Advanced C++
Programming

Robert J. Oberg
Michael Saltzman

Student Guide

Revision 1.2

Obiject Innovations Course 157



Advanced C++ Programming
Rev. 1.2

This Student Guide consists of three modules:
Intermediate C++ Programming
Advanced C++ Topics
Fundamentals of STL

Information in this document is subject to change without notice. Companies, names and data
used in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of
their respective owners.

Copyright © 2006 Object Innovations All rights reserved.
Copyright © 2003 /training/etc. All rights reserved.

Object Innovations
877-558-7246
www.objectinnovations.com

Printed in the United States of America.

Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc.
All Rights Reserved



Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Appendix A

Rev. 1.2

Table of Contents (Overview)

Module 1. Intermediate C++ Programming

Inheritance and Polymorphism

ANSI C++ Library

Templates

Input/Output in C++

Practical Aspects of C++ Programming

Module 2. Advanced C++ Topics

Advanced Polymorphism and Inheritance
Exception Handling

Runtime Type Information

Inheritance Hierarchies and Multiple Inheritance
Applications of C++ Concepts

Module 3. Fundamentals of STL

An Overview of Templates

An Overview of the Standard Template Library
Examples of STL

STL Containers

STL Iterators

Reading List

Copyright © 2006 Object Innovations and /training/etc, Inc. iii

All Rights Reserved



Directory Structure

e The course software installs to the root directory
ONImdCpp for Module 1 and OINAdvCpp for Module
2.

— Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap02, and
SO on.

— The Labs directory contains one subdirectory for each lab,
named after the lab number. Starter code is frequently

supplied, and answers are provided in the chapter directories.

— The Demos directory is provided for doing in-class
demonstrations led by the instructor.

e Module 3 has the top-level directory OI\FndStl.

— Example programs for each chapter are in named
subdirectories of chapter directories Chap01, Chap03, and
SO on.

— Lab work is done in Labs directory with numbered
subdirectories for each lab. Starter code is provided.

— Solutions are in Solutions directory with corresponding
numbered subdirectories.

Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc.
All Rights Reserved



Table of Contents (Detailed)

Module 1. Intermediate C++ Programming

Chapter 1 Inheritance and POlymorphisSm ...
INNEFTTANCE CONCEPL ....cvviieieiie ettt e e reeaeeneesreeneeanes 3
INNEFItANCE EXAMPIE ....oviiieiece ettt re e e 4
INNEITEANCE TN CH Lottt be e enes 5
EMPIOYEE EXAMPIE ... 6
ProteCted MEIMDEIS ..ot bbbt 7
Base Class INILIAIIZEr LISt ........cccvoiiiiieieieie e 8
(OF0] 0] T 1] 11 o] o SRR OPRRTPRT 9
MeMDBEr INITIANZET LIST......iiiiiieii e nneas 10
Order of INIHANZATION ......oveiiiiiiee e 11
Inheritance Vs, COMPOSITION ........coiuiiiiiiccie et re e 12
LD LA ettt et nbe e beereene et eens 13
SUMMArY — INNEITANCE ..o e 14
A Case FOr POIYMOIPRISIM........ciiiieceiicce et sre e 16
DYNamMIC BINAING .....ccviiiiiieieee ettt reenaesneenne s 17
Pointer Conversion iN INNEFTANCE .........cccooiiieiieie e e 18
Polymorphism Using Dynamic Binding .........cccooceviiiiiniiiiiee e, 19
Virtual FUNCtion SPeCITICALION ........c.ccviiiiieeie e 20
INVOKING Virtual FUNCLIONS .........coiiiii i 21
Virtual FUNCHIONS DEMO........oiuiiiiiie ettt ettt 22
R I o PSPPSR 26
VITTUAL DESTIUCTOIS. ...ttt bbbt bbb 27
Abstract Class Using Pure Virtual FUNCLION............cccooeiieiiie e 28
Employee as an ADSIraCt ClassS.........ooueiiiiiiiiiiiie e 29
Heterogeneous COHECTIONS ..........cviiiiiie e 30
Polymorphic Code EXAMPIE .......ccve i 31
LD LB ittt b e bRt ee s 32
Summary — POIYMOIPRISM ..o 33

Chapter 2 ANSIE CH+ LIDFANY ....ooiiie e 43
ANSIT CH4 LIDIAIY oottt reeae e nne s 45
HEIIO ANSE CHa ottt sttt sbe et nneas 46
NAIMESPACES. ...ttt r et r et esr e asr e e sre e s sr e e ne e anneenreeeneennee s 47
ANSI CH+ SEHING CIASS.....eeveeiiiiieie et esreenee s 48
TOMPIALES ... a e e reenreeee s 49
DASIC_SLrING EXAMPIE ....eeiiiieiie e e 50
7. o 1SS 51
SUMIMIATY ...ttt ettt ettt et e et bt e e ket e e st e e eab e e e st e e e nnb e e e nbbe e e bb e e e beeeentes 52

Chapter 3 TEMPIALES ......cocvieee et e te e sneenas 55
General PUIPOSE FUNCLIONS ........oviiiiiiciiesieseeee et 57
IMIACTOS ...ttt n e r e 58
FUNCEION TEMPIALES. .. ..ot 59

Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. %

All Rights Reserved



Function Template DeMO ........c.oouiiiiiiiie e 60

TeMPIALE PAraMETETS. ... .cueiieieieiteete ettt 61
Template Parameter CONVEISION.........civeieiierireieeeeseesieeeesae e esaeseessaesaesseesraesseeneens 62
Function Template Problem...........co.ooiiiioi e 63
Generic Programming EXample........c.ooiioiii e 64
GENEIIC ProgramIMiNg .......cooioieeieieieiesie ettt se bbbttt n e snesbe b nre s 67
General PUIMPOSE ClaSSES .......cuiiiieieeie et esie et e ettt sra e e neesneene e 68
ClasS TEMPIALES .....c.veciieiieee et be e e e saeeeeere e 69
Array Class Implementation (Array.n) ... 70
Using the Array TeMPIALE.........ccooiiiiiere e 71
TempPIate ParamMeters. ........covi et e s aeeneesraene e 72
Class Template INStantiation.............ccoveiiiieiicie e 73
NON Type Parameter CONVEISION..........oiiiiiiiiiienie et stee et ee e saeseesreas 74
[0 TG SRS 75
Standard Template LIDrary ..o 76
STL COMPONENTS ...eiiiiiie ettt e st e e s sbb e e e bb e e e baeesnbeeennnes 7
GENEIIC PrOgrammMINg ......ccouioeeiieeieiie e sie e stee ettt st seesneesbesseesreesbeeneesree e 78
STL Elements of @ SIMpPIe Program ..o 79
SIMPIE STL PrOGIam ...cvveiecie ettt e et e st ae e te e e naesnneeeenee e 81
Y T I @0 a1 -] 1T USSR 82
Map Container EXAMPIE .....c..ooiiiiiie et 83
LD 2Bttt et et e reene e e e e nens 85
SUMIMIATY ...ttt e ekt e ekt e ek bt e ek e e e st e e eab et e ea b e e e sab e e e nbbe e e bb e e e bneeennns 86
Chapter 4 INpUt/OULPUL IN CHt oo
INPUE/OULPUL TN CHtoiiccce et sne e 93
BUIlt-IN Stream ODJECES .....vcviiie et 94
O 011 o[ | O] 01T -1 (0] BT TRRTPR 95
INPUE OPEIALOT >3 ...ttt e e be e e e ae e s raeenee e 96
CRAraCtEr INPUL ...ttt nre s 97
SEANG INPUL ...t e e et e e teenaeeneesreeeeeree e 98
FOrMALEEA 1/O ... bbbttt e 100
Formatted 1/O EXAMPIE.......cciiiiiiiiiee e e 101
Streams Hierarchy (SIMPHfied) ... 102
FIIE /O bbb 103
FIIE OPENING ..ttt ettt e s re e reeneeareenee e 104
INTEQEE FIlE COPY ..ttt sttt nb e nre e 105
CharaCter FIle COPY ...c.ooviiieiiiieiee e 106
Overloading Stream OPEratorsS ........c.ccvveieereeiieereerieseesee e eeeseesteeseesee e eeseesseenes 107
Implementing Overloaded Stream OPErators ...........cccevveveevieiiese e 108
StriNG 1/O TSt PrOQIaM.......ccuiiiiiiieiie ittt nneas 109
7. o1 SRRSO 110
SUMIMIATY ...ttt ettt be ekt et e e et bt e e st e e eab e e sab e e nsbe e e bbe e e bbeeantneennes 111
Chapter 5 Practical Aspects of C++ Programming.........cccccecvevveveeiieenesnesienseesiesnens 115
Interfacing C++ t0 Other LANQUAGES .........ooverviriiiiieieiieiesie sttt 117
Calling C fromM CHa .ot e s reesaeenaennees 118
o3 ] V7] o] [0 FS31 Y, - o o SOOI 119
Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. vi

All Rights Reserved



Calling CH+TrOM C ..o 120

Interface Module for Stack ClIass..........cccviieiieiiiie e 121
NamMESPACE COIISIONS........ueiieiieieiiecie ettt e e e naeeneens 122
ANST NAMESPACE ... eiiiiiiiiitiie et e b e e nba e e s nbae e nees 123
Reliability Philosophies Of LaNQUAJES .........cccueieiirriiiiiie e 124
Prototypes and Type CheCKiNG .........ccoouiiiieiiieieieeeeese e 125
CONSTANT TYPES ettt ettt et e sbb e e nbb e e bb e e enbr e e enteeennes 126
ACCESS CONLIOL IN CH e 127
REVIEWS and INSPECLIONS........coiiiiiiiieie ettt nee e 128
INSPECLIONS AN CH ... esaesresrenreas 129
Testing Strategies fOr Ch....o.vciic e 130
Performance CONSIAEIAtiONS ..........ciiiiiiiieieie e s 131
ClASS LIDIAITES ...ttt nneas 132
I 1o I TSRS 133
SUMIMIATY ...ttt ettt ettt e ek e e et e e e st e e eab e e sabe e e nsbe e e bb e e e bbeeanbneennes 134
Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. vii

All Rights Reserved



Module 2. Advanced C++ Topics

Chapter 1 Advanced Polymorphism and INheritance...........cccocvvevineiicie e 139
GOOU ClaSS DESIGN....ccuviiiieiieieciee sttt sttt be e sreesteeneesbeesaeanaesnes 141
SENG CHASS ...ttt b e 142
LD LA et et e e r e re e e e et e re e 143
PUDIIC INNEITTANCE ...t 144
Public INheritance EXamMPIE ........ccoiieiiiiice e 145
Public INheritance Problems ... 146
INNeritance and SEMANTICS .......ecveiieieie et sre e ene e 147
Private INNEITTANCE .....c.eiiiiieiecee e 148
LD LB .. ittt b et n e 149
(000] 1] o To 1] 11 o] o SRR PR RTURRRPR 150
Composition vs. Private INheritanCe. ..o, 151
Templates VS. INNEMTANCE ........ccviiieece e 152
Protected INNEIITANCE .......cveieiei e 153
Implementation ENCAPSUIALION ..........cooiiiiiiiiiiieicce e e 154
INtErface INNEIITANCE ......cove e 155
LD LC . it bbbttt n e 156
SUMIMIATY ettt ettt et bt e et e e e ke e e et e e e eab e e e sab e e e nbb e e e nbbe e e bbeeanteeeanes 157

Chapter 2 Exception HaNAIING ......cc.ooviiiiiiii e 163
EXCEPtion HANAIING ....ooveiieiice et 165
Exception Handling EXample ..o 166
TrY AN CAICN ... s 167
Exception FIOW OF CONEIOl .........ooviiiiiiiee s 168
Context and Stack UNWINGING ......ccvevvviieiieiecieseese e sae e 169
Handling Exceptions in BeSt CONEXL.........c.ccviiiiiiieiieie e 170
Context EXample (ESTarray.CPpP) ...oeoeeaeerereeseerieeiesee e seesiee st see s ssessne s 171
Benefits of Exception Handling.........cccoooiiiiiiiiiiicee s 173
UNhandled EXCEPLIONS ........civeiieieiiesieesie ettt e e sae e e e nneeneeas 174
(08 [T 1o T o TSSOSO RTROPSRPR 175
Multiple CatCh HaNAIErS........c.oo i 176
7. o1 SO SSSSSS 178
SUMIMIATY ...ttt ettt ettt e bb e e et e e ea b e e eab e e e sab e e esb e e e bb e e e bbeeanbeeennes 179

Chapter 3 Runtime Type INfOrmation..........cccccvecviieiiiie s 181
Runtime Type and POlYMOIPRISIM .......ooviiiiiie e 183
RUNEIME TYPE EXAMPIE ..ottt nne e 184
107/ 0L ) (O O - TSRS 185
1878 L=T [0l O 1] Lo R RTRP TSR 186
COMPIIET OPLIONS.......eieiiticieeiieii e bbbttt sb b 187
Safe POINTEr CONVEISIONS.......ciiiiiieieiie sttt 188
YT LTl O L ST 189
NEW CA SEYIE CaSTS ..ottt re e 190
RS- LU O O T SRR 191
[ (=T 0 =] O OSSPSR 192
CONSE CASE ...ttt ettt e e b e et e e b e e e be e nnn e neeann e ree e 193

Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. viii

All Rights Reserved



SUMMAIY .ttt b e bbbt sn e beenne e nne s 195
Chapter 4 Inheritance Hierarchies and Multiple Inheritance.............ccccooiiinennen. 199
Class Hierarchy in Smalltalk ..o 201
Smalltalk Class Hierarchy (SImplified) ..., 202
COlIECTION CIASSES.... ettt bbbt 203
Multiple Inheritance SOIULION .........cooiiiiiic e 204
BASIC DEIMVALION ....veeiiiiieiiieiie ettt sttt be e e e nne e 205
Ambiguities in Multiple INNErTTANCE ..o 206
RESOIVING AMDIGUILY ...cvveieieiiee et sae e 207
Duplicate SUDODJECLS ......cc.eeiviiiiicce e 208
Duplicate SUDODJECES EXAMPIE .......c.eouiiieiieiiee e 209
VirtUal BaSE CIASSES ......eeuveiieeieiiiesiie ittt sttt eneenre e e anes 210
Virtual Base Class EXAMPIE .........ccceiveiiiiieieese e 211
LD AA bbbttt e e 212
LD 4Bt bttt e et et e 213
Chapter 5 Applications of C++ CONCEPLS .......cveeriiriiiieiieie e 221
Orthodox Canonical FOrm (REVIEW) ......ccecviiieiiiie et seese et sae e 223
ODBJECt ValIUALION ...t sneas 224
SEING ClASS .t bbbttt 225
Y0 L] (] T 1SR 226
RETErenCe COUNTING .....ocviiieiic et enreene s 227
Reference Counting RUIES .........ooviiiiiii e 228
SMAIT STHNG POINTET ...t 229
GENEIIC SMAIt POINTEIS ....ovviitiiiiiiieiee ettt bbb 230
Constructing SMArt POINTEIS ........ccuviieiiciecie et 231
Smart Pointer DIffICUITIES ........ccooiiiiie s 232
7. 01 USRS PSSR 233
SUMIMIATY ...ttt ettt ettt e ekt e ek e e eab e e eab e e sabe e e nbb e e e bbe e e bb e e enbneeenes 234
Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. ix

All Rights Reserved



Module 3. Fundamentals of STL

Chapter 1 An Overview of TEMPIAES.........cocviiiiiiiiiii e
BT ] 0] Fo U= TSSO
OVErloading FUNCLIONS........couiiiiiieie ettt
TemMPIAte FUNCHIONS. ....c.eiiiiiieiiiee e
Template FUNCLIONS — EXAMPIE ....c.voiiieecie e
Specializing a Template FUNCLION...........cccooiiiiiiie e
Disambiguation under SPecialization .............cooeiiriiiiiie e
TEMPIALE CIASSES ....cveeieieieieesteee bbb
AN Array TeMPIALe ClaSS......ccvoiieiieie e
Instantiating a Template Class ODJECE .........cccvivveiieii i
Friends of TemMPIate CIaSSES .......cveiiriiiieiieie e e
Templates with Multiple Type Parameters.........c.cooviiiiieieneneseseseseeee e
Non Class-type Parameters for Template Classes ........cccovevveveiieiieeieeie e seesieenens
Comments Regarding TeMPIAteS.........ccvcvveieiieii e
Templates and INNEITANCE .......ccvi i
EXErcises fOr ChapLEr L.........ooiiiiiiiiieieieie e

Chapter 2 OVErVIEW OF STL ....ooiiiiiiieeee s
PRISPECTIVE ...ttt b et b e et e bt et ne e reenre e
HIStOry and EVOIULION ........cc.oiiiiiiiiiieceee s
NEW FEATUIES ...ttt
The Standard Template LiDrary ...
GENEIIC ProgrammMINg .......cccioiueiieriieiesie ettt sttt sbe e e e st et sneesae e e
DESIGN GOAIS ...ttt
HEAET FIIES ...ttt bbb
STL COMPONENTS ...ttt ettt e et e et e e st e e e nbb e e s nbbe e e beeesnbeee e
(O00] 01 113 1=] £ TSSO R TSP
AlGOTTENMS ...t
LT =1 (0] £ T PO U R URPPRTPP PSPPI
ComPIlING STL COUE........eeiieeie et re e e neeneas

Chapter 3 EXamples from STL ..o
1Y =T01 (  SSSPTRSRPR

IO ettt
FINAVECTON.CPP vttt bbb
FINA = JIST e

Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc.
All Rights Reserved



Overriding the Default COMPAISON .......ccvoiiiiiiieieeie e 305

FEEIATONS ...t e e sa e e e e e e e et e nr e 306
] 10 o7 o] o SRR UPRTPPRPUPROPRS 307
FUNCLIONS ...ttt bbbttt bbb bbbt beane e e s 308
g To o] g T o ST S TSP 309
FUNCEION ODJECTS ...ttt nneenne s 310
FUNCLIONODJECT.CPP vttt ettt b e sbe s 311
EXErcises fOr ChapLer 3.........ooi it et 312
Chapter 4 STL CONTAINEIS......cc.cciieiiieieiie sttt e e sae e sreenre e 313
R V=T o1 (o TP PRR P 315
AV Z=T0d (o] (o o o PP PRTPRPIN 316
TESE PIOQIAM ...t b e b e e s b e nr e enne s 317
VECTOT OPEIALIONS ...ttt bbb b b 318
I3 10 OSSR 319
DBQUES. .. ettt e et rr e anres 321
Deque EXAMPIE ... e 322
AEQUE BS STACK ...ttt bbb 323
deque<T> FUNCHONAIITY........ccve i 324
[ TSSOSO TP TR PSRRI 325
GENEIIC ProgrammMINg .......cccioueiieiieiesie sttt sttt sre s steenae e sae e e 326
Tradeoft WIth LISES......cviiieiiiie et ens 327
[ O 1111 0] OSSPSR 328
List MemOory AHOCALION. .........ccoiiiiecc e 330
TISt FUNCHIONATIEY ..o 331
ASSOCIALIVE CONTAINETS .....veivieiieeiesiee et sie et ste e este e ereesreesbeaneesreenseenee e 332
GBS ettt R R et e e ne e re e 333
SELEXAMPIE .o e 334
Sets with User Defined ODJECES ........coiiiiiiiii s 335
MUITISEES (BAJS) ... eveveerieieiesie sttt bbbt 337
MUIEISEt EXAMPIE ... 338
Multiset FUNCEIONATIEY ........eciveiieie e 340
Y =T 0L PP U PP PP PP 341
MAP EXAMPIE ..ot 342
IMIUTEIMAPS ..ottt et e e e s re e teenaeanaesneeteeneesraenseeneeas 344
MUIIMAP EXAMPIE......eoieieieceece et et reenaeenne s 345
EXErcises FOr CRAPLEr 4 ......cc.ooiiiiieiieiieie et st 347
Chapter 5 STL HEIatOrS. ..ottt ettt 349
L1l [FTox (o] o USRS RPPTPRRN 351
POINEELS ..ttt bbbt e bt et e st e e s be et e s be e sbeeneeebeenbeente s 352
TEMPIALE WVEISION....cviiiiiiiieestei bbbt nre s 353
LI 8 o 0| =T o PP 354
Y L 100 IV =T €57 o] o USSR 355
A Generalization Of POINEIS.........oiiiiiie i 356
STL IEIALOIS ...ttt st e bbb et e e sae e e sbe e sbeenbeennneens 357
1T Lo g =€ 10 1] o] USSR 358
INPUL TEEIALOTS. .. eei ittt et e e st b e e e e e e nnbe e e snbee e 359
Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. xi

All Rights Reserved



INPUL Tterator EXAMPIE ......oo e 361

OULPUL TEEIALOTS ... b e nne s 363
Output Iterator EXAmPIe .......coo e 364
O T T (o L T L0 £ SR S PR 366
Forward Iterator EXAMPIE .......cui i e 367
BidireCtional ItErators .........ccueiieiieie et 368
RANAOM ACCESS ITEBIALOIS ....c.veivieiieeieee et ae e 370
Random Access Iterator EXample..........coo oo 371
EXercises for Chapler 5.......oi i e 372
APPENdIX A REAAING LISt ..ot e 373
Rev. 1.2 Copyright © 2006 Object Innovations and /training/etc, Inc. xii

All Rights Reserved



ImdCpp

Module 1:

Intermediate C++ Programming

Top Level Directory: ONImdCpp



ImdCpp



ImdCpp Chapter 1

Chapter 1

Inheritance and Polymorphism

Rev. 1.2 Copyright © 2006 Object Innovations 1
All Rights Reserved



ImdCpp Chapter 1

Part I. Introduction to Inheritance

Objectives

After completing this unit you will be able to:

e Use inheritance to model your problem domain and
achieve greater code reuse.

e Use C++ class derivation to implement inheritance.

e Use ""public", ""protected’ and "'private' to control
access to class members.

e Use an initialization list for proper base class
Initialization and embedded member initialization.

e Determine order of invocation of constructors and
destructors.

e Distinguish between use of inheritance and
composition.

Rev. 1.2 Copyright © 2006 Object Innovations 2
All Rights Reserved



ImdCpp Chapter 1

Inheritance Concept

e Inheritance is a key feature of the object oriented
programming paradigm.

— You abstract out common features of your classes and put
them in a high level base class.

— You can add or change features in more specialized derived
classes, which "inherit" the standard behavior from the base
class.

— Inheritance facilitates code reuse and extensibility.

e Consider Employee as a base class, with derived
classes WageEmployee and SalaryEmployee.

— All employees share some attributes, such as name.

— Wage employees and salaried employees differ in other
respects, such as in how their pay is computed.

Rev. 1.2 Copyright © 2006 Object Innovations 3
All Rights Reserved



ImdCpp Chapter 1
Inheritance Example
Employee
WageEmployee SalaryEmployee

MName Employee

MName SalaryEmployee

Salary

MName WageEmployes

Wage

Hours
Rev. 1.2 Copyright © 2006 Object Innovations 4

All Rights Reserved




ImdCpp Chapter 1

Inheritance in C++

e Inheritance is implemented in C++ by a mechanism
known as class derivation.

class DerivedClass : public BaseClass

{
}

e Base class must be declared prior to the derived class.

e DerivedClass can use all public (and protected)
members of BaseClass, but it does not have any
special access to the private members of BaseClass

— If a derived class did have access to private members of its
base class, the access security could be defeated simply by
deriving a class.

Rev. 1.2 Copyright © 2006 Object Innovations 5
All Rights Reserved



ImdCpp Chapter 1

Employee Example

class Employee

{

public:
enum {MAXNAME = 20};
Employee(const char *name = "'");

void SetName(const char *name)
{strcpy(m_name, name;}
const char* GetName() const {return m_name;}
private:
char m_name[MAXNAME] ;
};

class SalaryEmployee : public Employee
{
public:
SalaryEmployee(const char *name = "',
int salary = 0);
void SetSalary(int salary) {m salary = salary;}
int GetSalary() {return m_salary;}
private:
int m_salary;
};

class WageEmployee : public Employee
{
public:
WageEmployee(const char* name = .
int hours = 0, Int wage = 0);
void SetHours(int hours) {m_hours = hours;}
int GetHours() {return m_hours;}
void SetWage(int wage) {m wage = wage;}
int GetWage() {return m_wage;}
private:
int m_hours;
int m_wage;

}:

Rev. 1.2 Copyright © 2006 Object Innovations 6
All Rights Reserved



ImdCpp Chapter 1

Protected Members

e So far we have seen two access privileges: public and
private.

e Class derivation introduces a different kind of user:
the derived class.

— SalaryEmployee is derived from Employee but has no
special privileges to access the private members of
Employee.

e To allow special privilege for this user, protected
access privilege Is provided as the third type of access
privilege.

— If m_name were declared as protected in the Employee
base class, the derived class could access it, but classes not
derived from Employee could not.

e Members specified as protected become public to the
derived class, but remain private to all other classes
and program.

e Rules for private and public are same for the derived
classes.

Rev. 1.2 Copyright © 2006 Object Innovations 7
All Rights Reserved



ImdCpp Chapter 1

Base Class Initializer List

e When the base class constructor requires arguments,
the arguments are passed via an ""initialization list."

class SalaryEmployee : public Employee

L.
public:
SalaryEmployee(const char *name = ",
int salary = 0);
};

e An initializer list will be used in the constructor to
pass arguments to the base class constructor for
Employee.

SalaryEmployee: :SalaryEmployee(const char *name,
int salary)

: Employee(hame)
m_salary = salary;
Rev. 1.2 Copyright © 2006 Object Innovations 8

All Rights Reserved



ImdCpp Chapter 1

Composition

e Another way for a new class to reuse code of an old
class is to simply create an object of the old class
inside the new class.

— This technique is called composition because one class is
composed of objects of other classes.

e For example, class Employee could use a String object
to represent employee name.

class Employee

{
public:

Employee(const char *name = "'");

void SetName(const char *name)

{ m_name = name;}

const char* GetName() const {return m_name;}
private:

String m_name;

}:

e \We want the argument name to be used for
initializing the member object m_name.

e If you don't do anything special, the compiler will
generate code to implicitly call the default
constructor for the member object before
constructing the containing object.

Rev. 1.2 Copyright © 2006 Object Innovations 9
All Rights Reserved



ImdCpp Chapter 1

Member Initializer List

A better approach is to use a ""member initializer
list"", which has similar syntax to a base class
initializer list.

Employee: :Employee(const char* name) : m_name(nhame)

{
}

This syntax causes the String class constructor to be
invoked with the argument name.

The String class constructor is called first before the
Employee constructor starts executing.

The member object get data assigned exactly once.

The same syntax can also be used for built-in data
types, and member object initialization and base class
initialization can be combined.

WageEmployee: :WageEmployee(const char* name,

{
}

int hours, int wage) : Employee(name),
m_hours(hours), m_wage(wage)

Rev. 1.2 Copyright © 2006 Object Innovations 10

All Rights Reserved



ImdCpp Chapter 1

Order of Initialization

e C++ has a defined order for the construction and
destruction of base class objects, derived class
objects, and member objects.

class DerivedClass : public BaseClass

public:
memberl;
member2;
}:

e The order of construction is;:

Constructor of BaseClass
Constructor of memberl
Constructor of member2
Constructor of DerivedClass

e Destructors are invoked in exact reverse order.

e Itis important to know this order in cases where
there are interdependencies among classes.

— You should avoid a situation where an object gets
prematurely destroyed while another object refers to its data.

Rev. 1.2 Copyright © 2006 Object Innovations 11
All Rights Reserved



ImdCpp Chapter 1

Inheritance vs. Composition

¢ Inheritance and composition are both code reuse
techniques in which data from one class is contained
within another class.

— When do you prefer one technique over the other?
e Inheritance is used when an “Is-A” relationship exists

— SalaryEmployee is a Employee.

— The derived class supports the same interface as the base
class, plus some additional features

e Composition is used when a “Has-A” relationship
exists.

— Employee has a String as a data member to represent the
name.

— Composition is suitable when you when you want the
features of another class but not its interface.

Rev. 1.2 Copyright © 2006 Object Innovations 12
All Rights Reserved



ImdCpp Chapter 1

Lab 1A

An Employee Class Hierarchy

In these exercises you will work with the Employee class
hierarchy to reinforce basic inheritance concepts. You will
practice the initialization of both base class and embedded class
objects and verify the order of invocation of constructors and
destructors. You will define a function in the base class that is
overridden differently in derived classes.

Detailed instructions are contained in the Lab 1A write-up at the
end of the chapter.

Suggested time: 30 minutes

Rev. 1.2 Copyright © 2006 Object Innovations 13
All Rights Reserved



ImdCpp Chapter 1

Summary — Inheritance

e C+ + has special features to allow class inheritance,
which allows you to better model your problem
domain and to achieve greater code reuse.

e Members of a base class are also members of derived
classes.

e Protected members of a base class can be accessed by
derived classes but not by any other classes.

e Initialization lists can be used to properly initialize
member objects and base class objects.

e The order of invoking constructors is from the base
class to the derived class.

¢ Inheritance models “Is-A” relationships and
composition models “Has-A” relationships.

Rev. 1.2 Copyright © 2006 Object Innovations 14
All Rights Reserved



ImdCpp Chapter 1

Part I1. Polymorphism and Virtual Functions

Objectives

After completing this unit you will be able to:

e Explain the features of virtual functions and dynamic
binding.

e Describe pointer conversion in C++ inheritance and
use pointers in connection with virtual functions.

e Use polymorphism in C++ to write better structured,
more maintainable code.

e Provide virtual destructors for classes using virtual
functions.

e Specify abstract classes using pure virtual functions.

Rev. 1.2 Copyright © 2006 Object Innovations 15
All Rights Reserved



ImdCpp Chapter 1

A Case For Polymorphism

e Consider the problem of generating a payroll for
different types of employees.

— Wage and salary employees have pay calculated by different
algorithms.

— A traditional approach is to maintain a type field in an
employee structure and to calculate pay in a switch
statement, with cases for each type.

— Such switch statement type code is error prone, and requires
much maintenance when adding a new type (e.g. sales
employee, where pay is based on commission).

e An alternative is to localize the intelligence to
calculate pay in each employee class, which will
support its own GetPay function.

— Generic payroll code can then be written that will handle
different types of employees, and will not have to be
modified to support an additional employee type.

— Provide a GetPay function in the base class, and an override
of this function in each derived class

— Call GetPay through a pointer to a general Employee object.
Depending on the actual Employee class pointed to, the
appropriate GetPay function will be called

Rev. 1.2 Copyright © 2006 Object Innovations 16
All Rights Reserved



ImdCpp Chapter 1

Dynamic Binding

e This use of ""switch" statement must be replicated
wherever Employee objects are manipulated.

— Itis error prone.

— Much duplicate code must be maintained.

¢ Virtual functions and dynamic binding remove this
problem.

e The member function GetPay in each class uses the
appropriate algorithm for calculating pay.

e Declare GetPay as a virtual function.

e Then the compiler resolves the class type at runtime
using the internal mechanism of dynamic binding.

e No need for type field in Employee class.

e No need for checking type of an Employee object.

Rev. 1.2 Copyright © 2006 Object Innovations 17
All Rights Reserved



ImdCpp Chapter 1

Pointer Conversion in Inheritance

e Pointers can be converted up in an inheritance
hierarchy but not down.

Name Employee
Name
Salary SalaryEmployeg

e Consider pointers to Employee and SalaryEmployee.

Employee* pEmp = new Employee(*'John');
SalaryEmployee* pSalEmp = new SalaryEmployee(
"Bill", 1500);

pEmp = pSalEmp; // legal

— A salary employee is a employee. It is safe to access the
fields of Employee through pSalEmp, because the object
pointed to by pSalEmp contains all the fields of Employee
and possibly some additional fields.

pSalEmp = pEmp; // illegal

— An employee is not necessarily a salary employee. If not,
there will be an error in accessing the additional field salary
through pEmp.

Rev. 1.2 Copyright © 2006 Object Innovations 18
All Rights Reserved



ImdCpp Chapter 1

Polymorphism Using Dynamic

Binding

e A generic pointer to a base class can be changed at
run time to point to an object belonging to a derived
class.

e A virtual function in the base class is overridden in
the derived class.

e The virtual function is called through a generic
pointer to the base class. Which override of the
function that gets invoked is determined at runtime
by the class of object referenced by the pointer

— This runtime determination of which function is called is
referred to as dynamic binding.

— The ability for the same function call to result in different
behavior depending on the object through which the function
Is invoked is referred to as polymorphism.

e Polymorphic functions are declared as virtual by the
programmer.

e Dynamic binding mechanism is carried out by the
compiler. User need not know any details.

Rev. 1.2 Copyright © 2006 Object Innovations 19
All Rights Reserved



ImdCpp Chapter 1

Virtual Function Specification

e A member function is declared as virtual within the
class declaration as:

class Employee

1
public:

virtual int GetPay();
¥

e The function is overridden in derived classes.

class SalaryEmployee : public Employee

L

public:
int GetPay() // keyword virtual not necessary
{ return m_salary; }

j

class WageEmployee : public Employee

L
public:
int GetPay()
{ return m_hours * m_wage; }

¥

e Each redefinition of cetPay must exactly match the
signature of the function in the base class.

Rev. 1.2 Copyright © 2006 Object Innovations 20
All Rights Reserved



ImdCpp Chapter 1

Invoking Virtual Functions

e To use dynamic binding, a virtual function must be
invoked through a pointer (or a reference).

int pay;

Employee* pEmp;

WageEmployee Joe;
SalaryEmployee Mary;

pEmp = &Joe;
pay = pEmp->GetPay(); // wage version

pEmp = &Mary;
pay = pEmp->GetPay(); // salary version

e The use of class scope operator disables dynamic
binding

pEmp->WageEmployee: :GetPay(); // always resolves to
// WageEmployee: :GetPay()

Rev. 1.2 Copyright © 2006 Object Innovations 21
All Rights Reserved



ImdCpp

Virtual Functions Demo

Chapter 1

e C++ virtual functions will be demonstrated by the

following simple program that you can build and run

and then modify.

— Build and run it. Use Demos\Virtdemo directory for your

work

// virtdemo.cpp

#include <iostream>

using namespace std;

class B
{
public:
void T(Q);
void g(Q);
private:
long X;
}:
class D : public B
public:
void TQ);
void g(Q);
private:
long vy;
}:

©0OO0OO0O0

- e .
0000
OO W

< << <

i FQ {cout << "

290 {cout << "
i FQO {cout << ™

29O {cout << "

OO ww

Q =HQ =

<
'
'
"<

endl ;
endl ;
endl ;
endl ;

Rev. 1.2 Copyright © 2006 Object Innovations

All Rights Reserved

e e

22



ImdCpp Chapter 1

Virtual Functions Demo (Cont'd)

int main()

{

b, *pb;
d, *pd;

&b;
&d;

©TT Ow

b
d
b.T():

d.fQ;

pb->F();

pd->T();

pb = pd; 7/ legal??

pb->F();

pd = pb; 7/ legal??

cout << "size B = " << sizeof(B) << endl;
cout << "size D = " << sizeof(D) << endl;
return O;

Before building it, predict any compiler errors.
Comment out any offending lines and build again

Before running it, predict the output

How can you change the definition of the base class to
get the ""expected"’ output from

pb->F()

after the pointer has been reassigned to pointtoa D
object?

Rev. 1.2 Copyright © 2006 Object Innovations 23
All Rights Reserved



ImdCpp Chapter 1

Virtual Functions Demo (Cont'd)

e There is static binding, and pb->f() will always call
the ""B"" version of the function. Output:

B::f
D::F
B::F
D::f
B::f
size B = 4
size D = 8
d
pb ——>

e Now declare the functions virtual in the base class
and run again

class B
t
public:
virtual void f(Q);
virtual void g();
private:
long X;
}:

Rev. 1.2 Copyright © 2006 Object Innovations 24
All Rights Reserved



ImdCpp Chapter 1

Virtual Functions Demo (Cont'd)

e There is dyanamic binding, and pb->f() will call the
""B" version of the function if the pointer has been
assigned to point to a D object. Output:

U0 WO m
=h =h = = =

size B = 8
size D = 12

e The size of the objects is increased by 4 bytes, because
each object instance now holds a "'vptr' (pointer to a
vtable).

d vtable
b ———= vptr pointer to f
p =1 VP
X pointer to g
y
Rev. 1.2 Copyright © 2006 Object Innovations 25

All Rights Reserved



ImdCpp Chapter 1

VTable

e Virtual functions are accessed through a pointer (or
reference, which is implemented by a pointer).

e The pointer points to an area of memory of the object
instance which contains a pointer to the object's
vtable

— The vtable contains an array of function pointers, which
point to code implementing the member functions of the
interface

— The vtable is associated with the "class" corresponding to the
object -- there is a single vtable for all object instances

Object Instance vtable code
pointer vptr
object
data
Rev. 1.2 Copyright © 2006 Object Innovations 26

All Rights Reserved



ImdCpp Chapter 1

Virtual Destructors

e Suppose Employee classes have a destructor (e.g.
private storage of name is changed to use heap).

Employee* pEmp;

SalaryEmployee* pSalEmp = new SalaryEmployee
('John', 1500);

pEmp = pSalEmp;

delete pEmp;

e \Which destructors are involved? Destructor for
Employee, SalaryEmployee, or both?

e Answer is only Employee, even though it was
intended to destroy pSalEmp.

e To destroy pSalEmp, sequence should be destructor
for SalaryEmployee and then for Employee.

e Specify Employee destructor as virtual.

class Employee

1
public:

virtual ~Employee();
};

e Ingeneral itis a good idea to declare destructors of
base classes as virtual.

Rev. 1.2 Copyright © 2006 Object Innovations 27
All Rights Reserved



ImdCpp Chapter 1

Abstract Class Using Pure Virtual

Function

e Often itis desirable to have a base class as a protocol
for deriving implementations in the derived classes,
without the base class having to implement all the
specified functions itself.

— A virtual function specified but not implemented in the base
class is referred to as a pure virtual function.

— Notation for a pure virtual function is =0 after its
prototype.

virtual int GetPay() = 0;

e [or a pure virtual function, only its signature is
specified while its definition is deferred to derived
classes.

e A class that contains at least one pure virtual function
Is referred to as an abstract class.

— An abstract class cannot be instantiated.

— For any derived class to be non-abstract, it must define all
inherited pure virtual functions.

Rev. 1.2 Copyright © 2006 Object Innovations 28
All Rights Reserved



ImdCpp Chapter 1

Employee as an Abstract Class

e The GetPay function is not meaningful in the
Employee class—more information about an
employee is need to calculate pay.

— Declare GetPay as a pure virtual function in Employee.
— This make Employee into an abstract class.

— Generic code can be written for employees.

class Employee

t
public:
virtual int GetPay() = O;
}:
class SalaryEmployee : public Employee
{
public:
int GetPay() { return m_salary; }
}:

class WageEmployee : public Employee

i
public:
int GetPay()
{ return m_hours * m _wage; }

Rev. 1.2 Copyright © 2006 Object Innovations
All Rights Reserved

29



ImdCpp Chapter 1

Heterogeneous Collections

e A heterogeneous collection can be constructed using
pointers to a base class

— A pointer to a base class is generic, and at run time can be
assigned to point to different derived classes

e Consider an array of Employee pointers

Employee* pEmp[10]; // up to 10 employees of
// different types
int NNumEmp; // number of employees

WageEmployee Joe(''Joe',40,15);
SalaryEmployee Mary(*'Mary',1500) ;

pEmp[0] = &Joe;

pEmp[1] = &Mary;

NNumEmp = 2;

Rev. 1.2 Copyright © 2006 Object Innovations 30

All Rights Reserved



ImdCpp Chapter 1

Polymorphic Code Example

e \We can now write generic, polymorphic code to
calculate pay for a group of Employees.

— This code is general and won't change, even if new classes of
employees are defined, provided each derived employee
class implements GetPay function.

int payroll[10];

for (int 1 = 0; 1 < nNumEmp; ++1)
payroll[1] = pEmp[i]->GetPay();

Rev. 1.2 Copyright © 2006 Object Innovations
All Rights Reserved

31



ImdCpp Chapter 1

Lab 1B

Polymorphism in Employee Class Hierarchy

In these exercises you will study an enhanced Employee class
hierarchy in which Employee is now an abstract base class and
GetPay is a pure virtual function. There is a heterogeneous array
of employee pointers and a generic function PayReport that
polymorphically prepares a report, delegating to each employee's
GetPay function to calculate pay appropriately. You will look at
issues of deleting objects from the collection. Finally you will add
a new employee class and observe how easy it is to maintain a
program having this kind of structure.

Detailed instructions are contained in the Lab 1B write-up at the
end of the chapter.

Suggested time: 45 minutes

Rev. 1.2 Copyright © 2006 Object Innovations 32
All Rights Reserved



ImdCpp Chapter 1

Summary — Polymorphism

e Virtual functions and dynamic binding support the
concept of polymorphism.

e Polymorphic code is cleaner and easier to maintain,
eliminating forests of switch statements.

e Dynamic binding rests on accessing functions
through pointers, determining the function invoked
at runtime by the class of the object pointed to.

e In C++ inheritance hierarchies it is safe to cast a
pointer to a class higher in the hierarchy but not to a
class that is lower.

e Virtual destructors are essential for using delete on a
class with virtual functions.

e Abstract classes are defined using pure virtual
functions and cannot be instantiated.

e Heterogeneous collections can be constructed in C++
by using pointers to a base class.

Rev. 1.2 Copyright © 2006 Object Innovations 33
All Rights Reserved



ImdCpp Chapter 1

Lab 1A

An Employee Class Hierarchy

In these exercises you will work with the Employee class hierarchy to reinforce
basic inheritance concepts. You will practice the initialization of both base class and
embedded class objects and verify the order of invocation of constructors and destructors.
You will define a function in the base class that is overridden differently in derived
classes.

Suggested time: 30 minutes

Root Directory: ONImdCpp

Directory:  Labs\LablA\Employee (do your work here)
Chap01\Employee\Stepl (backup copy of starter files)
Chap01\Employee\Step2 (answer)

Files to Modify :

demoemp.cpp
employee.h

Instructions:

1. In the working directory there are files for an “Employee” project demonstrating
inheritance from an Employee class and composition with the String class. Study
the code in the files employee.h and in the demo program demoemp.cpp. Make sure
you understand the syntax used, including initializer lists with inline code in the
constructors. Then answer the following questions. Then build and run the program
to verify your answers. You may want to redirect the output to a file, which you can
save and examine.

(@) Inthe constructors for Employee a character pointer is used as an input
argument. As the code is written, what member of the String class is used to
initialize m_name.

Rev. 1.2 Copyright © 2006 Object Innovations 34
All Rights Reserved



ImdCpp Chapter 1

(b) If instead the following code was used, how would your answer change? Which
code is better and why?

Employee(const char *name = ")

Trace("'Employee: :Employee(const char*)');
m_name = name;

}

(c) Inthe GetName function of the Employee class, a String object is used as the
return value.. What member of the String class is used to convert the String object
to a character pointer?

(d) What is the order of constructor and destructor calls when demoemp.exe is run?

2. Implement a GetPay function for each employee class that will calculate the pay
appropriately for an employee. Add code to demoemp.cpp to calculate and print out
the pay for the employees Sally and Wally. What is an appropriate way to implement
GetPay in the base class? (This is a preview of some ideas we will discuss in the
next section!)

Rev. 1.2 Copyright © 2006 Object Innovations 35
All Rights Reserved



ImdCpp Chapter 1

Lab 1B

Polymorphism in Employee Class Hierarchy

In these exercises you will study an enhanced Employee class hierarchy in which
Employee is now an abstract base class and GetPay is a pure virtual function. There is a
heterogeneous array of employee pointers and a generic function PayReport that
polymorphically prepares a report, delegating to each employee's GetPay function to
calculate pay appropriately. You will look at issues of deleting objects from the
collection. Finally you will add a new employee class and observe how easy it is to
maintain a program having this kind of structure.

Suggested time: 45 minutes

Root Directory: ONImdCpp

Directory:  Labs\Lab1B\EmployeePoly (do your work here)
Chap01\Employee\Start3 (backup copy of starter files)
Chap01\Employee\Step3 (answer)

Files to Modify :

demopoly.cpp
employee.h

employee.cpp

Instructions:

1. The file employee.h in the work directory specifies an abstract class of employees.
The pure virtual function GetPay specifies a function to determine the pay of an
employee. There are two concrete derived classes WageEmployee and
SalaryEmployee. A wage employee has an hourly rate of pay and a number of hours

worked. Pay is
rate * hours.

A salary employee has a salary which is equal to the pay. The code file
employee.cpp contains an implementation of GetPay for the two concrete classes.
The code file demopoly.cpp demonstrates polymorphism and a heterogeneous
collection. An array of pointers to Employee is declared, and two employee objects
are created on the heap. A function PayReport takes as an argument an array of
pointers to Employee and prints a report showing name and pay of each employee,
the proper pay being calculated based on the type of employee. Study this code,
making sure you understand how this polymorphic behavior is implemented through
virtual functions. Then predict what the output will be, including what constructors
and destructors are called. Build and run the program to verify your understanding.

Rev. 1.2 Copyright © 2006 Object Innovations 36
All Rights Reserved



ImdCpp Chapter 1

2. Why are Employee objects not being destroyed? Add code to demopoly.cpp to
cause the Employee objects to be destroyed. Again predict the output and build and
run the program to verify your understanding.

3. Why are the SalaryEmployee and WageEmployee destructors not being called? In
what file do you need to make a change to fix this problem? Implement the fix.
Build and run the program to verify that it is now behaving as it should. Is this last
problem actually an error in this particular case? Under what circumstances would it
be an error?

4. Add another concrete class SalesEmployee derived from Employee. A sales

employee has a commission rate and a volume of sales. Pay is
commission * sales.

Implement changes in both the header file and code file of the employee classes, and
modify the demo program demopoly.cpp to test the additional class. Does any
modification need to be made to the function PayReport that prints out a report of
pay of all employee stored in an array?

Rev. 1.2 Copyright © 2006 Object Innovations 37
All Rights Reserved



ImdCpp Chapter 1

1.

Lab 1A Answers
(a) The constructor String::String(const char*) does the initialization.

(b) The overloaded operator String::operator=(const char *) does the
initialization. The code as originally written is better, because the embedded String
object gets initialized directly by one call to a constructor. The second version is less
efficient, because first the default String constructor is invoked to create an “empty”
String object, and then the overloaded assignment operator is called.

(c) The overloaded cast operator String: :operator const char* () const does
the conversion.

(d) The order of constructors is embedded member, base class, derived class. The
destructors are invoked in the reverse order. Sally (SalaryEmployee) is constructed
first and destroyed last. The output from running the program shows the invocation
of constructors and destructors:

String: :String(const char *str)

Employee: :Employee(const char*)

SalaryEmployee: :SalaryEmployee(const char *, int)
String: :String(const char *str)

Employee: :Employee(const char*)

WageEmployee: :WageEmployee(const char*,int, int)
operator const char* () const

Sally®s name = Sally

Sally®s salary = 500

operator const char* () const

Wally®s name = Wally

Wally"s hours = 40

Wally"s wage = 10

WageEmployee: :~WageEmployee()

Employee: :~Employee()

String: :~String()

SalaryEmployee: :~SalaryEmployee()

Employee: :~Employee()

String::~String()

2.

If you have a GetPay member function in the base class, about all you can do is
assign some default pay to a “generic” employee. In the next chapter we will see that
Employee can be an “abstract” base class, and we can specify a function that we
don’t have to implement. The highlighted code shows implementation of GetPay for
the two “concrete” classes SalaryEmployee and WageEmployee, and the usage in
the demo program.

Rev. 1.2 Copyright © 2006 Object Innovations 38

All Rights Reserved



ImdCpp Chapter 1

// employee.h

#ifndef _EMPLOYEE_H
#define _EMPLOYEE_H

#include "'strn.h"

class Employee

-
public:
Employee(const char *name = ") : m_name(name)
Trace("Employee: :Employee(const char*)');
}
~Employee()
{

Trace("Employee: :~Employee()");

void SetName(const char *name)
{ m_name = name;}
const char* GetName() const {return m_name;}
int GetPay() {return 100; } // arbitrary default value
private:
String m_name;
}:

class SalaryEmployee : public Employee

public:
SalaryEmployee(const char *name = """,
int salary = 0) : Employee(name),
m_salary(salary)

Trace("'SalaryEmployee: :SalaryEmployee(const char *, int)");
}
~SalaryEmployee()
Trace("'SalaryEmployee: :~SalaryEmployee()'");
}
void SetSalary(int salary) {m salary = salary;}
int GetSalary() {return m_salary;}
int GetPay() { return m_salary; }

private:
int m_salary;
}:

Rev. 1.2 Copyright © 2006 Object Innovations 39
All Rights Reserved



ImdCpp Chapter 1

class WageEmployee : public Employee

public:
WageEmployee(const char* name = """,
int hours = 0, int wage = 0) : Employee(name),
m_hours(hours), m_wage(wage)

Trace(""WageEmployee: :WageEmployee(const char*,int,int)");
}
~WageEmployee()

Trace("'WageEmployee: :~WageEmployee()");

void SetHours(int hours) {m_hours = hours;}

int GetHours() {return m_hours;}

void SetWage(int wage) {m_wage = wage;}

int GetWage() {return m_wage;}

int GetPay() {return m_hours * m_wage; }
private:

int m_hours;

int m_wage;

¥
#endif

// demoemp.cpp
//
// Demo program for Employee classes

#include "trace.h"
#include "employee.h"

int main()

SalaryEmployee sally('Sally", 500);
WageEmployee wally(*"Wally', 40, 10);

Trace(Sally®s name = ", sally.GetName());
Trace("Sally"s salary = ", sally.GetSalary(Q));
Trace("Wally®"s name = ", wally._GetName());
Trace("Wally®s hours = ', wally.GetHours());
Trace("Wally®"s wage = ", wally.GetWage());

Trace(Sally"s pay
Trace("'Wally®s pay
return O;

', sally.GetPay());
", wally.GetPay());

Rev. 1.2 Copyright © 2006 Object Innovations 40
All Rights Reserved



ImdCpp Chapter 1

Lab 1B Answers

1. See the starting files employee.h, employee.cpp and demopoly.cpp in the
Employee\Start3 directory. The following is the output when running the program.

String: :String(const char *str)

Employee: :Employee(const char*)

SalaryEmployee: :SalaryEmployee(const char *, int)
String: :String(const char *str)

Employee: :Employee(const char*)

WageEmployee: :WageEmployee(const char™,int, int)
Sally 500

wally 400

2. Employee objects are not being destroyed because delete is not called for the objects
created by new. See demopoly.cpp in the Employee\Step3 directory and in the
hardcopy listings. When we run the program we get the following output:

String: :String(const char *str)

Employee: :Employee(const char*)

SalaryEmployee: :SalaryEmployee(const char *, int)
String: :String(const char *str)

Employee: :Employee(const char*)

WageEmployee: :WageEmployee(const char*, int, int)
Sally 500

wally 400

Employee: :~Employee()

String::~String()

Employee: :~Employee()

String: :~String()

3. The SalaryEmployee and WageEmployee destructors are not being called because
the destructor in Employee was not virtual. Changing the destructor to virtual (in file
employee.h) resolves the problem (see Employee\Step3 directory). The problem is
not an error here, because the destructor does nothing (other than print a trace
message). It would be an error in a case where the destructor did something
substantive, such as deallocate dynamic memory allocated in the constructor.

4. See the Employee\Step3 directory for code adding class SalesEmployee. No
modification need to be made to the function PayReport.

Rev. 1.2 Copyright © 2006 Object Innovations 41
All Rights Reserved



ImdCpp Chapter 1

Rev. 1.2 Copyright © 2006 Object Innovations 42
All Rights Reserved



AdvCpp

Module 2:

Advanced C++ Topics

Top Level Directory: OINAdvCpp



AdvCpp



AdvCpp Chapter 1

Chapter 1

Advanced Polymorphism and
Inheritance

Rev. 1.2 Copyright © 2006 Object Innovations 139
All Rights Reserved



AdvCpp Chapter 1

Advanced Polymorphism and Inheritance

Objectives

After completing this unit you will be able to:

e Design and implement C++ classes that can be used
in the same manner as the built-in language types.

e Describe the difference between public, protected,
and private inheritance.

e Design and implement C++ classes that use
inheritance, composition, and templates when
appropriate.

e Use interface inheritance to hide from client
programs the details of class definitions.

Rev. 1.2 Copyright © 2006 Object Innovations 140
All Rights Reserved



AdvCpp Chapter 1

Good Class Design

e Elements of a well designed class:
— Can be used where any built

— Provide for good abstract data type (ADT) or interface design
that can be the basis of inheritance hierarchy

e Use the Orthodox Canonical Form (OCF) (see
Coplien’s Advanced C++):

— Default Constructor
— Copy Constructor
— Assignment Operator

— Destructor

e Classes that use the OCF support assignment of
objects, function returns, default initialization, and
call by value parameters.

e Other operators, for conversion or manipulation may
have to be added depending on how the class is used.

e Building a good inheritance hierarchy through
abstraction and encapsulation reduces the complexity
of the system. It may or may not promote software
reuse in subsequent projects.

Rev. 1.2 Copyright © 2006 Object Innovations 141
All Rights Reserved



AdvCpp Chapter 1

String Class

class String

{

public:
String(const char *str = "");
String(const String& s);
~String();

String operator=(const char *str);

String& operator=(const String& s);
private:

char *m_str;

int m_length;

}:

String::String(const String& s)

{
m_length = s_m_Jlength;
m_str = new char[m_length + 1];
strcpy(m_str, s.m_str);

+

String String::operator=(const char *str)
{
delete [] m_str;
m_length = strlen(str);
m_str = new char[m_length + 1];
strcpy(mn_str, str);
return *this;
+
String& String::operator=(const String& s)
{
iIfT (this == &s) // special case s = s
return *this;
m_length = s.m_length;
delete [] m _str;
m_str = new char[m_length + 1];
strcpy(m_str, s.m_str);
return *this;

Rev. 1.2 Copyright © 2006 Object Innovations 142
All Rights Reserved



AdvCpp Chapter 1

Lab 1A

Orthodox Canonical Form

The goal of this simple exercise is to reinforce in your mind how a
class written in the orthodox canonical form can be used in the
same way as a built-in type. In the C++ program you will write
notice that while the String class is an improvement over the use of
a char* pointer, its use naturally fits into C++.

Detailed instructions are contained in the Lab 1A write-up at the
end of the chapter.

Suggested time: 30 minutes

Rev. 1.2 Copyright © 2006 Object Innovations 143
All Rights Reserved



AdvCpp Chapter 1

Public Inheritance

¢ Inheritance determines the encapsulation level that
the access control specifiers provide for member
functions and data.

e Public Inheritance is of the form class B: public A.

— With public access control, member functions and data are
available to any function in the program.

— With private access control, member functions and data are
only available to member functions in the class, but not any
derived classes.

— With protected access control, member functions and data are
available to derived classes.

— Derived classes access data through public or protected
member functions of the classes.

Rev. 1.2 Copyright © 2006 Object Innovations 144
All Rights Reserved



AdvCpp Chapter 1

Public Inheritance Example

e To speed up development, the class IntList inherits
from the class IntStack.

class IntList : public IntStack

{
public:
IntList(): IntStack(100){};
IntList(int size):IntStack(size){};
~IntListQQ{};
void Add(int value) {Push(value);}
int Remove() {int ret; ret = Pop();return ret;}
}:
class IntStack
{
public:
IntStack(long size = STACKSIZE);
~IntStack();
void Push(int x);
int Pop(Q);
void Print();
int Isempty(Q);
int IsFull(Q);
private:
long stacksize; // size of stack
int *stack; // stack data
long top; // top of stack
}:
Rev. 1.2 Copyright © 2006 Object Innovations 145

All Rights Reserved



AdvCpp Chapter 1

Public Inheritance Problems

e IntStack’s Push(), Pop() methods are visible to all
users of IntList.

— This compromises the encapsulation because IntList cannot
be reimplemented if Push() and Pop() are used.

— Push() and Pop() cannot be made protected.

e The fundamental problem is that public inheritance
IS type inheritance.

— class IntList : public IntStack means that IntList “is a” type of
IntStack which is not really the case.

— If you have an argument that takes a reference or a pointer to
IntStack will take a pointer or reference to IntList.

— As a type Push() and Pop() methods have to be public.
e Examples of proper “type” or “is a” inheritance:

— A cat is a type of animal — a reference to an animal can be a
cat.

— A BMW is a type of car — a reference to a car can be a BMW.

Rev. 1.2 Copyright © 2006 Object Innovations 146
All Rights Reserved



AdvCpp Chapter 1

Inheritance and Semantics

e Developing classes requires you to partition the
classes properly:

class Fish {
public:
virtual void LayEggs(Q

};
class Guppy : public Fish

— But Guppies give birth to live young!
e \We need:

class Fish
class ViviparousFish : public Fish {

public:
virtual void GiveBirth();

}:

class OviviparousFish - public Fish {
public:

virtual void LayEggs(Q);
}

class Guppy : public ViviparousFish

e Now the compiler will prevent:

Guppy myGuppy ;
MyGuppy . LayEggs () ;

e If the abstraction of your problem does not require
reproductive functions then you can ignore the issue.

Rev. 1.2 Copyright © 2006 Object Innovations 147
All Rights Reserved



AdvCpp Chapter 1

Private Inheritance

e Private inheritance is implementation inheritance.

— Implementation is reused, the base class interface is hidden.

class IntList : private IntStack

{
public:
IntList(): IntStack(100){};
IntList(int size):IntStack(size){};
~IntList(QQ{};
void Add(int value) {Push(value);}
int Remove() {int ret; ret = Pop();return ret;}
}:

e Private Inheritance is of the form class B: private A.

— With public access control, member functions and data are
private in the derived class.

— With private access control, member functions and data are
hidden in the derived class.

— With protected access control, member functions and data are
private in the derived classes.

— The derived class accesses data through public or protected
member functions of the base class.

e Only the class that immediately derives from the base
class can use the base class.

e Only the implementation is reused, none of the
methods so the “is a” relationship is not required.

Rev. 1.2 Copyright © 2006 Object Innovations 148
All Rights Reserved



AdvCpp Chapter 1

Lab 1B

Public, Protected, and Private Inheritance and Access Scoping

The best way to understand the access scope for the public,
protected, and private inheritance is to try a few simple examples
and try to predict how the compiler will treat each case.

Detailed instructions are contained in the Lab 1B write-up at the
end of the chapter.

Suggested time: 30 minutes

Rev. 1.2 Copyright © 2006 Object Innovations 149
All Rights Reserved



AdvCpp Chapter 1

Composition

e Composition is an alternative to private inheritance.

e The composing class contains an instance of the
composed class as a member:

class IntList : public IntStack

{
public:

IntList():stk(100){};
IntList(int size):stk(size){}:;
~IntListQQ{};
void Add(int value) {stk.Push(value);}
int Remove() {return stk.Pop(Q);}
private:
IntStack stk;
}:

e Composition is a “has a” or “contains a” or
“implemented using a” relationship.

— Person has a social security number.

— A car contains an engine and four wheels.

Rev. 1.2 Copyright © 2006 Object Innovations 150
All Rights Reserved



AdvCpp Chapter 1

Composition vs. Private Inheritance

e If the relationship is “contains” or “has’ composition
should be used. But what about the “implemented
using” relationship?

e If you need to redefine virtual functions or use
protected members you need to use private
inheritance.

— Protected constructors or assignment operators.

e |f there is no clear choice use whichever one is
simplest to use.

e Both private inheritance and composition are reuse
technologies.

Rev. 1.2 Copyright © 2006 Object Innovations 151
All Rights Reserved



AdvCpp Chapter 1

Templates vs. Inheritance

e Templates are another reuse technology.

e Templates are used whenever the behavior does not
depend on the type of the object.

template<class T> class Array {
public:
Array(int size = 10);
~Array(Q);
void SetAt(int 1, const T& X);

T GetAt(int 1);

void Print();
private:

int m_size;

T* m_array;};

e The behavior of the array operations SetAt and GetAt
do not depend on the type of object they contain.

¢ Inheritance would not be work for an Array base
class container. What types would you use as
parameters for virtual functions SetAt and GetAt in

the base class?

— If you use void* pointers as parameters you will not be able
to SetAt and GetAt objects such as cars or doubles, only

pointers to them.

e If the behavior depends on the type of object you
must use virtual functions. You could use templates
to create the LayEggs() or GiveBirth() functions for
the fish class. You must use inheritance.

Rev. 1.2 Copyright © 2006 Object Innovations 152
All Rights Reserved



AdvCpp Chapter 1

Protected Inheritance

e Protected Inheritance is of the form class B: protected
A.

— With public access control, member functions and data are
protected in the derived class.

— With private access control, member functions and data are
hidden in the derived class.

— With protected access control, member functions and data are
protected in the derived classes.

e Infrequently used, allows public members to be
protected in the derived class.

e Semantically unclear, can just use public inheritance
and protected access control.

Rev. 1.2 Copyright © 2006 Object Innovations 153
All Rights Reserved



AdvCpp Chapter 1

Implementation Encapsulation

e Part of good design is the separation of class
definition from the implementation.

e The compiler, however, needs to know the size of a
class to instantiate it. This often leads to “include file
hell””:

#include "'stringclass.h"
#include "'zipcode.h"
#include "addressclass.h™
#include "dateclass.h"
#include "'ssnclass.h™

class BankAccount

L

private:
String PrimaryAccountHolder;
Address PrimaryAccountAddress;
Address MailingAddress;

Date AccountOpenDate;

SSN Taxpayerld;
public:

BankAccount();

Virtual ~BankAccount();

const char* getAccountHolderName();
const char* getAccountAddress();
const char* getMailingAddress();
const char* getTaxpayerild();

}:

e You change the implementation, you have to
recompile the client. For large systems this can be a
major problem and inhibits the release of software
revisions.

Rev. 1.2 Copyright © 2006 Object Innovations 154
All Rights Reserved



AdvCpp Chapter 1

Interface Inheritance

e To avoid this define an abstract base class.

class BankAccount {

public:
virtual ~BankAccount();
virtual const char* getAccountHolderName() const=0;
virtual const char* getAccountAddress()const = 0O;
virtual const char* getMailingAddress() const = O;
virtual const char* getTaxpayerld() const; = 0

};

e Clients program with pointers to this BankAccount
class. These pointers actually reference a concrete
instance of this abstract base class.

class ActualBankAccount : public BankAccount
{
public:
ActualBankAccount(..) {.};
virtual ~ActualBankAccount();
const char* getAccountHolderName();
const char* getAccountAddress();
const char* getMai lingAddress();
const char* getTaxpayerild();
private:
// actual 1mplementation

e The client obtains a pointer to an actual instance
from some other function.

Rev. 1.2 Copyright © 2006 Object Innovations 155
All Rights Reserved



AdvCpp Chapter 1

Lab 1C

Investigation of Class Inheritance

This lab will build the IntList class using the IntStack class with
various implementation techniques. Composition, private
inheritance, public inheritance, and interface inheritance will be
used to demonstrate implementing C++ classes.

Detailed instructions are contained in the Lab 1C write-up at the
end of the chapter.

Suggested time: 40 minutes

Rev. 1.2 Copyright © 2006 Object Innovations 156
All Rights Reserved



AdvCpp Chapter 1

Summary

e The Orthodox Canonical Form provides a format for
the design of classes that can be used in the same
manner as built-in types.

e Public Inheritance is “type” inheritance and implies
an “is a” relationship.

e Public Inheritance hierarchies should reflect the
system design abstraction. It may or may not
promote code reuse.

e Private Inheritance is an implementation inheritance
and implies an “implemented using” relationship.

e Protected Inheritance is semantically vague. It is not
often used.

e Composition uses classes to implement functionality.
It implies a “contains” or “has a” relationship.

e Templates implement reusable behavior that does not
depend on the type of the object.

e Abstract base classes can be used to hide
Implementation details from a client and decouple the
client from the details of the object’s implementation.

Rev. 1.2 Copyright © 2006 Object Innovations 157
All Rights Reserved



AdvCpp Chapter 1

Lab 1A

Orthodox Canonical Form

Introduction

The goal of this simple exercise is to reinforce in your mind how a class written in
the orthodox canonical form can be used in the same way as a built-in type. In the C++
program you will write notice that while the String class is an improvement over the use
of a char* pointer, its use naturally fits into C++.
Suggested time: 30 minutes

Root Directory: ONAdvCpp

Directory:  Labs\Lab1A\OCF (working directory)
Chap01\OCF\Step0 (backup copy of starter files)
Chap01\OCF\Stepl (answer)

Files to Modify :

democonv.cpp
strn.h
strn.cpp

Instructions:

1. In the working directory there is a version of a String class in which there is
implemented a second overloaded assignment operator for assigning a character
pointer to a String. There is a test program democonv.cpp for testing assignments
and conversions. Before running the program try to predict the output, including all
constructors, destructors, assignments, and overloaded cast operations. Build and run
the program. Redirect the output to a file so that you can save and study it.

() How many copy constructors are invoked?
(b) What conversions are involved in executing PrintString("'Goodbye') ?
(c) What conversions are involved in executing PrintCharPtr(a) ?

2. Replace the two lines
a = "Hello";
b = a;

by the single line

b = a = "Hello"

3. Build the program. What is wrong? Fix the problem.

Rev. 1.2 Copyright © 2006 Object Innovations 158
All Rights Reserved



AdvCpp

Lab 1A

Answers

1. The output is

String: :String(const char *str)
String: :String(const char *str)
operator const char* () const

1st = Alpha
operator const char* () const
2nd = Beta

operator=(const char *str)
operator=(const String& s)
operator const char* () const

1st = Hello
operator const char* () const
2nd = Hello

String::String(const char *str)
operator const char* () const
String = Goodbye

String: :~String()

operator const char* () const
char ptr = Hello

String: :~String()

String: :~String()

Chapter 1

(@) There are no copy constructors invoked, because there is no explicit initialization

of an object by another object, and no passing of a String object by value.

(b) First there is a conversion from const char * to String (by means of a constructor)
and then a conversion from String to const char * (by overloaded cast operator).
(c) There is a conversion from String to const char * (by overloaded cast operator).

2. When attempting to do the assignments on one line the compile fails, because the
overloaded operator=(const char *) returns a void. To fix the problem, make it
return a String, following the pattern of operator=(const String&). See the answer

directory for a complete solution.

String String::operator=(const char *str)
{
Trace("'operator=(const char *str)");
delete [] m_str;
m_length = strilen(str);
m_str = new char[m_length + 1];
strcpy(m_str, str);
return *this;

Rev. 1.2 Copyright © 2006 Object Innovations
All Rights Reserved

159



AdvCpp Chapter 1

Lab 1B

Public, Protected, and Private Inheritance and Access Scoping

Introduction

The best way to understand the access scope for public, protected and private inheritance
is to try a few simple examples and try to predict how the compiler will treat each case.

Suggested Time: 30 minutes

Root Directory: ONAdvCpp

Directories: Labs\Labl1B\Access (do your work here)
Chap01\Access\Step0 (backup copy of starter files)
Chap01\Access\Stepl (answer to first part)
Chap01\Access\Step?2 (answer to second part)
Chap01\Access\Step3 (answer to third part)
Chap01\Access\Step4 (answer to fourth part)

Instructions

1. Before you build the starter project examine the code in the main routine and
predict which lines of code the compiler will flag as illegal.

2. Comment out the illegal lines and build the project. Before you run the project
predict what the output will be. Run the project and check your answer.

3. Change the inheritance derivation for class B to protected. Before you build the
project try to predict what code the compiler will now flag as illegal.

4. Build the project to check your prediction. Run the project and make sure you
understand the results.

5. Change the inheritance derivation for class B to private. Before you build the
project try to predict what code the compiler will now flag as illegal.

6. Build the project to check your prediction. Run the project.

7. Change the inheritance derivation for class B to public. Suppose | wanted to
prevent a call to the foo() member function in class A. How could I do that? Insert
a call to b.foo() in the program. Compile the code to make sure your change
compiles. Now define a protected member function foo() in class B. Recompile.
What happens?

8. Remove the protected member function foo() from B. Define a public member
function foo(int z) in B. Compile. Fix the compilation error. Now put in a call to
b.foo() in the program. What compilation error do you get now? There is no
polymorphism without virtual functions. If class B has to reimplement foo() then
class B does not fulfill the “is a” relationship for public inheritance.

Rev. 1.2 Copyright © 2006 Object Innovations 160
All Rights Reserved



AdvCpp Chapter 1

Lab 1C

Investigation of Class Inheritance

Introduction

This lab will build the IntList class using the IntStack class with various
implementation techniques. Composition, private inheritance, public inheritance, and
interface inheritance will be used to demonstrate implementing C++ classes.

Suggested Time: 40 minutes

Root Directory: ONAdvCpp

Directories: Labs\Lab1C\List (do your work here)
Examples\List\Step0 (backup copy of starter files)
Examples\List\Stepl (answer to the first part)
Examples\List\Step2 (answer to the second part)
Examples\List\Step3 (answer to the third part)
Examples\List\Step4 (answer to the fourth part)

Instructions

1. Verify that the starter code compiles.

2. Create a class IntList that uses public inheritance from IntStack to help implement is
functionality. IntList will have a default constructor, a constructor that takes a list
size, Add() and Remove() methods that use the Push() and Pop() methods from
IntStack.

3. Inside the main routine create an instance of IntList. Invoke the Add() method three
times with different values. Invoke the Push method once. Invoke the Remove()
method four times. After each Remove() print out the value that was removed from
the list. Why can we use the Push() method from the base class?

4. Change the derivation on the IntList class from public to private. Make the
appropriate changes to get the program to work. What is the difference between
public and private inheritance? Which is the proper one to use in this
implementation?

5. Reimplement the IntList class using composition instead of inheritance. Which do
you prefer composition or private inheritance. When would you have to use
composition? When would you have to use private inheritance?

6. Define an abstract base class that defines the essential functions for the IntList.
Reimplement the IntList class to derive from the abstract base class. Use composition
to implement the IntList class. Rewrite the main program to use a pointer to the
abstract base class instead of the IntList class. How does the client program create an
instance of the IntList class? Hint: encapsulate the creation inside another function.

Rev. 1.2 Copyright © 2006 Object Innovations 161

All Rights Reserved



AdvCpp Chapter 1

Rev. 1.2 Copyright © 2006 Object Innovations 162
All Rights Reserved



Fndstl

Module 3:

Fundamentals of STL

Top Level Directory: ONFndStl



Fndstl



Fndstl Chapter 1

Chapter 1

An Overview of Templates

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 239
All Rights Reserved



Fndstl Chapter 1

An Overview of Templates

Objectives

After completing this unit you will be able to:
e Define a function template.

e Employ the rules for disambiguation under
specialization for template functions.

e Define a class template.

e Define templates with multiple type parameters.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 240
All Rights Reserved



Fndstl Chapter 1

Templates

e Templates provide a way of implementing a piece of
code in a type independent way.

— Functions such as sort, average, min and max should be
written as template functions since the code for each of them
Is independent of their type.

o A template function is similar to a macro except with
templates: there is no tedium about backslashes or
parentheses, there are better diagnostics, and type
checking is performed.

— One also need not worry about double expansions in
expressions such as x++,

e Templates may be classes as well as functions.

— Most data structures such as Array, Stack, List, and Set (to
name a few) make good candidates for templates.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 241
All Rights Reserved



Fndstl Chapter 1

Overloading Functions

e Note the following overloaded non template
functions:

double minimum(const double & a, const double & b)

{
if ( a<b)
return a;
return b;

int minimum(const Int & a, const Int & b)

{
if (a<b)
return a;
return b;
}

string minimum(const string & a, const string & b)

{
if (a<b)
return a;
return b;

}
e One could imagine other minimum functions.

e \What about many maximum or sort functions?

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 242
All Rights Reserved



Fndstl Chapter 1

Template Functions

e The previous functions differ only by their type.

— If the type could be made into a parameter, then the
programmer could code one such function and instantiate it

on any type.

— In C++, parameterized types are achieved by using the
template keyword.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 243
All Rights Reserved



Fndstl Chapter 1

Template Functions — Example

// Min_cpp

#include <iostream>
#include <string>
using namespace std;

// template function
template < class T >
T minimum(const T & a,const T & b)

{
ifT (a<b)
return a;
return b;
+
int main( )
{
int a =5, b =10;
double x = 30.45, y = 57.35;
string r("mike'™), s('sue'™);
cout << minimum(a,b) << endl; // instantiation
cout << minimum(x,y) << endl; //
cout << minimum(r,s) << endl; // "
return O;
+
Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 244

All Rights Reserved



Fndstl Chapter 1

Specializing a Template Function

e Special care must be taken in implementing template
functions.

— One must be sure that operators have been correctly defined
for any type instantiated for the function.

— In some cases this means that a special (overloaded) function
must be written.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 245
All Rights Reserved



Fndstl Chapter 1

Specializing a Template Function

e The code below would get translated as shown:

char *line = "there'", *text = "hello";
cout << minimum(line, text) << endl;

char * minimum(const char * a, const char * b)

{

if (a < b) // compares addresses
return a;
return b;

}

e What is needed is a function specifically coded for the
two char * types! (i.e. a non-template function!).

char * minimum(const char *a, const char *b)

{
it ( strcmp(a,b) <0 ) // compares data

return a;
return b;
Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 246

All Rights Reserved



Fndstl Chapter 1

Disambiguation under Specialization

e In the special case of a template function overloaded
with a non template function, the following rules are
used to disambiguate function calls.

1. Examine all non-template calls!

if ==1, done
it > 1, ambiguous
if == 0, next step

2. Examine all template instances.

if == 1, done
if > 1, ambiguous
if == 0, next step

3. Reexamine all non template instances, attempting to resolve the
call as a non-template function.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 247
All Rights Reserved



Fndstl Chapter 1

Disambiguation under Specialization

e Examples:
char 1ine[100] = "hello™;
char word[100] = "there';

int a,b;
double Xx,y;

// match on non template call
cout << minimum{line,word);

// match on template <class Int>
cout << minimum (a,b);

// match on template <class double>
cout << minimum (X,Y);

// NO MATCH
// cout << minimum (line,5);

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 248
All Rights Reserved



Fndstl Chapter 1

Template Classes

¢ In addition to functions, classes can also be

templatized.
— For example, one could imagine a Stack class for integers,

Strings, and Windows. Similarly, one could imagine a List
class for Integers, Records, or some other type.

e Observe the IntStack class:

Copyright © 2006 /training/etc, Inc. and Object Innovations 249

Rev. 1.2
All Rights Reserved



FndStl

Template Classes

Chapter 1

class IntStack

{
public:
IntStack(int number = 10);
~IntStack( );
void push(int value);
int pop( );
private:
int *data;
int howmany;
int top of stack;
};
IntStack: : IntStack(int number)
{
data = new iInt[howmany = number];
top_of stack = 0;
+

IntStack: :~IntStack()

delete [ ] data;

+
void IntStack::push(int value)
{
if ( top_of_stack >= howmany )
throw overflow(top_of _stack, howmany);
else
dataJtop of stack++] = value;
}
int IntStack::pop( )
{
1T( top_of _stack < 0)
throw underflow(top_of _stack);
else
return(data[--top_of _stack]);
+
Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations

All Rights Reserved

250



Fndstl Chapter 1

Template Classes

e Next, observe the DoubleStack class:

— Notice the differences between the two classes — IntStack
and DoubleStack. They differ only by their type. The code is
identical except for the type.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 251
All Rights Reserved



FndStl

Template Classes

Chapter 1

class DoubleStack
{
public:
DoubleStack(int number = 10);
~DoubleStack( );
void push(double value);
double pop( );
private:
double *data;
int howmany;
int top of stack;
};
DoubleStack: :DoubleStack(int number)
{
data = new double[howmany = number];
top_of stack = 0;
+
DoubleStack: :~DoubleStack()

delete [ ] data;
void DoubleStack: :push(double value)

{
if ( top_of_stack >= howmany )

throw overflow(top_of _stack, howmany);

else
dataJtop of stack++] = value;
¥
double DoubleStack: :pop( )
{
1T( top_of _stack < 0)
throw underflow(top_of _stack);
else
return(data[--top_of _stack]);
s

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations
All Rights Reserved

252



Fndstl Chapter 1

Template Classes

e The two classes above represent the same abstraction,
a stack.

— They have the same functionality and the same
implementation. They differ only by their type.

e It's easy to imagine other classes such as the ones
above.

— For example, StringStack or ComplexStack.

e Classes which have identical interfaces and
iImplementations except for their types should be
iImplemented in C++ as a template class — a blueprint
for a family of classes.

e An array provides a good abstraction for a template.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 253
All Rights Reserved



Fndstl Chapter 1

An Array Template Class

template < class T > // T i1s the type parameter
class Array

{
public:
Array(int);
Array(const Array & a);
~Array( );
T & operator[](int index);
int dimension( ) const;
int operator==(const Array & a);
Array<T> & operator=(const Array & a);
private:
T *elements;
int size;
}:
Rev. 1.2

Copyright © 2006 /training/etc, Inc. and Object Innovations

254
All Rights Reserved



Fndstl Chapter 1

An Array Template Class

e Each member function of a template class is itself a
template function and must be coded as such. The
notation:

template < class T>
Array<T>::Array(int number)

defines this function as a template function and
specifies it is from a template class.

template <class T>
Array<T>::Array(int number)

{
}

elements = new T[size = number];

or

template <class T> Array<T>::Array(int number)

{
}

elements = new T[size = number];

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 255
All Rights Reserved



Fndstl Chapter 1

Instantiating a Template Class Object

e Objects of template classes first need to be
instantiated and then employed.

— When the compiler sees a template instantiation, it builds the
class in accordance with the template definition by
substituting the instantiated type in place of the template
parameter.

e Then, using a template class object is the same as
using a non-template class object.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 256
All Rights Reserved



Fndstl Chapter 1

Instantiating a Template Class Object

// An array of 10 integers
// <int> is the parameterized type

Array <int> lArray(10);

// An array of 10 doubles
// <double> IS the parameterized type

Array <double> DArray(10);

for(int 1=0; 1 < lArray.dimension(); i1++)
cout << lArray[i1] << endl;

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 257
All Rights Reserved



Fndstl Chapter 1

A Non-member Function with a

Template Argument

e Suppose we wish to write a non member function to
sum the elements of a template Array.

e This can be done in two ways.

— Generalize the function — make the function a template
function.

template <class T>
T suml(const Array<T> & X)

{
T total = O;

return total;

}

— Make it type specific — do not make it a template function.

int sum2(const Array<int> & X)

int total = O;
return total;
Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 258

All Rights Reserved



Fndstl Chapter 1

Friends of Template Classes

e Template classes can have friend functions. Since
friends are non-member functions, either of the above
approaches could be used:

— Generalize the function — make the function a template
function.

— Make it type specific — do not make it a template function.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 259
All Rights Reserved



Fndstl Chapter 1

Friends of Template Classes

// type specific

//

friend

ostream& operator<<(ostream & s,const Array<int>&);

Corresponding To The Function

ostream& operator<<(ostream & s,const Array<int>&a)

{
for (int i = 0; i < a.size; i++)
s << a.elements[i];

return s;
+
// or template
//
friend

ostream& operator<<(ostream & s, const Array<T> &);
Corresponding To The Function

template < class T>
ostream& operator<<(ostream & o0s,const Array<T>& a)
{
for (int 1 = 0; 1 < a.size; 1++)
0s << a.elements|i];
return os;

}

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 260
All Rights Reserved



Fndstl Chapter 1

Templates with Multiple Type

Parameters

e A template class represents a family of classes whose
exact type is parameterized.

e The parameterization is not limited to one type.
— There can be more than one parameterized type.

— Each parameter can be of any type — the same type or a
different type.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 261
All Rights Reserved



FndStl

Templates with Multiple Type

Parameters

Chapter 1

template <class L, class R>
class Pair {
public:
Pair(const L & Left,const R & Right)
: left_d(Left), right d(Right) { }
Pair() { }
L getleft() const { return left d; }
void setleft(const L & clr){left d = clr;}
R getright() const { return right d; }
void setright(const R & crr){right d=crr;}

private:
L left d;
R right _d;
Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations

All Rights Reserved

262



FndStl

Templates with Multiple Type

Parameters

Chapter 1

e Partial program using Pair:

#in
#in
#in

int

{

clude "Fraction.h"
clude <string>
clude <iostream>

main( )

using namespace std;
string Namel("*"MERCK'™), Name2("'NETSCAPE™);
Fraction MRKPE(80,4), NETPE(35,2); //PE"s

Pair <string, Fraction> pfolio[2];
pfolio[0].setleft(Namel);
pfolio[0].setright(MRKPE);
pfolio[l].setleft(Name2);
pfolio[1l].-setright(NETPE);

for Cint1 =0; 1 < 2; 1++)

{
cout << pfolio[i].getleft( ) << endl;
cout << pfolio[i].getright( ) << endl;
}
/* 1f(Lookup(pfolio, 2, Namel) == -1)
cout << Namel << " not found\n';
else
cout << Namel << " found\n';
*/
return O;
}
Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations

All Rights Reserved

263



Fndstl Chapter 1

Non Class-type Parameters for

Template Classes

e Thus far, each template has had parameterized types.

e Template classes may take expression parameters, i.e.
non class-type parameters.

template < class T, Int howmany = 20>
class FArray {
public:

FArray( );

private:
T elements|[howmany];

}:

const SIZE = 512;
FArray < int, 10> fsia;
FArray < String, SIZE > sa;

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 264
All Rights Reserved



Fndstl Chapter 1

Comments Regarding Templates

e There exist strict rules regarding templates:
1. Template classes expect proper constructors.
2. Template classes expect proper functions.

3. If a template function expects a reference, then a reference (not
a value) must be passed!

4. A Derived object cannot be passed in place of a Base object.

5. There is no way to specify that all template instantiations are
friends.

6. Template classes can be type arguments to a template class.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 265
All Rights Reserved



Fndstl Chapter 1

Comments Regarding Templates

// (@) proper constructors
template<class T>Array<T>::Array(int size)
{
data = new T[size]; // define
- // proper
// constructor

}

// (b) proper functions
template <class T> T min(T a, T b)

{
return a < b ? a : b;
+
// (e)
friend class Array<int>; // ok

friend template <class T> class Array; // error

// (F) template class as a type argument
Matrix < Array<int> > M; // watch spaces

M 1s a template object whose elements are integer
arrays.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations
All Rights Reserved

266



Fndstl Chapter 1

Templates and Inheritance

e A template class represents a family of classes.

— Each of the classes in the family is used as if it is a non-
template class.

— Thus, you can derive classes from a template class in the
same way that you can derive from a non-template class.

— Some of the notation may be a little strange at first.
Ultimately one gets used to the syntax.

// Listinternal.cpp

#include <list>
#include <string>
#include <iostream>
using namespace std;

template <class T>
class ListWithString : public list<T>

{
public:
ListWithString(string n, T *beg, T *end)
: list<T>(beg, end), name(n)
{3
string getName() { return name; }
private:
string name;
};

e In the code above, the functions are defined inside the
class definition.

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 267
All Rights Reserved



FndStl

Templates and Inheritance

Chapter 1

e |f the function is defined outside the class definition

the syntax looks like this:
// ListExernal.cpp

#include <list>
#include <string>
#include <iostream>
using namespace std;

template <class T>
class ListWithString : public list<T>

{
public:

ListWithString(string n, T *beg, T *end);

string getName();
private:
string name;

}:

template <class T>

ListWithString<T>::

ListWithString(string n, T *beg, T *end)
list<T>(beg, end), name(n) {}

template <class T>
string ListWithString<T>::getName()

{
}

return name;

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations
All Rights Reserved

268



Fndstl Chapter 1

Templates and Inheritance

e Here is the test program, that works for either
version of the ListWithString class.

— We derived the new class from the standard list class.

int main()

{
int x[10] = { 1,2,3,4,5,6,7,8,9,10 };
ListWithString<int> L("Mylist", X, X + 10);
cout << L.getName() << endl;
list<int>::iterator begin = L.begin();
list<int>::iterator end = L.end();
while(begin = end)

cout << *begin++ << " " << endl;

return O;

by

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 269

All Rights Reserved



Fndstl Chapter 1

Exercises for Chapter 1

e The exercises for this module have a somewhat
different format than those for the first two modules.

— Find start code in numbered subdirectories of FndStl\Labs.
Note that the starter code does not necessarily compile.

— Find solution code in numbered subdirectories of
FndSti\Solutions.

1. Write the Lookup function referenced on page 263. Lookup is
a non member function which takes a Pair array, an int, and a
String.

2. Write a template Stack class and then implement the following:

Array < Stack<int, 10> > Array of Stacks(5);

Rev. 1.2 Copyright © 2006 /training/etc, Inc. and Object Innovations 270
All Rights Reserved





