
•

TRAINING MATERIALS FOR IT PROFESSIONALS EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

This material is copyrighted by LearningPatterns Inc. This content and shall not be reproduced, edited, or
distributed, in hard copy or soft copy format, without express written consent of LearningPatterns Inc.
Copyright © LearningPatterns Inc.

For more information about Java Enterprise Java, or related courseware, please contact us. Our courses
are available globally for license, customization and/or purchase.

LearningPatterns. Inc. Services@learningpatterns.com | www.learningpatterns.com

Global Courseware Services 262 Main St. #12 | Beacon NY, 12508 USA
 212.487.9064 voice and fax

Java, and all Java-based trademarks and logo trademarks are registered trademarks of Oracle, Inc., in
the United States and other countries. LearningPatterns and its logos are trademarks of LearningPatterns
Inc. All other products referenced herein are trademarks of their respective holders.

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

 Copyright © LearningPatterns Inc. All rights reserved i

Table of Contents – Java 8 New Features

Java 8 New Features __ 1
Workshop Overview ___ 2
Workshop Agenda___ 3
Typographic Conventions ___ 4
Labs __ 5

Session 1: What's New in Interfaces__ 6
Lesson Objectives ___ 7
Interfaces – Quick Review __ 8
Interfaces – Example ___ 9

Default Methods ___ 10
Default Methods ___ 11
Default Methods – Example __ 12
Motivation and Benefits of Default Methods ___ 13
Motivation and Benefits of Default Methods ___ 14
Inheritance Issues __ 15

Static Methods___ 16
Static Methods___ 17
Benefits of Static Methods ___ 18

Functional Interfaces ___ 19
Functional Interface – Defined __ 20
Functional Interfaces – Details __ 21
Case Study – Comparator__ 22

Lab 1.1: Setup, Default Methods, Static Methods __________________________________ 23
Review Questions __ 24

Session 2: Lambda Expressions __ 25
Lesson Objectives __ 26

Overview ___ 27
Motivation: Common Actions Are Verbose __ 28
Too Much Window Dressing ___ 29
Introducing Lambda Expressions __ 30
Functional Interfaces and Lambdas___ 31
Lambdas Occur in a Target Context __ 32
Relationship to Functional Interfaces ___ 33

Using Lambda Expressions __ 34
Lambda Expression Syntax – Overview ___ 35
Lambda Compatibility___ 36
What about the Parameter Types? __ 37
Lambda Expression Syntax – Details ___ 38
Lambda Expression Syntax – Details ___ 39
What's the Big Deal? Where Do I Use Them? ___ 40

Lab 2.1: Getting Started with Lambdas ___ 41
Method References ___ 42

Lambdas Can Leverage Existing Code __ 43
Lambdas and Local Variables ___ 44
Variable Capture in Lambdas – Example __ 45
Method References ___ 46
Types of Method References__ 47

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

 Copyright © LearningPatterns Inc. All rights reserved ii

Recipes to Use Method References ___ 48
Refactoring Lambdas into Method References __ 49

Lab 2.2: Method References ___ 50
The Other Side of the Method Call ___ 51
Using a Functional Interface Type – Example __ 52
Review Questions __ 53

Session 3: Streams ___ 54
Lesson Objectives __ 55

Overview ___ 56
Collections Are Great...for What They Do ___ 57
Collections Have Shortcomings ___ 58
Analogy: Data vs. DBMS __ 59
Analogy: Collections = Data, Streams = DBMS ___ 60
Streams – Before and After ___ 61
What Are Streams? ___ 62
Anatomy of a Stream – Details __ 63
Anatomy of a Stream – Illustrated__ 64
Streams vs. Collections __ 65
Stream Example – a First Look __ 66

Understanding the Stream API ___ 67
Stream API – Overview__ 68
Using the Stream API – Illustrated ___ 69
Chained Method Calls – Illustrated ___ 70
Keys to Understanding the API __ 71
Keys to Understanding the API __ 72
Java 8 Functional Interfaces __ 73
Functional Interface: Predicate<T> ___ 74
Functional Interface: Comparator<T> __ 75
Functional Interface: Function<T,R> __ 76

Stream Processing__ 77
filter(Predicate) __ 78
sorted() sorted(Comparator) ___ 79
Comparator.comparing() – Details ___ 80
Comparator Methods Added in Java 8 __ 81
Comparator Chaining – Example __ 82

Lab 3.1: Filtering and Sorting ___ 83
map(Function) ___ 84
map(Function) – Example __ 85
Functional Interface: Consumer<T> __ 86
peek(Consumer) __ 87
"Trimming" Operations of Stream __ 88
Terminal Operations of Stream __ 89
Terminal void Operations – Example __ 90
Terminal Reduction Operations__ 91
Terminal Reduction Operations – Example___ 92
Existence Operations of Stream __ 93
Finder Operations of Stream __ 94
Statistics Operations __ 95

Lab 3.2: Advanced Stream Processing __ 96
Collectors ___ 97

Role and Capabilities of Collectors ___ 98
Collectors – Our Approach ___ 99

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

 Copyright © LearningPatterns Inc. All rights reserved iii

Collectors.toList() and .toSet()__ 100
Functional Interface: Supplier<T> ___ 101
Collectors.toCollection()__ 102
Stream.collect(Collector) Method – Details__________________________________ 103
Collector Interface – Details __ 104
Determining a Collector's Product ___ 105
Determining a Collector's Product ___ 106

Lab 3.3: Getting Started with Collectors__ 107
Partitioning and Grouping – Overview ___ 108
Partitioning Collectors__ 109
Grouping Collectors ___ 110

Lab 3.4: Partitioning and Grouping ___ 111
Reducing and Summarizing Collectors ___ 112
Determining Their Products – Revisited __ 113
Reducing Collectors Have Two Roles__ 114
Standalone Reduction Collector – Example ___ 115
Downstream Reduction Collector – Example __ 116
Downstream Reduction Collector – Example __ 117
mapping() Collector ___ 118
joining() Collector ___ 119
Building a Custom Map___ 120
Other Uses for Downstream Collectors___ 121

Lab 3.5: Reducing and Summarizing __ 122
Review Questions ___ 123

Session 4: Parallel Processing and Concurrency____________________________ 124
Lesson Objectives ___ 125

Overview __ 126
Parallelism – Overview ___ 127
Sequential Processing – Illustrated __ 128
Parallel Processing – Illustrated___ 129
Java 8 Parallel Processing ___ 130
Stream Parallel Processing – Example ___ 131
Enabling Parallel Processing ___ 132

Lab 4.1: Simple Parallel Processing__ 133
Mechanisms and Guidelines __ 134
parallel() and sequential() – Details __ 135
Parallel Streams Use Fork/Join ___ 136
Fork/Join – Illustrated __ 137
Parallel Processing – Ground Rules ___ 138
Parallel Processing – Ground Rules ___ 139
Parallel Processing – Guidelines __ 140
Parallel Processing – Guidelines __ 141
Parallel Processing – Guidelines __ 142

Lab 4.2: Looking at Performance ___ 143
Multithreading Issues__ 144

Overview of Multithreading ___ 145
Singlethreaded / Sequential Example __ 146
Multithreaded / Parallel Example ___ 147
Race Conditions___ 148
Data Synchronization __ 149
Using a Mutex __ 150
Parallel Streams and Shared Mutable State __ 151

Lab 4.3: Data Integrity __ 152

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

 Copyright © LearningPatterns Inc. All rights reserved iv

Review Questions ___ 153
Session 5: Date and Time API___ 154

Lesson Objectives ___ 155
Overview __ 156

Previous Java Date/Time Support – History ___ 157
Java 8 Date/Time Support – Overview ___ 158
How We'll Cover the API ___ 159

Dates, Times, and Instants __ 160
Date and Time Classes – Overview__ 161
Creating Dates and Times ___ 162
Creating Dates and Times – now() and of() __ 163
Creating Dates and Times – parse()___ 164
Formatting Dates and Times – format() ___ 165
Accessing Date and Time Fields __ 166
Accessing Date and Time Fields – getXXX() __ 167
Accessing Date and Time Fields – get() __ 168
Comparing Instances ___ 169

Lab 5.1: Working with Dates and Times__ 170
Deriving New Values __ 171
Deriving New Values – withXXX()__ 172
Deriving New Values – with() ___ 173
Adding and Subtracting___ 174
Adding / Subtracting – plusXXX()/minusXXX()____________________________________ 175
Adding and Subtracting – plus() / minus()__ 176
Instant ___ 177
Time-Zones __ 178
ZonedDateTime __ 179
Determining "Equivalent" Local Time ___ 180

Lab 5.2: Deriving New Values __ 181
Periods and Durations ___ 182

Intervals of Time – Period and Duration ___ 183
Interval between Two Dates/Times __ 184
Creating Custom Intervals___ 185
Adding an Interval to a Date/Time __ 186
Adding and Subtracting Intervals – Example __ 187

Lab 5.3: Periods and Durations ___ 188
Review Questions ___ 189

Session 6: Other Capabilities__ 190
Compact Profiles __ 191
Optional<T> – a Deeper Look ___ 192
Repeatable Annotations___ 193
Type Annotations ___ 194
Nashorn JavaScript Engine __ 195
Other Additions / Improvements __ 196
Deprecated Features ___ 197

Recap __ 198
Recap of What We've Done__ 199
Resources__ 200

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1

Java 8 New Features

Java 8 New Features

Version 20160311

� Version 20160311

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2

Java 8 New Features

Workshop Overview

� Intermediate level course covering the new features
introduced in Java 8

� Course covers the following areas of Java 8:
– New interface capabilities
– Lambda expressions and method references
– Functional interfaces
– Java Streams
– New parallel processing capabilities and the Stream API
– New Date / Time API

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3

Java 8 New Features

Workshop Agenda

� Session 1: What's New in Interfaces

� Session 2: Lambda Expressions

� Session 3: Streams

� Session 4: Parallel Processing and Concurrency

� Session 5: Date and Time API

� Session 6: Other Capabilities

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4

Java 8 New Features

Typographic Conventions

� Code in the text uses a fixed-width code font, e.g.:

Catalog catalog = new CatalogImpl()

–Code fragments are the same, e.g., catalog.speakTruth()

–We bold/color text for emphasis

–Filenames and paths are in italics, e.g., Catalog.java

–Notes are indicated with a superscript number (1) or a star *

–Longer code examples appear in a separate code box (below)

JButton coolButton = new JButton("Press Me for Coolness");
cooltButton.addActionListener(
(e) -> System.out.println("Lambda expressions are way cool")

);

(1) If we had additional information about a particular item in the slide, it would appear here in the notes.

� We might also put related information that generally pertains to the material covered in the slide.

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 5

Java 8 New Features

Labs

� The workshop has numerous hands-on lab exercises,
structured as a series of labs
– Many use types from a fictional case study called JavaTunes

• An online music store
– The lab instructions are separate from the main manual pages

� Setup zip files are provided with skeleton code for the labs
– Students add code focused on the topic they're working with
– There is a solution zip with completed lab code

� Lab slides have an icon in the upper right corner of the slide
– The end of a lab is marked with a stop sign

Lab

STOP

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 6

Java 8 New Features

Session 1: What's New in Interfaces

Default Methods
Static Methods

Functional Interfaces

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Lesson Objectives

� Quick review of Java interfaces

� Use default methods in interfaces
– And understand more complex inheritance scenarios

� Use static methods in interfaces

� Introduce definition of a functional interface
– These underlie many of Java 8's new features

Copyright © LearningPatterns Inc. All rights reserved. 7

Java 8 New Features Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 8

Java 8 New Features

Interfaces – Quick Review

� Java interfaces specify a type that is (mostly) separate from
any implementation
– Often used to define roles played by an object

� An interface defines a type that is similar to a class – with
some key differences:
– Can declare methods, but these methods are abstract

• Except for Java 8 default methods and static methods
(covered next)

– Can also have properties, but all properties are static final
constants

– Cannot be instantiated with the new keyword

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 9

Java 8 New Features

Interfaces – Example

� Regular interface methods are declared without a body
– Implicitly abstract, with no implementation, as shown below

� To implement an interface, you write a class with
implementations for all the interface methods
– If you don't implement all the methods, your implementation

class must be declared as an abstract class

public interface Moveable {
public void moveTo(String dest);

}

public class PosterTube implements Moveable {
// provides an implemented moveTo(String) method
public void moveTo(String dest) {
// implementation here

}
}

� Like classes, interfaces can be placed in packages.
– Like classes, interfaces are either public or not. public interfaces are visible to classes in

other packages, whereas non-public interfaces are visible only within the same package.
• In practice, most interfaces are declared to be public.

� Interface methods are inherently public and abstract.
– In practice, the public keyword is used, but the abstract keyword is omitted.

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 10

Java 8 New Features

Default Methods

Default Methods
Static Methods

Functional Interfaces

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 11

Java 8 New Features

Default Methods

� Default methods provide implementations in interface itself
– Default methods are not abstract, and implementing classes

don't need to implement them
• But may override them with their own implementation

� Below, we add getCurrentLocation() to Moveable
– default keyword and provided implementation (in { })

indicate it is a default method

public interface Moveable {
public void moveTo(String dest);

default public Location getCurrentLocation() {
// return GPS-based location - details not shown

}
}

� The details of the Location type, and the implementation of getCurrentLocation() are not relevant
to how default methods work.

� Implementing classes only need to provide an implemented moveTo() method.
– Optionally, they can also provide an implemented getCurrentLocation() method.
– If they don't, the default implementation will be used.

� The default keyword does not need to appear first, though you'll usually find it written this way, for
clarity. Our default method above could also be written as:
public default Location getCurrentLocation() { ... }

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Default Methods – Example

� Below, Car implements Moveable
– It provides an implemented moveTo() method
– It inherits the default getCurrentLocation() method

class GetMoving {
public static void main(String[] args) {
Moveable m = new Car();
m.moveTo("Seattle"); // Car's impl
System.out.println(m.getCurrentLocation()); // default impl

}
}

public class Car implements Moveable {
public void moveTo(String dest) {
// implementation here

}
}

� Because Car implements Moveable, it can be referenced as type Moveable. A Car IS-A Moveable.
– Sometimes you'll see this written as above, sometimes you'll see this as a parameter type:
public void ship(Moveable item) { // a Car can be passed in

...
}

Copyright © LearningPatterns Inc. All rights reserved. 12

Java 8 New Features Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 13

Java 8 New Features

Motivation and Benefits of Default Methods

� Provide a common implementation for reuse
– Implementing classes can inherit and use the functionality
– For example, interface java.lang.Iterable defines a default
forEach() method (1)

• Inherited by java.util.Collection, and all implementing classes
• Works easily with lambda expressions, covered later

� Allows easy evolution of interfaces
– When adding a new default method, existing implementations

continue working unchanged
• Binary compatibility is maintained

– Adding a "regular" (abstract) interface method requires an
implementation in all implementing classes
• Breaks all existing implementation classes! (bad bad bad) (2)

(1) Iterable.forEach() performs an action on each element in a collection.
– The method supports lambda expressions, covered later.
– The action can be defined and passed in at the point of call, using a lambda expression.
– We'll cover collections and lambda expressions later.

(2) Remember that all "regular" methods in an interface are implicitly abstract.
– An implementing class must implement them, or the class itself must be declared abstract.
– If we add a new, non-default method to an interface, binary compatibility is not maintained.

• Your implementation class (which formerly compiled fine), is now flagged with compiler
errors, because it doesn't implement the new method.

– If we add the new method as a default method instead, the method is available to be called, even
for implementation classes written to the old interface definition.

• The default implementation is inherited, and is used as needed.
• No existing code is broken.

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 14

Java 8 New Features

Motivation and Benefits of Default Methods

� Reduced need for adapter classes defining "empty" methods
– Common before default methods (see notes)
– Interfaces can now define default (or empty) implementations

� Enhances Collections API to support lambda expressions
– Covered later

� NOTE: can't define Object methods like equals() as a
default method (1)

� "Interface adapter" classes are sometimes used in situations where a "large" interface is required, but
in many uses cases, only one or a few of these methods is important.

– Well-known example is the Java AWT WindowListener interface and accompanying
WindowAdapter class.

• WindowListener is an interface with 7 abstract methods, a "large" interface.
• WindowAdapter is an implementing class with 7 empty methods, i.e., { }.
• You can subclass WindowAdapter and override only the methods you care about, and then

use your subclass as a WindowListener. For example, to get the "X" button to respond by
terminating the application, you need to pass a WindowListener to the UI window's
addWindowListener() method. The applicable WindowListener method is
windowClosing(WindowEvent). Often, you don't care about the other 6 methods in
WindowListener. In this case, you can subclass WindowAdapter and override only the
windowClosing() method (you inherit the other 6 empty methods).

� With default methods in interfaces, the WindowAdapter class wouldn't be necessary.
– You could just write a WindowListener implementation class with a single windowClosing()

method. Your implementing class inherits the other 6 default methods.
– For the record, WindowListener was not enhanced to supply default methods in Java 8.

(1) See : http://mail.openjdk.java.net/pipermail/lambda-dev/2013-March/008435.html

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Inheritance Issues

� Situation: a class implements two interfaces, each with the
same default method signature (return type is not considered)
public interface Moveable {
public void moveTo(String dest);
default public Location getCurrentLocation() {
// impl 1

}
}

public interface Item {
public double getWeight();
default public Location getCurrentLocation() {
// impl 2

}
}

public class Car implements Moveable, Item {
public void moveTo(String dest) { ... }
public double getWeight() { ... }
// Q: which getCurrentLocation() method do I get??? (see notes)

}

� A: neither! Compile-time error.
– Since we have an ambiguity, the class must explicitly provide an implemented

getCurrentLocation() method.

� Related, what happens if interface Beta extends interface Alpha, both of which define a default
method named doIt()?

– 1. Class A implements Alpha.
– 2. Class B implements Beta.

• In each case (1) and (2) above, what happens in A and B with respect to the doIt() method?
• Hint: use your gut instinct – it does what you expect it to.

Copyright © LearningPatterns Inc. All rights reserved. 15

Java 8 New Features Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 16

Java 8 New Features

Static Methods

Default Methods
Static Methods

Functional Interfaces

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 17

Java 8 New Features

Static Methods

� Static methods now legal in interfaces
– Recall that static methods are associated with a type
– Static methods in an interface work the same way as in a class

� Suppose a Location interface was defined as below
– getNorthPole() is a "factory method" of Location, which

returns a Location object
– Factory methods are often static, and they can now be

members of an interface
public interface Location {
static public Location getNorthPole() {
// return an instance of some class that implements Location

}
}

client code:
Location northPole = Location.getNorthPole();

� As usual, static methods are called as Type.methodName(), e.g., Location.getNorthPole() in the
example above.

� The static keyword does not need to appear first, though you'll usually find it written this way, for
clarity. Our static method above could also be written as:
public static Location getNorthPole() { ... }

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 18

Java 8 New Features

Benefits of Static Methods

� Useful for utility methods and functions, e.g., those found in
the Collections class and Math class
– Reducing need for separate utility classes

� No need for separate "factory class"
– The interface type serves as its own factory for instances (1)

� NOTES:
– Implementing classes can't override them

• Just like subclasses can't, either
– Can't define Object methods like equals() as a static

method
• Classes can't do this, either

– Basically, all the normal rules apply

(1) We'll see the Comparator interface a lot in this course. The Java 8 Comparator interface has added
several new static methods that return an instance of Comparator, obviating the need for something
like a ComparatorFactory class.

– You can thus get Comparator instances by using only the interface type.
Comparator c = Comparator.comparing(...);

Comparator c = Comparator.reverseOrder();

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 19

Java 8 New Features

Functional Interfaces

Default Methods
Static Methods

Functional Interfaces

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 20

Java 8 New Features

Functional Interface – Defined

� An interface that defines exactly one abstract method
– Simple concept, but vitally important for lambda expressions
– Used extensively later – just introducing the concept now

� @FunctionalInterface can be used to indicate a functional
interface
– Not required – only requirement is that interface define exactly

one abstract method
– If you use @FunctionalInterface on an interface that is not

one, the compiler will flag it as an error

@FunctionalInterface // optional, just gives a compile-time check
public interface ActionListener extends EventListener {
public void actionPerformed(ActionEvent e);

}

� The ActionListener interface has only one abstract method – actionPerformed().

– Therefore, it is a functional interface.

� In our example, we annotated ActionListener with @FunctionalInterface. However, that is not
required.

– The @FunctionalInterface annotation is not actually present in the definition of
ActionListener in the Java library – we include it only for illustration. If, however, we put it
on an interface that had zero or 2+ abstract methods, it would generate a compile-time error.

– For example, the interface definition below results in a compilation error:
@FunctionalInterface
public interface MyInterface {
public void myMethod1();
public void myMethod2();

}

� Using @FunctionalInterface is a good idea, as it documents that this is a functional interface,
plus it gives you the compile-time check.

– Without it, the readers of your code would have to search through the methods, counting up the
abstract ones to determine if it's a functional interface.

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Functional Interfaces – Details

� Sometimes referred to as "SMI" or "SAM" types
– SMI: Single Method Interface
– SAM: Single Abstract Method

� NOTES:
– Default and static methods do not count toward the "exactly

one abstract method" rule
– Nor do abstract methods defined in Object (see notes)

� From the Javadoc for @FunctionalInterface:
– An informative annotation type used to indicate that an interface type declaration is intended to be a

functional interface as defined by the Java Language Specification. Conceptually, a functional interface
has exactly one abstract method. Since default methods have an implementation, they are not abstract. If
an interface declares an abstract method overriding one of the public methods of java.lang.Object, that
also does not count toward the interface's abstract method count since any implementation of the interface
will have an implementation from java.lang.Object or elsewhere.

Copyright © LearningPatterns Inc. All rights reserved. 21

Java 8 New Features Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Case Study – Comparator

Mini-Lab
� See Javadoc for Comparator – google "Comparator Javadoc"

– Look at the Java 7 version first
• The equals() method does not count toward its abstract method count

(see previous page)
– Then look at the Java 8 version (wow!)

• Is the Java 8 version still a functional interface? (1)

• Note the many default and static methods that have been added

� java.util.Comparator is a well-known interface
– Often used for sorting a collection, e.g., a List, via this method:

void sort(Comparator<E> c)

– It's also a functional interface – int compare(E obj1, E obj2)

(1) When looking over the Java 8 Comparator API doc, you will probably agree that the
@FunctionalInterface annotation can be really useful.

– Because this interface is marked with @FunctionalInterface, we don't need to scroll down at
all and count the number of abstract methods, making sure the sum is exactly 1.

– The presence of this annotation immediately answers the question, "Is the Java 8 version still a
functional interface?"

• Even though they added many more methods to it – you'll notice that these new methods are
all default or static interface methods.

Copyright © LearningPatterns Inc. All rights reserved. 22

Java 8 New Features Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 23

Java 8 New Features

Lab 1.1: Setup, Default Methods,
Static Methods

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 24

Java 8 New Features

Review Questions

1. An interface may have at most one default method. [T/F]
2. A default method in an interface can call other methods in the same

interface. [T/F]
3. Explain how default methods help interfaces to evolve "cleanly," i.e.,

without breaking existing code.
4. Functional interfaces must include the @FunctionalInterface

annotation. [T/F]
5. The Comparator interface has 2 abstract methods, yet it's a functional

interface. Explain.
6. A static interface method can only return an instance of that interface type,

e.g., Shape.get() must have Shape as its return type. [T/F]
7. What's wrong with the interface below?
public interface TaxPayer {
public void register();
public double payTaxes() {
return 0.0;

}
}

Session 1: What's New in Interfaces

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1

Labs: Java 8 New Features

Lab Manual: Java 8 New Features

Version 20160311

Version 20160311

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2

Labs: Java 8 New Features

Release Level

This manual contains instructions for creating and running the Java
8 New Features labs using the following software packages:

– Java 8 SDK
– Eclipse Java EE – Luna (4.4) or later

The labs have been tested on Eclipse Luna/4.4 and Mars/4.5
– Luna or later is required for Java 8 support

Lab

The instructions for the labs are geared for Eclipse Luna/4.4 or later.
– Java 8 support is required, which is available in Eclipse 4.4+. Java 8 support can be added to

previous versions of Eclipse, e.g., Kepler/4.3, with the addition of a patch.

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3

Labs: Java 8 New Features

A Word about JUnit

Our labs and some examples use JUnit to run program code
– JUnit is a popular open source Java testing framework

JUnit tests have the following characteristics:
– Annotate test methods with @Test
– Make assertions using static methods in org.junit.Assert
– We show an example below

import static org.junit.Assert.*; // see notes on static imports
import org.junit.Test;

public class ArrayTest {
@Test
public void testArrayLength() {
int[] intArray = {1, 2, 3, 4};
assertTrue("length should be 4", intArray.length == 4);

}
}

The assertXXX() methods are all static methods of Assert.

– The familiar way to use these methods would be to import org.junit.Assert, and then call the
static methods through the Assert class.
Assert.assertTrue(collection.isEmpty());

– This is a little cumbersome, so the static import feature of Java is used – which imports static
members from a class.

– The following import statement imports all the static members (including methods) from the
Assert class:
import static org.junit.Assert.*;

– This allows us to use the static members without qualifying them by the classname:
assertTrue(collection.isEmpty());

There is much more capability in JUnit.
– We won't go into that, since it's beyond the scope of the course.
– We only cover enough to show how the labs work.

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4

Labs: Java 8 New Features

Test Cases in the Labs

JUnit is a convenient driver for our lab code
– It also lets us easily test our results

In the labs, we'll generally give you the test class
– Sometimes the tests are already written
– Sometimes you'll need to add test code

Note in the previous example how testArrayLength() is
annotated with @Test
– It creates an array, then checks the length
– We use assertTrue() to perform the test

• This is a static method of Assert
• We use a static import for convenience – see notes previous page for

details

Introduction

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 5

Labs: Java 8 New Features

Lab 1.1: Setup, Default Methods,
Static Methods

In this lab, we'll set up our lab environment, then work
with default and static interface methods

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 6

Labs: Java 8 New Features

Lab Synopsis

Overview:
– Set up our lab environment and the Eclipse IDE
– Add default methods and static methods to an existing interface

• You'll first add a method as a regular (abstract) interface method, and see
what happens – then you will change it to a default method

– The types will be simple types based on a Volume interface that allows
control of a device's volume

Builds on previous labs: none

Approximate time: 20-30 minutes

Lab

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 7

Labs: Java 8 New Features

The Eclipse Platform

Eclipse (www.eclipse.org) is an open source platform for building
integrated development environments (IDEs)
– Used mainly for Java development – can be extended via plugins and

used in other areas (e.g., C# programming)

Originally developed by IBM
– Released into open source
– IBM's RAD product line is built on top of Eclipse

Eclipse products have two fundamental layers:
– Workspace: files, packages, projects, resource connections,

configuration properties
– Workbench: editors, views, and perspectives

We will set up the workspace and workbench, then do our lab

Lab

The workbench sits on top of the workspace and provides visual artifacts that allow you to access and
manipulate various aspects of the underlying workspace resources.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Information Content and Task Content

In a lab, information-only content is presented the same as in the
student manual pages
– Like the bullets here

Tasks for students are in a box like the one below

Tasks to Perform
Note the different look of this box as compared to that above
– All future labs will use this format

Make sure that you have Java 8 or later installed
– Likely in a directory such as C:\Program Files\Java\jdk1.8.0_51
– If not, you'll need to install it – it can be downloaded from:

• oracle.com/technetwork/java/javase/downloads
OK – now get out your setup files, we're ready to start working

Lab

The setup files may be on your workstation, or they may be provided by your instructor.

Copyright © LearningPatterns Inc. All rights reserved. 8

Labs: Java 8 New Features Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Extract the Lab Setup Zip File

To set up the labs, you'll need the course setup zip file
– It has a name like: LabSetup_Java8New_yyyyMMdd.zip

Our base working directory for this course will be
C:\StudentWork\JNew
– Gets created when we extract the lab setup zip
– Includes a directory structure and files (Java source files and others)

that will be needed in the labs
– All instructions assume that this zip file is extracted to C:\

If you choose a different directory, please adjust accordingly

Tasks to Perform
Unzip the lab setup file to C:\
– Creates the StudentWork/JNew directory structure, containing files that

you will need for doing the labs

Lab

Copyright © LearningPatterns Inc. All rights reserved. 9

Labs: Java 8 New Features Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 10

Labs: Java 8 New Features

Getting Started with Eclipse

Tasks to Perform
Make sure you have Eclipse installed – likely in C:\eclipse
– If not, you'll need to install it – see instructions in notes

Launch Eclipse: go to C:\eclipse and run eclipse.exe
– A dialog box should appear prompting for a workspace location
– Set the workspace location to C:\StudentWork\JNew\workspace
– If a different default workspace location is set, change it

Lab

If Eclipse was installed elsewhere, adjust the path to the Eclipse executable accordingly.

You can also put a shortcut on your desktop to start Eclipse.

If you need to download Eclipse, go to http://www.eclipse.org/downloads.
– In the Package Solutions section, click on the link for the Eclipse IDE for Java EE

Developers.
– Save the zip file to your computer, and unzip it. The easiest location to unzip it to is C:\, but

another location is fine as long as you can get to it to run the eclipse.exe executable.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 11

Labs: Java 8 New Features

Workbench and Java Perspective

Tasks to Perform
Close the Welcome screen (click the X on its tab – see notes)
Open a Java Perspective
– Click the Perspective icon at the top right of the Workbench
– Select Java (as shown below)
– The Java EE perspective is the default for the Eclipse Java EE version

Close the Java EE perspective by right clicking its icon, and
selecting close (as shown below right)

Lab

To close the Welcome screen, click the X in the tab, as shown below.
The Eclipse Java EE version opens in the Java EE perspective by default.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 12

Labs: Java 8 New Features

Unclutter the Workbench

Tasks to Perform
Unclutter the Java perspective by closing some views
– Close the Task List and Outline views (click on the X)
– You can save these changes to the perspective (see notes)

Lab

Save these changes to the Java perspective via Window Save Perspective As Java.

You can reset the perspective to it defaults via Window Reset Perspective.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 13

Labs: Java 8 New Features

Create New Java Project

Tasks to Perform
Create a new Java project
– File New Java Project

Name it exactly Lab01.1 (1)

– When you name the project
Lab01.1, it will be stored in
workspace\Lab01.1
• And it will pick up some starter

code provided in that directory (1)

– Make sure "Create separate
folders for sources and class
files" is selected
• May be preselected but grayed

out – that's OK

Next

Lab

(1) IMPORTANT NOTE: you must name the project Lab01.1, in order to pick up the starter code
provided in the lab setup. That's because the starter code was preprovisioned in the
workspace/Lab01.1 directory (in appropriate subdirectories).

– By naming the project Lab01.1, the project directory defaults to workspace/Lab01.1, and the
starter code is automatically recognized and included in the project's fileset.

There are multiple ways to create a new project.
– File New Project Java Java Project.
– Click on the "New" wizard icon in left side of the toolbar.
– Right click in the Package Explorer view, select New ...

It's usually better to create separate folders for source and class files.
– We've done that here, and Eclipse puts the .java files in the lab's src directory, and the .class files

in the lab's bin directory.
– This is the default structure for Java projects in Eclipse.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 14

Labs: Java 8 New Features

Add JUnit to Build Path

Tasks to Perform
In the next dialog (Java
Settings) click Libraries tab

Click the Add Library button
– In the list that comes up,

select JUnit, and click Next
– Select the JUnit 4 library

and click Finish

Back in the main wizard,
click Finish to create the
project

See notes

Lab

If you ever forget to add JUnit during initial project creation, it can also be added later.
– In Eclipse, right-click on project directory and choose Build Path Add Libraries JUnit

JUnit 4.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 15

Labs: Java 8 New Features

New Project with Starter Code

The lab setup pre-provisioned some starter
code in the workspace/Lab01.1 directory
– By naming the project Lab01.1, the root

project directory becomes workspace/Lab01.1
– Eclipse sees the src and test directories there,

and imports these files into the project
• We will use this technique several more times

when creating new projects in the labs

Once you've created the project and you see the starter code, you
can rename it if you wish
– Perhaps something to indicate its purpose, e.g.,

Lab01.1_InterfaceMethods
– Rename it by pressing F2 on the project folder in Eclipse, or

right-click Refactor Rename

Lab

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 16

Labs: Java 8 New Features

The Lab Types

Volume: interface that declares volume-control methods
Television: class that implements Volume
– Also has brand property (string), and some validation code
Radio: class that implements Volume
– Doesn't have much else in it

Above types in are package com.entertainment

InterfaceMethodsTest: JUnit test case
– Also in package com.entertainment

Lab

public interface Volume {
public void setVolume(int volume);
public int getVolume();
public void mute();
public boolean isMuted();

}

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 17

Labs: Java 8 New Features

Add Default Interface Method

Tasks to Perform
Open interface com.entertainment.Volume
– Add a "regular" (abstract) interface method with the signature below:
public void silence();

– Look in the Problems view, there should be errors
• Television and Radio don't implement this method

Change silence() to be a default method
– Set the volume to zero by calling setVolume(0)

• This is a simpler form of muting – we don't save the old volume for unmute
– Your errors should now disappear

Open com.entertainment.InterfaceMethodsTest
– Review the code
– In testDefaultMethods(), uncomment call to silence() in the loop

Lab

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 18

Labs: Java 8 New Features

Run Your Tests

Tasks to Perform
We use Eclipse to run the tests

In Package Explorer, right-click
on InterfaceMethodsTest
– Run As JUnit Test
– Automatically finds and runs

its test methods

Lab

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 19

Labs: Java 8 New Features

Test Output

You should see JUnit output in a JUnit view, as shown below
– All tests should pass (1)

– If your test produced output to stdout, it would be in the Console view

Note: you'll follow similar procedures whenever you have a JUnit
test client to run in the labs (2)

Lab

(1) If you see any errors in the JUnit view, or exceptions in the Console view, then you've got something
configured incorrectly.

(2) When running programs in other labs, the only thing that may change is the program class that you'll
need to right click on to run.

– The general procedure will remain the same.

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 20

Labs: Java 8 New Features

Add Static Interface Method and Test

Tasks to Perform
Open interface com.entertainment.Volume
– Add a static method, silenceAll() that takes a varargs Volume

argument, as shown below:
void silenceAll(Volume... vols)

• The method should loop through its arguments and silence each one
• See notes for working with the vols parameter

In your JUnit test class:
– Uncomment the @Test annotation on testStaticMethods(), as well

as the call to silenceAll()
– Run the test case again – it should run with no failures

You can see that these new interface additions are easy
to work with

Lab

STOP

(1) An incoming varargs argument can be treated like an array – in fact, internally, it's converted to one.
– You can iterate over it as you would with any other array, here using a for-each loop:
for (Volume vol : vols) {

...
}

Lab 1.1: Setup, Default Methods, Static Methods

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

7400 E. Orchard Road, Suite 1450 N
Greenwood Village, Colorado 80111

Ph: 303-302-5280
www.ITCourseware.com

9-06-00892-000-10-23-18

EVALUATION COPY

Unauthorized Reproduction or Distribution Prohibited

	Title: Java 8
New Features

