiieiee ettt sttt sb et ne e 365
MOdITYiNgG @ DAtA SOUICEcueiuiiiieiieieieite ettt b 366
Performing Inserts via LINQ t0 SQL.....cccueiiiieiieiieie e sie e 367
Performing Deletes via LINQ t0 SQLcccvoiiiiiiiieiecic e 368
Performing Updates via LINQ t0 SQLcccooiiiiiiiiiiee e 369
LAD LOB ...ttt re e aeereena e nens 370
SUMIMIATY ..tttk t ettt e bt e e kbt e et b e e e abb e e eab e e aab e e e nsb e e e nbb e e e nbbeeentneeenteee s 371
AppendiX A .NET REMOTING .c..ocveieeieiie sttt 381
Distributed Programming in .NETcccoiiiiiiiiicee s 383
Windows Communication FOUNALIONccoviiiiiiiiiiiiieiee e 384
NET Remoting ArChITECIUIEeeiveeiiie et 385
Remote Objects and Mobile ODJECESccviiiiiiiie e 387
Object Activation and LITELIMEoiiiiiiiiiee e 388
Singleton and SINGIECAILcoov oo 389
NET Remoting EXaMPIe........ooioiiiceeeis ettt 390
NET Remoting EXample: DETS ..o 391
NET Remoting EXampPle: SEIVETcooiiiiiiiiiiicieee e 392
NET Remoting Example: CHENt..........cooov i 394
LD A e bRttt b bbb et e e 396
SUMIMAIY ...ttt etttk ekt ekt e st e e ehe e e a b £ e ahe e e mb e e ehe e e mbeeebbeambeenaneenbeearneas 397
Appendix B Learning RESOUICESccuoiiiiiiiiieiiie et 401
Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC xi

All Rights Reserved

Rev. 4.6 Copyright ©2013 Object Innovations Enterprises, LLC xii
All Rights Reserved

NetCs Chapter 1

Chapter 1

NET Fundamentals

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 1
All Rights Reserved

NetCs Chapter 1

NET Fundamentals

Objectives

After completing this unit you will be able to:

e Understand the problems Microsoft .NET is designed
to solve.

e Understand the basic programming model of
Microsoft .NET.

e Understand the basic programming tools provided by
Microsoft .NET.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 2
All Rights Reserved

NetCs Chapter 1

What Is Microsoft .NET?

e Microsoft .NET was developed to solve three
fundamental problems.

e First, the Microsoft Windows programming model
must be unified to remove the widely varied
programming models and approaches that exist
among the various Microsoft development
technologies.

e Second, Microsoft based solutions must be capable of
interacting with the modern world of heterogeneous
computing environments.

e Third, Microsoft needs a development paradigm that
Is capable of being expanded to encompass future
development strategies, technologies, and customer
demands.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 3
All Rights Reserved

NetCs Chapter 1

Open Standards and Interoperability

e The modern computing environment contains a vast
variety of hardware and software systems.

— Computers range from mainframes and high-end servers, to
workstations and PCs, and to small mobile devices such as
PDAs and cell phones.

— Operating systems include traditional mainframe systems,
many flavors of Unix, Linux, several versions of Windows,
real-time systems and special systems such as PalmOs for
mobile devices.

— Many different languages, databases, application
development tools and middleware products are used.

e Applications need to be able to work in this
heterogeneous environment.

— Even shrink-wrapped applications deployed on a single PC
may use the Internet for registration and updates.

e The key to interoperability among applications is the
use of standards, such as HTML, HTTP, XML,
SOAP, and TCP/IP.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 4
All Rights Reserved

NetCs Chapter 1

Windows Development Problems

e In classic Windows development design and language
choice often clashed.

— Visual Basic vs. C++ approach

— |Dispatch, Dual, or Vtable interfaces
— VB vs. MFC

— ODBC or OLEDB or ADO

e Application deployment was hard.
— Critical entries in Registry for COM components
— No versioning strategy

— DLL Hell

e Security was difficult to implement.

— No way to control code or give code rights to certain actions
and deny it the right to do other actions.

— Security model is difficult to understand. Did you ever pass
anything but NULL to a LPSECURITY_ATTRIBUTES
argument?

e Too much time is spent in writing plumbing code that
the system should provide.

— MTS/COM+ a step in the right direction.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 5
All Rights Reserved

NetCs Chapter 1

Common Language Runtime

e The first step in solving the three fundamental
problems is for Microsoft .NET to provide a set of
underlying services available to all languages.

e The runtime environment provided by .NET that
provides these services is called the Common
Language Runtime or CLR.

— A runtime provides services to executing programs.

— Traditionally there are different runtimes for different
programming environments. Examples of runtimes include
the standard C library, MFC, the Visual Basic 6 runtime and
the Java Virtual Machine.

e These services are available to all languages that
follow the rules of the CLR.

— C# and Visual Basic are examples of Microsoft languages
that are fully compliant with the CLR requirements.

— Not all languages use all the features of the CLR.

e As a terminology note, beginning with .NET 2.0,
Microsoft has dropped the “.NET” in the Visual
Basic language.

— The pre-.NET version of the language is now referred to as
Visual Basic 6 or VB6.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 6
All Rights Reserved

NetCs Chapter 1

Serialization Example

e Let us use serialization to illustrate how the CLR
provides a set of services that unifies the Microsoft
development paradigm.

— Every programmer has to do it.

— It can get complicated with nested objects, complicated data
structures, and a variety of data storages.

— The programmer should also be able to override the system
service if necessary.

o See the Serialize example in this chapter.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC
All Rights Reserved

NetCs Chapter 1

Serialization Example (Cont’d)

e Ignore the language details covered in a later chapter.

[Serializable]

class Customer

{
public string name;
public long id;

by

class Test

{
static void Main(string[] args)

{
ArrayList list = new ArrayList();

Customer cust = new Customer();
cust.name = "Charles Darwin;
cust.id = 10;

list.Add(cust);

cust = new Customer();
cust.name = ""lIsaac Newton";
cust.id = 20;
list.Add(cust);

foreach (Customer x In list)
Console._WriteLine(X.name + ": " + x.i1d);

Console._WriteLine('Saving Customer List");
FileStream s = new FileStream(''cust.txt",
FileMode.Create);
SoapFormatter f = new SoapFormatter();
SaveFile(s, T, list);

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 8
All Rights Reserved

NetCs Chapter 1

Serialization Example (Cont’d)

Console._WriteLine("'Restoring to New List");
s = new FileStream(*'cust.txt",
FileMode.Open);
T = new SoapFormatter();
ArrayList list2 =
(ArrayList)RestoreFile(s, T);

foreach (Customer y in list2)
Console._WriteLine(y.-name + ": " + y.i1d);

}

public static void SaveFile(Stream s,
IFormatter f, IList list)
{
f.Serialize(s, list);
s.Close();
+

public static IList RestoreFile(Stream s,
IFormatter T)

IList list = (IList)f.Deserialize(s);
s.Close();
return list;

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 9

All Rights Reserved

NetCs Chapter 1

Attribute-Based Programming

e We add two Customer objects to the collection, and
print them out. We save the collection to disk and
then restore it. The identical list is printed out.

Charles Darwin: 10

Isaac Newton: 20

Saving Customer List
Restoring to New List
Charles Darwin: 10

Isaac Newton: 20

Press enter to continue...

e \We wrote no code to save or restore the list!

— We just annotated the class we wanted to save with the
Serializable attribute.

— We specified the format (SOAP) that the data was to be
saved.

— We specified the medium (disk) where the data was saved.

— This is typical class partitioning in the .NET Framework.

e Attribute-based programming is used throughout
NET to describe how code and data should be
treated by the framework.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 10
All Rights Reserved

NetCs Chapter 1

Metadata

e The compiler adds the Serializable attribute to the
metadata of the Customer class.

e Metadata provides the Common Language Runtime
with information it needs to provide services to the
application.

— Version and locale information
— All the types
— Details about each type, including name, visibility, etc.

— Details about the members of each type, such as methods, the
signatures of methods, etc.

— Attributes

e Metadata is stored with the application so that .NET
applications are self-describing. The registry is not
used.

— The CLR can query the metadata at runtime. It can see if the
Serializable attribute is present. It can find out the structure
of the Customer object in order to save and restore it.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 11
All Rights Reserved

NetCs Chapter 1

Types

o Types are at the heart of the programming model for
the CLR.

— Most of the metadata is organized by type.

e A type is analogous to a class in most object-oriented
programming languages, providing an abstraction of
data and behavior, grouped together.

e A type in the CLR contains:
— Fields (data members)
— Methods
— Properties

— Events (which are now full fledged members of the Microsoft
programming paradigm).

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 12
All Rights Reserved

NetCs

Chapter 1

NET Framework Class Library

e The SoapFormatter and FileStream classes are two of
the thousands of classes in the .NET Framework that
provide system services.

e The functionality provided includes:

Base Class Library (basic functionality such as strings, arrays
and formatting).

Networking
Security

Remoting
Diagnostics

1/0

Database

XML

Web Services
Web programming

Windows User Interface

e This framework is usable by all CLR compliant
languages.

Rev. 4.6

Copyright © 2013 Object Innovations Enterprises, LLC 13
All Rights Reserved

NetCs Chapter 1

Interface-Based Programming

Interfaces allow you to work with abstract types in a
way that allows for extensible programming.

The SaveFile and RestoreFile routines are written
using the IList and IFormatter interfaces.

These routines will work with all the collection classes
that support the IList interface, and the formatters
that support the IFormatter interface.

Implementation inheritance permits code reuse.

You can implement the ISerializable interface to
override the framework’s implementation.

— The metadata for the type tells the framework that the class
has implemented the interface.

Interface-based programming allows classes to
provide implementations of standard functionality
that can be used by the framework.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 14

All Rights Reserved

NetCs Chapter 1

Everything is an Object

e Every type in .NET derives from System.Object.’

e Every type, system or user defined, has metadata.

— In the sample the framework can walk through the ArrayL.ist
of Customer objects and save each one as well as the array
itself.

e All access to objects in .NET is through object
references.

 An exception is the pointer type, which is rarely used in C#.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 15
All Rights Reserved

NetCs Chapter 1

Common Type System

e The Common Type System (CTS) defines the rules
for the types and operations that the CLR will
support.

— The CTS limits .NET classes to single implementation
inheritance.

— The CTS is designed for a wide range of languages, not all
languages will support all features of the CTS.

e The CTS makes it possible to guarantee type safety.

— Access to objects can be restricted to object references (no
pointers), each reference refers to a defined memory. Access
to that layout is only through public methods and fields.

— By performing a local analysis of the class, you can verify to
make sure that the code does not perform any inappropriate
memory access. You do not have to analyze the users of the
class.

e NET compilers emit Microsoft Intermediate
Language (MSIL or IL) not native code.

— MSIL is platform independent.

— Type-safe code can be restricted to a subset of verifiable
MSIL expressions.

— Once code is verified, it is verified for all platforms.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 16
All Rights Reserved

NetCs

Chapter 1

ILDASM

e The Microsoft Intermediate Language Disassembler
(ILDASM) can display the metadata and MSIL
instructions associated with .NET code.

— It is a very useful tool both for debugging and increasing
your understanding of the .NET infrastructure.

e You may wish to add ILDASM to your Tools menu in

Visual Studio 2013.

— Use the command Tools | External Tools. Click the Add
button, enter ILDASM for the Title, and click the ... button to
navigate to the folder \Program Files\Microsoft
SDKs\Windows\v8.1A\bIN\NETFX 4.5.1 Tools.

Rev. 4.6

External Tools ed A
Menu contents:
Create &GUID Add
Error Loo&ku
Delete |
Mave Lip |
MeEwve Dawn |
Title: | 1LDASM
Command: I C:'Program Files\Microsoft SDEs\Windows\wa E
Arguments: I J
Initial directory: I j
[T Use Qutput window ™ Prompt for arguments
[T | Tireat output as Unicode ¥ Close on exit
Ok | Cancel | Apply |
Copyright © 2013 Object Innovations Enterprises, LLC 17

All Rights Reserved

NetCs Chapter 1
ILDASM (Cont'd)
e You can use ILDASM to examine the .NET
framework code.
— Here is a fragment of the MSIL from the Serialize example.
F TestzMain : void({string[]) _|EI|£|
Find Find Mext
IC 6829 newobj instance void Customer::.ctor() -]
IL_@82e: stloc.1
IL_882f: 1dloc.1
IL_8838: 1ldstr "Isaac Hewton®
IL_8835: stfld string Customer::name
IL_8683a: 1dloc.1
IL_@83b: 1l1dc.il.s 28
IL_@83d: conu.i8
IL_@83e: stfld int64 Customer::id
IL_8843: 1dloc.8
IL_8e4y: 1dloc.1
IL_8845: calluirt instance int32 [mscorlib]System.Collections.ArraylList
IL_@84a: pop
IL_884b: nop
IL_884c: 1dloc.8
IL_@884d: callvirt instance class [mscorlib]System.Collections.IEnumerat
IL 8852: stloc.s csicénonn
-try
{
IL_8854: br.s IL_8884
IL_8856: 1dloc.s cs5550000
IL_8858: calluirt instance object [mscorlib]System.Collections.IEnume
IL_@885d: castclass Customer
IL_8862: stloc.2
IL_8863: 1dloc.2
IL_88é4: 1dfld string Customer::name
IL_8869: 1ldstr =
IL_8@6e: 1dloc.2
IL_@@6f: 1dfld int64 Customer::id
IL_8874: box [mscorlib]System.Intod
IL_8879: call string [mscorlib]System.String::Concat{object,
object, -
4] | AW
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 18

All Rights Reserved

NetCs Chapter 1

.NET Framework SDK Tools

e Installing Visual Studio 2013 will also install the
NET Framework SDK, version 8.1A.

— These tools are located in the folder \Program Files\Microsoft
SDKs\Windows\v8.1A\binN\NETFX 4.5.1 Tools.

l C:\ Program Files\Microsoft SDKs\Windows\v8.1A\bin - |I:I|i|
r—,) .
|g|,\ /,lv| . v bin ~NETFX... = - l‘ﬂ” Search NETFX 4.5.1 Tools 5!]‘
Organize * Indudeinlibrary + Sharewith + Burn Mew folder $5 - E] ..E}.
El ¢ Program Files ﬂ , 1033 y_lildasm. exe.config
4 C Fil
= SN s [m5al.exe [mic.exe
, DVD Maker
¥_Jal.exe.config ¥_lc.exe.config
) Internet Explorer
| Microsoft ActiveSync Easpnet_intern.exe !Emage.exe
| Microsoft Games [m-aspnet_merge.exe M mageui.exe
| Microsoft Help Viewer ¥_laspret_merge.exe.config [0 Imgmtdassgen.exe
| Microsoft Office [m7laxImp.exe [mIMSBLildTaskHost.exe
= . Microsoft SDKs (= drver. exe ¥ IMSBuildTaskHost. exe. oo
. Cpp REST SDK for Vist [ICorFlags.exe [n7IPEVerify.exe
=L Windows o® disco.exe ¥_IPEVerify.exe.config
| v7.1A [EIFUSLOGYW . exe [EResGen.exe
| wB.0A
Egacutil.exe ESEc.ﬁ.nnntate.E:(E
[+ 8.1
J wa.
g L 1A l,\'__'lgacl_lﬁl.exe.cnnﬁg ¥ coen, exe
ioamn) <y
| Bootstrapper j?ildasm.exe ¥_1sn.exe.config
| Microsoft SQL Server ;I 4| | _FI
51 tems
I

— They can be run at the command line from the Visual Studio
2013 Command Prompt?, which can be started from All
Programs | Microsoft Visual Studio 2013 | Visual Studio
Tools | Developer’s Command Prompt for VS2013.

2 You may need to run the Command Prompt as Administrator in some cases.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 19
All Rights Reserved

NetCs Chapter 1

Language Interoperability

e Having all language compilers use a common
intermediate language and common base class makes
it possible for languages to interoperate.

— All languages need not implement all parts of the CTS.

— One language can have a feature that another does not.

e The Common Language Specification (CLS) defines a
subset of the CTS that represents the basic
functionality that all .NET languages should
iImplement if they are to interoperate with each other.

— For example, a class written in Visual Basic can inherit from
a class written in C#.

— Interlanguage debugging is possible.

— CLS rule: Method calls need not support a variable number
of arguments even though such a construct can be expressed
in MSIL.

— CLS prohibits the use of pointers.

e CLS compliance only applies to public features.

— C# code should not define public and protected class names
that differ only by case sensitivity since languages as Visual
Basic are not case sensitive. Private C# fields could have
such names.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 20
All Rights Reserved

NetCs Chapter 1

Managed Code

e In the serialization example we never freed any
allocated memory.

— Memory that is no longer referenced can be reclaimed by the
CLR’s garbage collector.

— Automatic memory management eliminates the common
programming error of memory leaks.

— Garbage collection is one of the services provided to .NET
applications by the Common Language Runtime.

e Managed code uses the services of the CLR.

— MSIL can express access to unmanaged data in legacy code.

e Type-safe code cannot be subverted.

— For example, a buffer overwrite is not able to corrupt other
data structures or programs. Security policy can be applied to
type-safe code.

e Type-safe code can be secured.
— Access to files or user interface features can be controlled.

— You can prevent the execution of code from unknown
sources.

— You can prevent access to unmanaged code to prevent
subversion of .NET security.

— Paths of execution of .NET code to be isolated from one
another.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 21
All Rights Reserved

NetCs Chapter 1

Assemblies

e NET programs are deployed as an assembly.

— The metadata about the entire assembly is stored in the
assembly’s manifest.

— An assembly has one or more EXESs or DLLs with associated
metadata information.

=1alx]

Find Find Mext

I// Metadata version: v4.B8.30319 -
.assembly extern mscorlib

{

-publickeytoken = (B7 7A 5C 56 19 34 EO 89)
-ver 4:@:-8:8

b

.assembly extern System.Runtime_Serialization.Formatters.Soap

{
-publickeytoken = (B@ 3F S5F 7F 11 D5 8A 3a)
-ver 4:@:-8:8

b

.assembly Serialize

{
-.custom instance void [mscorlib]3ystem.Reflection.fissemblyTitlenttr
.custom instance void [mscorlib]3ystem.Reflection.fissemblyDescripti—
.custom instance void [mscorlib]3ystem.Reflection.fissemblyConfigura
.custom instance void [mscorlib]System.Reflection.fissemblyCompanyAt
.custom instance void [mscorlib]System.Reflection.fAssemblyProductAt
-.custom instance void [mscorlib]3ystem.Reflection.fissemblyCopyright

.custom instance void [mscorlib]System.Reflection.fissemblyTrademark
.custom instance void [mscorlib]System.Runtime.InteropServices_Coml
-.custom instance void [mscorlib]3ystem.Runtime.InteropServices . Guid

.custom instance void [mscorlib]System.Reflection.fissemblyFilelersi
.custom instance void [mscorlib]System.Runtime._Uersioning.TargetFra

1] | M Lz

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 22
All Rights Reserved

NetCs Chapter 1

Assembly Deployment

e The assemblies can be uniquely named.

— Assemblies can be versioned and the version is part of the
assembly’s name.

— Unique (strong) names use a public/private encryption
scheme.

— The culture used can also be made part of the assembly
name.

o Assemblies are self-describing. Information is in the
metadata associated with the assembly, not in the
System Registry.

e Private, or xcopy deployment requires only that all
the assemblies an application needs are in the same
directory.

— This makes deployment of components much simpler.

e Public assemblies require a strong name and an entry
in the Global Assembly Cache (GAC).

e Either approach means the end of DLL Hell!

— Components with different versions can be deployed side by
side and need not interfere with each other.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 23
All Rights Reserved

NetCs Chapter 1

JIT Compilation

e Before executing on the target machine, MSIL is
translated by a just-in-time (JIT) compiler to native
code.

e Some code typically will never be executed during a
program run.

— Hence it may be more efficient to translate MSIL as needed
during execution, storing the native code for reuse.

e \When a type is loaded, the loader attaches a stub to
each method of the type.

— On the first call the stub passes control to the JIT, which
translates to native code and modifies the stub to save the
address of the translated native code.

— On subsequent calls to the method transfer is then made
directly to the native code.

e As part of JIT compilation code goes through a
verification process.

— Type safety is verified, using both the MSIL and metadata.

— Security restrictions are checked.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC
All Rights Reserved

24

NetCs Chapter 1

ASP.NET and Web Services

NET includes a totally redone version of the popular
Active Server Pages technology, known as ASP.NET.

Whereas ASP relied on interpreted script code
interspersed with page formatting commands,
ASP.NET relies on compiled code.

— The code can be written in any .NET language, including C#,
Visual Basic, JScript.NET and C++/CLI.

ASP.NET provides Web Forms which vastly
simplifies creating Web user interfaces.

— Drag and drop in Visual Studio 2013 makes it very easy to
lay out forms.

— Also supported are ASP.NET MVC and Web API.

For application integration across the internet, Web
services use the SOAP protocol.

— The beautiful thing about a Web service is that from the
perspective of a programmer, a Web service is no different
from any other kind of service implemented by a class in a
NET language.

— Or you can use third-party web services which you did not
know existed when you designed your application.

Web services and C# (or Visual Basic) as a scripting
language allows Web programming to follow an
object-oriented programming model.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 25

All Rights Reserved

NetCs Chapter 1

The Role of XML

e XML is ubiquitous in .NET and is highly important
in Microsoft’s overall vision.

e Some uses of XML in .NET include:

— XML is used for encoding requests and responses in the
SOAP protocol.

— XML is the serialization format for disconnected datasets in
ADO.NET.

— XML is used extensively in configuration files.

— XML documentation can be automatically generated by
.NET languages.

— .NET classes provide a very convenient APl for XML
programming as an alternative to DOM or SAX.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 26
All Rights Reserved

NetCs Chapter 1

Performance

e Concerns about performance of managed code are
similar to the concerns assembly language
programmers had with high level languages.

e Garbage collection usually produces faster allocation
than C++ unmanaged heap allocation. Deallocation is
done on a separate thread by the garbage collector.

e JIT compilation takes a hit the first time when
verification and translation take place, but
subsequent executions pay no penalty.

e There is a penalty when security checks have to be
made that require a stack walk.

e Compiled ASP.NET code is going to be a lot faster
than interpreted ASP pages.

e Bottom line: for most of the code that is written, any
small loss in performance is far outweighed by the
gains in reliability and ease of development.

— High performance servers might still have to use
technologies such as ATL Server and C++.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 27
All Rights Reserved

NetCs Chapter 1

Summary

NET solves problems of past Windows development.
One development paradigm for all languages exists.
Design and programming language no longer conflict.

Web services provide an API for applications across
the Internet, typically using the SOAP protocol.

SOAP supports a high degree of interoperability,
since it is based on widely adopted standards such as
HTTP and XML.

NET has many features which will create a much
more robust Windows operating system.

NET uses managed code with services provided by
the Common Language Runtime that uses the
Common Type System.

The .NET Framework is a very large class library
available consistently across many languages.

Deployment is more rational and includes a
versioning strategy.

Metadata, attribute-based security, code verification,
and type-safe assembly isolation make developing
secure applications much easier.

Plumbing code for fundamental system services is
there, yet you can extend it or replace it if necessary.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 28

All Rights Reserved

NetCs Chapter 6

Chapter 6

NET Programming Model

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 139
All Rights Reserved

NetCs Chapter 6

NET Programming Model

Objectives

After completing this unit you will be able to:

Describe garbage collection in .NET and implement
the finalize/dispose pattern where appropriate.

Describe the process and thread model for .NET
applications, including thread isolation.

Explain asynchronous programming and use
asynchronous delegates to implement asynchronous
calls.

Use async and await keywords in C# 5.0 with the Task
class to implement asynchronous programs.

Describe how application domains support
application isolation, and implement programs that
use multiple application domains.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 140

All Rights Reserved

NetCs Chapter 6

Garbage Collection

e Memory in managed applications is reclaimed
through a garbage collection algorithm.

— While this prevents code from using already freed memory,
or from failing to free memory, it makes the reclamation of
non-memory resources harder.

— For example, files or database connections that have to be
closed, or server login connections that have to be
disconnected.

e The CLR tracks the use of memory that is allocated
on the managed heap. Memory that is no longer
referenced is marked as garbage.

e Classes that require non-memory resources to be
freed must implement the IDisposable interface.
IDisposable has one member, the Dispose method.

public interface IDisposable

{
void Dispose();
};

— The Dispose method is designed to be called by a client
program when it is done with an object, or knows that it is
safe to free the resources associated with the object.

— If some other name besides Dispose makes sense for the
class (such as Close or Cleanup), add that method and have
it call Dispose.

— These classes should also implement a Finalize method.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 141
All Rights Reserved

NetCs Chapter 6

Finalize Method

e Finalize is called by the garbage collector when it
frees the class’ memory resources.

e Finalize is a protected member of the System.Object
class, so it is only accessible within the class or a
derived class.

— The default implementation does nothing.

— A derived class should always call the base class’ Finalize
method.

e Managed objects should not be referenced in Finalize.

— The object’s class might itself implement Finalize, which
could get called first, leaving the object in an unpredictable
state.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 142
All Rights Reserved

NetCs Chapter 6

C# Destructor Notation

e The C# language provides a special tilde notation
~SomeClass to represent the overridden Finalize
method and this special method is called a destructor.

e The C# destructor automatically calls the base class
Finalize. Thus the following C# code

~SomeClass()
{

}

// perform cleanup

— generates code that could be expressed

protected override void Finalize()

{

// perform cleanup
base.Finalize();

}

— The second code fragment is actually not legal C# syntax,
and you must use the destructor notation.

e Although C# uses the same notation and terminology
for destructor as C++, the two are very different.

— The C++ destructor is called deterministically when a C++
object goes out of scope or is deleted.

— The C# destructor is called during the process of garbage
collection, a process which is not deterministic.

— It’s a good idea to minimize using the term “destructor” in
C#!

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 143
All Rights Reserved

NetCs Chapter 6

Dispose

e Since there are no guarantees exactly when the
Finalize method will be called, resources that are
scarce should be freed by the client through a Dispose
method.

o A Dispose method should also call the base class
Dispose as well to make sure that all its resources are
freed.

e It should also be written so that if a Dispose method is
called after the resources have been already freed, no
exception is thrown.

e A Finalize method is implemented even if a Dispose
method exists, just in case Dispose is not called.

— Since finalization is expensive, any objects that will no
longer acquire any more resources should call the static
method GC.SuppressFinalize method and pass it the this
reference.

e The classic case for a finalizer is a class that contains
some unmanaged resource, such as a database
connection. If they are not released when no longer
needed, the scalability of your application can be
affected.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 144
All Rights Reserved

NetCs Chapter 6

Finalize/Dispose Example

e The example program DisposeDemo provides an
illustration of finalization and the dispose pattern.

— The class SimpleLog implements logging to a file, making
use of the StreamWriter class.

using System;
using System.10;

public class SimpleLog : IDisposable

{
private StreamWriter writer;
private string name;
private bool disposeCalled = false;
public SimpleLog(string fileName)
{
name = fileName;
writer = new StreamWriter(fileName, false);
writer _AutoFlush = true;
Console._WriteLine("logfile ' + name + "
created);
public void WriteLine(string str)
{
writer WriteLine(str);
Console._WriteLine(str);
+
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 145

All Rights Reserved

NetCs Chapter 6

Finalize/Dispose Example (Cont’d)

public void Dispose()
{
1T(disposeCalled)
return;
// During finalization you should avoid
// accessing other managed objects. To see a
// problem, uncomment next line
// writer.Close();
GC.SuppressFinalize(this);
Console._WriteLine("logfile " + name +
" disposed™);
disposeCalled = true;
+
~SimpleLog()
{
Console_WriteLine("logfile " + name +
" finalized");
Dispose();
+
+

e The class SimpleLog supports the IDisposable
interface, and thus implements Dispose.

— The Dispose method displays a message at the console. To
make sure that a disposed object will not also be finalized,
GC.SuppressFinalize is called.

— The finalizer simply delegates to Dispose. To help monitor
object lifetime, a message is written to the console in the
constructor and in the finalizer, as well as in Dispose.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 146
All Rights Reserved

NetCs Chapter 6

Finalize/Dispose Test Program

e Here is the code for the test program:

using System;
using System.Threading;

public class DisposeDemo

{
public static void Main()
{
SimpleLog log = new SimpleLog(@"logl.txt"™);
log.-WriteLine('First line");
Pause();
log.Dispose();
log.Dispose();
log = new SimpleLog(@'log2.txt'");
log.WriteLine("'Second line™);
Pause();
log = new SimpleLog(@"log3.txt™);
log.WriteLine("'Third line');
Pause();
log = null;
GC.Collect();
Thread.Sleep(100);
+
private static void Pause()
{
Console._Write("'Press enter to continue™);
string str = Console.ReadLine();
+
+
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 147

All Rights Reserved

NetCs Chapter 6

Test Program (Cont’d)

e The SimpleLog object reference log is assigned in turn
to three different object instances.

— The first time, it is properly disposed. The second time, log is
reassigned to refer to a third object before the second object
Is disposed, resulting in the second object becoming garbage.
The Pause method provides an easy way to pause the
execution of this console application, allowing us to
investigate the condition of the files logl.txt, log2.txt, and
log3.txt at various points in the execution of the program.

e Running the program results in the following output:

logfile logl.txt created
First line

Press enter to continue
logfile logl.txt disposed
logfile log2.txt created
Second line

Press enter to continue
logfile log3.txt created
Third line

Press enter to continue
logfile log3.txt finalized
logfile log3.txt disposed
logfile log2.txt finalized
logfile log2.txt disposed

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 148
All Rights Reserved

NetCs Chapter 6

Garbage Collection Performance

e Allocation is very fast. Space on the managed heap is
always contiguous, so allocating a new object is
equivalent to incrementing a pointer.

— Allocation on an unmanaged heap is relatively slow, because
a list of data structures must be walked to find a block that is
large enough.

— The CLR uses generations during garbage collecting,
reducing the number of objects that are typically checked for
being garbage.

e Some empirical experience suggests that performance
may be very fast, but managed code may use
significantly more memory.

— For a fascinating report on one experiment, see “.NET Versus
COM?” by Robert Gunion, Dr. Dobbs Journal, October, 2002.

e NET 4.5 introduces background server garbage
collection, which can improve performance for
servers.

— For an in-depth discussion of .NET memory management,
see the article “Memory Management and Garbage
Collection in the .NET Framework on MSDN:

http://msdn.microsoft.com/en-us/library/vstudio/hh156531.aspx

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 149
All Rights Reserved

NetCs Chapter 6

Generations

e As an optimization, every object on the managed
heap is assigned to a generation.

— A new object is in generation 0 and is considered a prime
candidate for garbage collection.

— Older objects are in generation 1. Since such an older object
has survived for a while, the odds favor its having a longer
lifetime than a generation 0 object.

— Still older objects are assigned to generation 2 and are
considered even more likely to survive a garbage collection.
The maximum generation number in the current
implementation of .NET can be found from the
GC.MaxGeneration property.

e In a normal sweep of the garbage collector, only
generation 0 will be examined. It is here that the most
likely candidates are for memory to be reclaimed.

e All surviving generation 0 objects are promoted to
generation 1. If not enough memory is reclaimed, a
sweep will next be performed on generation 1 objects,
and the survivors will be promoted.

e Then, if necessary, a sweep of generation 2 will be
performed, and so on up until MaxGeneration.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 150
All Rights Reserved

NetCs Chapter 6

Processes

e A process is the environment in which a program
executes.

— Part of this environment is the address space in which the
code and data of the program reside.

— A process also has a set of environmental variables that is
associated with the program.

— A process has a current drive and directory.

— A process has one or more threads. A thread is what actually
executes the program’s code.

e Traditionally, processes are used to provide
application isolation, so that a fault in one process
will not corrupt another process.

e In .NET application isolation can be achieved by a
lighter weight entity called an application domain.

— We will discuss application domains later in the chapter.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 151
All Rights Reserved

NetCs Chapter 6

Threads

e Operating systems use processes to separate the
different applications that they are executing.
Threads run inside of processes to allow for multiple
execution paths inside of a process.

e Threads are what are scheduled by the operating
system, not processes or application domains.

e The NET Framework provides extensive support for
multiple thread programming in the
System.Threading namespace.

— The core class is Thread, which encapsulates a thread of
execution.

— The Thread object that represents the current executing
thread can be found from the static property
Thread.CurrentThread.

e The use of multiple threads can enable greater
responsiveness to shorter tasks, especially those
requiring user responses.

e With the advent of multiple-core CPUs, the use of
multiple threads can speed up computations through
parallel programming.

e Threads will be discussed in some detail in the next
chapter.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 152
All Rights Reserved

NetCs Chapter 6

Asynchronous Calls

e Normal method calls are synchronous, which means
that the calling thread cannot continue until the
called method returns.

e In an asynchronous call, the called method runs on a
different thread, and the method call returns
Immediately.

— The calling program continues executing until either a
specified callback is made or the calling program polls or
waits for completion.

e Asynchronous programming is supported in many
areas of the .NET Framework, including :

— File 1/0

— Networking
— Remoting

— Web services

— Asynchronous delegates

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 153
All Rights Reserved

NetCs

Chapter 6

Asynchronous Delegates

e Threads in .NET enable a powerful mechanism of
asynchronous delegates, which enable you to call any
target method asynchronously.

You must define a delegate which has the same signature as
the target method.

The common language runtime will synthesize Beginlnvoke
and EndInvoke methods for this delegate, having suitable
signatures.

Call Beginlnvoke to start the asynchronous call. The target
method will start up on a new thread, and Beginlnvoke will
return immediately.

Call EndInvoke to obtain the results of the asynchronous
call.

e Beginlnvoke returns an lIAsyncResult interface
reference that can be used to track the results of the
asynchronous invocation. 1AsyncResult has the
following public properties:

Rev. 4.6

AsyncState
AsyncWaitHandle
CompletedSynchronously

IsCompleted

Copyright © 2013 Object Innovations Enterprises, LLC 154
All Rights Reserved

NetCs Chapter 6

Using a CallBack Method

o A useful pattern for using an asynchronous delegate
Is to provide a callback method.

— The calling thread continues after Beginlnvoke.

— The callback is invoked when the target method completes.
However, any method called by an external thread is not
guaranteed to by thread safe, and so .NET 2.0 and later block
accessing any Windows controls in the callback method.

— A pattern for safe calls to Windows controls is also presented
in our example program.

e Use of a callback method is illustrated in an example
program.

— See AsyncGui\Step2.
=0 x|
Delay |5— Thread Id: 1
Yourname: [l el

Hello, John : threadld = 3
Azync Call |
Cick Me | Cear | Callva Bw |

— The target method GetGreeting returns a greeting string
personalized by your name. The thread ID under which it
runs is also returned. The target method sleeps for the
number of seconds specified in the Delay box.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 155
All Rights Reserved

NetCs Chapter 6

Using a CallBack Method (Cont’d)

— A second method SetText assigns text to a control in a
thread-safe manner. It uses a second delegate call if
necessary to assure thread-safe access to Windows controls.

— The synchronous call blocks, and the Click Me button will
not be responsive. The target method is running under the
same thread.

— The asynchronous call returns immediately, and Click Me
responds. The target method is running under a different
thread.

e There are four main pieces to the callback method
pattern.

— Define a delegate with the same signature as the target
method.

private delegate string GreetingDelegate(
string name, int delay, out int threadld);

— Create the delegate object and call Beginlnvoke. Note the
two extra parameters.

GreetingDelegate delg =
new GreetingDelegate(GetGreeting);

int threadld;
int delay = Convert.Tolnt32(txtDelay.Text);
IAsyncResult ar = delg.Beginlnvoke(txtName.Text,
delay,
out threadld,
new AsyncCal lback(Cal lbackMethod),
delg);

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 156
All Rights Reserved

NetCs Chapter 6

Using a CallBack Method (Cont’d)

— In the callback method, retrieve the delegate from
| AsyncResult and obtain the results by calling EndInvoke,
which includes the out and ref parameters of the target
method.

private void CallbackMethod(lAsyncResult ar)

1
GreetingDelegate delg =

(GreetingDelegate) ar.AsyncState;
int threadld;
string greeting =
delg.EndInvoke(out threadld, ar);

greeting = greeting + " I "
+ "threadld = " + threadld;
SetText(greeting, IblGreeting);

— Take steps to assign results to controls in a thread-safe
manner. The method SetText uses a control property
InvokeRequired to determine whether this can be performed
directly or if the callback method must be used.

//Thread-safe method for calling Windows controls
private void SetText(string MyText, Control ctl)

{
1T (ctl.InvokeRequired)

{
SetTextCallback d =
new SetTextCallback(SetText);
this.Invoke(d, new object[] {MyText, ctl});
s
else
{
ctl.Text = MyText;
}
s
Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 157

All Rights Reserved

NetCs Chapter 6

BackgroundWorker

e The BackgroundWorker control encapsulates the
asynchronous process discussed above.

e Placing the control on a form allows immediate use
without creating delegates and callback methods.

— Method used is RunWorkerAsync. Events called DoWork
and RunWorkerCompleted provide easy control and access
to results.

— DoWork replaces the delegate and the callback function. An
event argument, Result, allows passing of results.

— RunWorkerCompleted allows access to the results of
DoWork through the event argument Result.

private void cmdSafeAsync Click(object sender,
System.EventArgs e)

{
}

private void BackgroundWorkerl DoWork(object sender,
System.ComponentModel .DoWorkEventArgs e)

BackgroundWorkerl.RunWorkerAsync();

{
int threadld = O;
int delay = Convert.Tolnt32(txtDelay.Text);
string answer = GetGreeting(txtName.Text, delay,
out threadld);
answer = answer + ' - " + "threadld = " + threadld;
e.Result = answer;
}

private void BackgroundWorkerl RunWorkerCompleted(
object sender,
System.ComponentModel .RunWorkerCompletedEventArgs e)

IblGreeting.Text = e.Result.ToString();
by

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 158
All Rights Reserved

NetCs Chapter 6

Asynchronous Programs in C# 5.0

¢ In situations where an activity may be blocked (such
as file 1/0), application performance and
responsiveness may be improved with asynchronous
programming.

e NET 4.5 introduces new C# keywords async and
await to simplify asynchronous programming.

— The result is a much simpler asynchronous programming
model than provided with previous approaches.

e The essence of the new model is extremely simple:

— Apply the async keyword to a method that is to be called
asynchronously. Such a method is referred to as an “async
method.” As a naming convention, the method name should
end in “Async”.

— When you call an async method, use the await keyword. The
call will not complete until the asynchronous operation has
completed.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 159
All Rights Reserved

NetCs Chapter 6

Task and Task<TResult>

e The Task class represents an asynchronous operation.

e The Task<TResult> class represents an asynchronous
operation that returns a result.

e The Task class has several static Delay() methods.

— Task.Delay(Int32) creates a task that will complete after a
time delay specified in milliseconds.

— Task.Delay(TimeSpan) creates a task that will complete
after a time delay specified as a TimeSpan.

e The Task class is the fundamental class in the Task
Parallel Library (TPL), which was introduced with
NET 4.

— We will cover the Task class and TPL in more detail in the
next chapter.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 160
All Rights Reserved

NetCs Chapter 6

Aysnc Methods

e An async method has these characteristics:
— The method signature has an async modifier.
— By convention, the name of the method ends with “Async”.

— The return type is Task<TResult> if the method returns a
value of type TResult.

— The return type is Task if the method does not return a value.
— The return type is void for an async event handler.

— The method usually contains at least one await expression.
This marks a point where the method is suspended until a
pending asynchronous operation completes.

e In.NET 4.5 many .NET Framework classes contain
async methods.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 161
All Rights Reserved

NetCs

Chapter 6

New Async Example

e See NewAsyncGui\Step2 in the

chapter folder.

— You can make either a synchronous or an asynchronous call.

— Both calls are delayed for the number of seconds specified by

the user.

— The synchronous call is blocking, and so “Click Me” is not
responsive. The async call is responsive.

Async Demonstration

Delay I 5 Thread Id:
Your name: IJ,:.|-,,-,

Hello, John : threadld = 1

Click Me Clear |

=10]
|
Asyne Call |

e Try itout!

Rev. 4.6 Copyright © 2013 Object Innovations

All Rights Reserved

Enterprises, LLC 162

NetCs Chapter 6

Synchronous Call

private void cmdCall _Click(object sender, EventArgs

e)

{
int threadld;
int delay = Convert.Tolnt32(txtDelay.Text);
string greeting = GetGreeting(txtName.Text,
delay,
out threadld);
greeting = greeting + " - " + "threadld = " +
threadld;
IblGreeting.Text = greeting;
+

private string GetGreeting(string name, int delay,
out Int threadld)

{
Thread.Sleep(delay * 1000);
Thread t = Thread.CurrentThread;
threadld = t.ManagedThreadld;
return "Hello, " + name;

}

e |nitialization of thread info is done when the form is
loaded.

private void Forml Load(object sender, EventArgs e)
{
Thread t = Thread.CurrentThread;
int threadld = t.ManagedThreadld;
IblThreadld.Text = threadld.ToString();

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 163
All Rights Reserved

NetCs Chapter 6

Async Call

private async Task<string> GetGreetingAsync(string
name, Int delay)

{
Thread t = Thread.CurrentThread;
int threadld = t.ManagedThreadld;
await Task.Delay(delay * 1000);
return "Hello, "™ + name + " - " + "threadld = "'
+ threadld;
}

private async void cmdAsync Click(object sender,
EventArgs e)

{
int delay = Convert.Tolnt32(txtDelay.Text);
IblGreeting.Text =
await GetGreetingAsync(txtName.Text, delay);
by

e Notice how simple this code is!

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 164
All Rights Reserved

NetCs Chapter 6

Threading

= Async D =10 =]
Delay |5 Thread Id: 1
Your name: IJ,:,|-,,-, Cll

Hello, John - threadid = 1 x|
Clicked!!
| Click Me I Clear

e The async and await keywords do not result in
additional threads being created.

— An async method does not run on its own thread.

— The method runs on the current synchronization context. It
uses time on the thread only when the method is active.

e This approach to asynchronous programming using
async methods is almost always preferable to older
techniques, and is much simpler.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 165
All Rights Reserved

NetCs Chapter 6

Lab 6A

Using an Asynchronous Delegate

In this lab you will take an existing program that has a target
method called synchronously and implement an asynchronous call
via the callback pattern.

Detailed instructions are contained in the Lab 6A write-up at the
end of the chapter.

Suggested time: 30 minutes

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 166
All Rights Reserved

NetCs Chapter 6

Lab 6B

Using async and await Keywords

In this lab you will take an existing program that has a target
method called synchronously and implement an asynchronous call
using the Task class and the new keywords in C# 5.0.

Detailed instructions are contained in the Lab 6B write-up at the
end of the chapter.

Suggested time: 20 minutes

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 167
All Rights Reserved

NetCs Chapter 6

Application Isolation

e When writing applications it is often necessary to
isolate parts of the applications so that a failure of
one part does not cause a failure in another part of
the application.

e In Windows, application isolation has been at the
process level.

— In other words, if a process is stopped or crashes, other
processes will be unaffected.

— One process cannot directly address memory in another
process’ address space.

e For one application to use separate processes to
achieve isolation is expensive. To switch from one
process to another the process state must be saved.

e Process switch overhead includes:

— Thread switch (saving call stack, registers such as the
Instruction pointer

— Loading the information for a new thread
— Updating the scheduling information for the threads

— Any process state that must be saved and loaded (such as
accounting information and processor rights).

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 168
All Rights Reserved

NetCs Chapter 6

Application Domain

e The .NET application domain is a lightweight unit for
application isolation, fault tolerance, and security.

e Multiple app domains can run in one process. Since
the CLR checks code to be type-safe and verifies
security, app domains can run independently of each
other.

— No process switch is required to achieve application
isolation.

e A thread runs in one app domain at a time.

— Each app domain starts with a single thread. Additional
threads can be added as needed.

— There is no relationship between the number of app domains
and threads. A Web server might require an app domain for
each hosted application that runs in its process. The number
of threads in that process would be far fewer depending on
how much actual concurrency the process can support.

— A new app domain runs on the thread that created it.

e Code in one application domain cannot make direct
calls into the code (or even reference resources) in
another application domain. They must use proxies.

— Proxies are also used in calling to another process or even
another computer, using .NET Remoting.

— Proxies and .NET Remoting are discussed in Appendix A.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 169
All Rights Reserved

NetCs Chapter 6

Application Domains and Assemblies

e Applications are built from one more assemblies.

e Each application domain can be unloaded
independent of the others.

— You cannot unload an individual assembly from an app
domain.

— Unloading an app domain also frees all resources associated
with that app domain.

e By default if an assembly is loaded into several app
domains in a process, each app domain will get a
separate copy.

e Each process has a default application domain that is
created when the process is started.

— This default domain can only be unloaded when the process
shuts down.

e Hosts of the Common Language Runtime such as
ASP.NET or Internet Explorer critically depend on
this functionality.

e While you may never write code with application
domains, understanding them is critical to
understanding how .NET programs execute.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 170
All Rights Reserved

NetCs Chapter 6

AppDomain

e Application domains are represented by a class
AppDomain.

e This class has static methods for creating and
unloading application domains:

AppDomain domain2 = AppDomain.CreateDomain(
"Domain2', null, null);

AﬁﬁDomain.Unload(domain2);

e The sample program AppDomainDemo illustrates
working with app domains.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 171
All Rights Reserved

NetCs Chapter 6

CreateDomain

e While the CreateDomain method is overloaded, one

signature illustrates application domain isolation:

public static AppDomain CreateDomain(

)

string friendlyName,
Evidence securitylnfo,
AppDomainSetup i1nfo

e The Evidence parameter is a collection to the security

constraints on the application domain.

— The domain’s creator can modify this collection to control
the permissions that the executing app domain can have.

The AppDomainSetup parameter specifies setup
information about the domain.

— Among the information specified is the location of the app
domain’s configuration file and where private assemblies are
loaded.

— Each app domain can be configured independently of each
other.

Code isolation, setup isolation, and control over
security combine to ensure application domains are
independent of each other.

In the Security chapter we will illustrate another
overload of CreateDomain(), which is used to create a
sandbox with restricted permissions.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 172

All Rights Reserved

NetCs

App Domain Events

Chapter 6

e To help in maintaining isolation, the AppDomain class

allows you to setup event handlers
— when an assembly loads
— when the domain unloads

— when an unhandled exception occurs

— when attempts to resolve assemblies, types and resources fail.

}}-Add event handlers
domain2._AssemblylLoad += new

AssemblylLoadEventHandler (LoadEventHandler);

domain2.DomainUnload += new
EventHandler (DomainUnloadHandler);

public static void LoadEventHandler(object sender,

AssemblyLoadEventArgs args)
{

Console._WriteLine(""ASSEMBLY LOADED: *

args.LoadedAssembly._Ful IName) ;
Console_WriteLine();

}

public static void DomainUnloadHandler(
object sender, EventArgs args)
{

Console._WriteLine(""'DOMAIN UNLOADED™);
Console._WriteLine();

}

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC
All Rights Reserved

+

173

NetCs Chapter 6

Lab 6C

Working with App Domains

In this lab you will incrementally create a demonstration program
that illustrates a number of features in working with application
domains. The exercise also reviews some important concepts
concerning program startup, command-line arguments, assemblies
and reflection.

Detailed instructions are contained in the Lab 6C write-up at the
end of the chapter.

Suggested time: 60 minutes

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 174
All Rights Reserved

NetCs Chapter 6

Summary

e The CLR provides automatic garbage collection, but
you can implement the finalize/dispose pattern for
greater control over how memory is managed in your
application.

e .NET has a sophisticated process and thread model
whose features include thread isolation and thread
synchronization.

e Asynchronous delegates enable you to call any target
method asynchronously.

e You can use async and await keywords with the Task
class to implement asynchronous programs in C# 5.0.

e Application domains provide a lightweight means of
supporting application isolation.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 175
All Rights Reserved

NetCs Chapter 6

Lab 6A

Using an Asynchronous Delegate

Introduction

In this lab you will take an existing program that has a target method called
synchronously and implement an asynchronous call via the callback pattern.

Suggested Time: 30 minutes

Root Directory: OIC\NetCs

Directories: Labs\Lab6A\AsyncGui (do your work here)
Chap06\AsyncGui\Stepl (backup of starter code)
Chap06\AsyncGui\Step2 (answer)

Instructions

1. Build the starter project and observe the working of the Call button, which makes a
synchronous call. If you click “Click Me,” nothing will happen (but the request will
be queued, and when the call completes, you will see both the results of the call
displayed and a message box pop up!). Study the code.

2. Declare a delegate GreetingDelegate in Form1 that has the same signature as the
GetGreeting method, which we will use as our callback.

3. Implement the handler for the Async Call button. You will need to instantiate a
GreetingDelegate object and then make the call to Beginlnvoke.

4. Define a method CallbackMethod that has the same signature as the AsyncCallback
delegate that is provided by the .NET Framework.

5. Retrieve the GreetingDelegate from the IAsyncResult that is passed as a parameter
to CallbackMethod.

6. Call EndInvoke. Note that the method synthesized by .NET takes the out parameter
from the target method as well as the 1AsyncResult. Use the results to set the label
control with the greeting string and the thread ID used in the called method.

7. Build and run. Try out both synchronous and asynchronous calls. Notice that for
synchronous calls the same thread is used in the called method, and a different thread
is used in the asynchronous calls. Try the “Click Me” button in each case.

8. Optional: Add a BackgroundWorker control and an additional button to call the
RunWorkerAsync method and display the result. Implement the DoWork and
RunWorkerCompleted event handlers to call GetGreeting. Build and run.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 176
All Rights Reserved

NetCs Chapter 6

Lab 6B

Using async and await Keywords

Introduction

In this lab you will take an existing program that has a target method called
synchronously and implement an asynchronous call using the Task class and the new
keywords in C# 5.0.

Suggested Time: 20 minutes
Root Directory: OIC\NetCs

Directories: Labs\Lab6B\NewAsyncGui (do your work here)
Chap06\NewAsyncGui\Stepl (backup of starter code)
Chap06\NewAsyncGui\Step2 (answer)

Instructions

1. Build the starter project and observe the working of the Call button, which makes a
synchronous call. If you click “Click Me,” nothing will happen (but the request will
be queued, and when the call completes, you will see both the results of the call
displayed and a message box pop up!). Review the code.

2. Create a helper method GetGreetingAsync() which returns a Task<string> and has
the async keyword. Input parameters are a string for a name and an integer for the
number of milliseconds to delay.

private async Task<string> GetGreetingAsync(string name, int delay)

{
}

3. Obtain an integer thread ID in the same manner as in Form1_Load().

private async Task<string> GetGreetingAsync(string name, int delay)

{
Thread t = Thread.CurrentThread;

int threadld = t_ManagedThreadld;
}

4. Use the await keyword and the Delay() method of the Task class to delay for the
specified interval.

private async Task<string> GetGreetingAsync(string name, int delay)
{

Thread t = Thread.CurrentThread;

int threadld = t_.ManagedThreadld;

await Task.Delay(delay * 1000);

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 177
All Rights Reserved

NetCs Chapter 6

}
5. Return a string with a greeting and the thread ID.

private async Task<string> GetGreetingAsync(string name, int delay)

{
Thread t = Thread.CurrentThread;

int threadld = t_ManagedThreadld;
await Task.Delay(delay * 1000);
return "Hello, " + name + " : " + "threadld = " + threadld;

}
6. Add a handler for the Async Call button.

private void cmdAsync _Click(object sender, EventArgs e)

{
}

7. Obtain delay from the textbox. Set the label to the result of calling
GetGreetingAsync() using the await keyword.

private void cmdAsync Click(object sender, EventArgs e)

{
int delay = Convert.Tolnt32(txtDelay.Text);

IbICGreeting.Text = await GetGreetingAsync(txtName.Text, delay);
}

8. Build the project. You will get a compile error.

"await® can only be used when contained within a method or lambda
expression marked with the "async® modifier.

9. Mark the handler with the async keyword. Now you should get a clean compile.

private async void cmdAsync Click(object sender, EventArgs e)

{
int delay = Convert.Tolnt32(txtDelay.Text);

IbIGreeting.Text = await GetGreetingAsync(txtName.Text, delay);
}

10. Build and run. Try out both synchronous and asynchronous calls. Notice that the
same thread is used in the called method for both the synchronous and asynchronous
calls. Try the “Click Me” button in each case. The coding is much simpler than in Lab
BA!

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 178
All Rights Reserved

NetCs Chapter 6
Lab 6C

Working with App Domains

Introduction

In this lab you will incrementally create a demonstration program that illustrates a
number of features in working with application domains. The exercise also reviews some
important concepts concerning program startup, command-line arguments, assemblies
and reflection.

Suggested Time: 60 minutes
Root Directory: OIC\NetCs

Directories: Labs\Lab6C (do your work here)
Chap06\AppDomainDemo (answer)

Step 1. Launch an Assembly from the Default Domain

In this first step you will create the demonstration console program and also a test
console application. You will run the test app both independently and also launched from
the default app domain of the main program.

1. Inthe Lab6C directory create a new console project AppDomainDemo. To make the
projects a little cleaner, you may wish to take out the default namespace created by
Visual Studio.

2. Add code to display the friendly name of the default domain.

3. Add a second console project TestApp to your solution, in a directory TestApp just
below AppDomainDemo. To make it easy to find the executables, you might want to
configure them all to be built in the AppDomainDemo source directory.

4. Add code to display the friendly name of the domain the test app is running in. Also,
display the command-line arguments, and return the value 100.

5. Temporarily make TestApp the startup project of the solution. Build and test. You
may specify command line arguments from the Properties for the project. See
Debugging under Configuration Properties.

6. Add code to AppDomainDemo to launch TestApp in the default domain by calling
the ExecuteAssembly method of the AppDomain class. Use the overloaded version
which passes no arguments. Print out the return value.

7. Restore the startup project to be AppDomainDemo. Build and test.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 179
All Rights Reserved

NetCs Chapter 6

Step 2. Launch an Assembly from a Second Domain

In the second step you will create a second app domain and launch an assembly from this
second app domain. You will pass arguments.

1. Add code to AppDomainDemo to create a second domain called “Domain2”.
Display the friendly name of this domain.

2. We are going to execute the TestApp assembly from this second domain, but this
time we will pass some arguments. To this end declare an array of string, initialized
with “one” and “two”.

3. Add code to AppDomainDemo to launch TestApp in the second domain by calling
the ExecuteAssembly method of the AppDomain class. Use the overloaded version
which passes an array of arguments. Print out the return value.

4. Modify TestApp to return 100 if no arguments were passed and 200 otherwise. Build
and test.

Step 3. Load a Class Library and Call Its Methods

In the third step you will add a third project to the solution, a class library AddL.ib that
implements a class AddL.ib. In TestApp you will load this class library and call its
methods (both an instance method and a static method). You will create an instance of
AddL.ib using both the default constructor and a non-default constructor.

1. Add athird project AddL.ib, a class library, to your solution, in a directory AddLib
just below AppDomainDemo. In order to make it easy for TestApp to locate the
DLL, set the Output Path to be the AppDomainDemo directory, where the other
assemblies are also created.

2. Adjust the Project Dependencies of the solution so that the assemblies build in the
order: AddL.ib, TestApp, AppDomainDemo.

3. Change the name of the Classl.cs file to AddLib.cs and the class to AddLib.
4. Implement the following features in the AddL.ib class.

a. A private member variable m_number that holds an integer.

b. A read-only property Number that exposes this integer.

c. A default constructor that initializes the encapsulated number to 50.

d. A constructor that initializes the encapsulated number to an integer passed as a
parameter.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 180
All Rights Reserved

NetCs Chapter 6

6.

e. An instance function that that adds an integer passed as a parameter to the
encapsulated number and returns the sum.

f. A static function that takes two integer parameters and returns the sum.

Add code to TestApp to load the AddL.ib.dll assembly and call its methods. Don’t
forget to add a reference to AddLib.dll. (You could use more Reflection code to
make the call, as discussed in Chapter 4. The reference makes it easier.) Illustrate
creating instances of AddLib using each constructor and call the instance method for
each object. Also call the static method. Print out the results of the additions.

Build and test.

Step 4. Handling Events from an App Domain

In the final step you will add code to AppDomainDemo to handle events associated with
loading an assembly and unloading an application domain.

1.

Add an event handler procedure LoadEventHandler that will print a message when
an assembly is loaded. You should also display the name of the assembly.

Add code to hook this handler to the AssemblyLoad event of the second app domain.
Build and test.

Add an event handler DomainUnloadHandler that will display a message when an
app domain is unloaded. Hook this event to the DomainUnload event of the second
app domain.

Build and test. Why don’t you see a message announcing the domain has been
unloaded?

Add a call to the Unload method of AppDomain, and run again. This time you
should see the message.

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 181

All Rights Reserved

NetCs Chapter 6

Rev. 4.6 Copyright © 2013 Object Innovations Enterprises, LLC 182
All Rights Reserved

