
Introduction to
Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

This material is copyrighted by LearningPatterns Inc. This content and shall not be reproduced, edited, or
distributed, in hard copy or soft copy format, without express written consent of LearningPatterns Inc.
Copyright © LearningPatterns Inc.

For more information about Java Enterprise Java, or related courseware, please contact us. Our courses
are available globally for license, customization and/or purchase.

LearningPatterns. Inc. Services@learningpatterns.com | www.learningpatterns.com

Global Courseware Services 982 Main St. Ste. 4-167 | Fishkill NY, 12524 USA
 212.487.9064 voice and fax

Java, and all Java-based trademarks and logo trademarks are registered trademarks of Oracle, Inc., in
the United States and other countries. LearningPatterns and its logos are trademarks of LearningPatterns
Inc. All other products referenced herein are trademarks of their respective holders.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved i

Table of Contents – Introduction to
Spring 5 and JPA

Introduction to Spring 5 and Spring MVC/REST _____________________________ 1
Workshop Overview ___ 2
Workshop Objectives: Spring Capabilities __ 3
Workshop Objectives: JPA Capabilities __ 4
Workshop Agenda___ 5
Typographic Conventions ___ 6
Labs __ 7

Session 1: Introduction to Spring __ 8
Lesson Objectives ___ 9

Overview ___ 10
Spring and Enterprise Applications___ 11
The Spring Modules __ 12
The Spring Distribution__ 13
The Spring jars __ 14
A Word About JUnit __ 15
JUnit Example ___ 16

Lab 1.1: Setting Up the Environment ___ 17
Spring Introduction __ 18

Managing Beans: Core Spring Capability __ 19
A Basic Spring Application___ 20
The JavaTunes Online Store __ 21
Some JavaTunes Types __ 22
XML Configuration Example ___ 23
The Spring Container ___ 24
Instantiating and Using the Container ___ 25
Why Bother - What do we Gain? __ 26
Summary: Working With Spring___ 27
More on ApplicationContext__ 28
Some BeanFactory/ApplicationContext API__ 29

Mini-Lab: Review Javadoc__ 30
Lab 1.2: Hello Spring World __ 31

Annotation-Based Configuration Example ___ 32
A Brief Note on Annotations__ 33
Enabling Annotations / Detecting Beans___ 34
Spring's XML Schemas __ 35

Lab 1.3: Spring Annotations___ 36
Dependency Injection ___ 37

Dependencies Between Objects__ 38
Example of a Direct Dependency __ 39
Dependency Inversion ___ 40
Dependency Injection (DI) in Spring ___ 41
Injection with Autowired___ 42
@Named/@Inject (JSR-330) Example __ 43
Dependency Injection Reduces Coupling __ 44
Advantages of Dependency Injection ___ 45
Constructor Injection __ 46
Setter Injection vs. Constructor Injection __ 47

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved ii

Qualifying Injection by Name ___ 48
Lab 1.4: Dependency Injection___ 49

Review Questions __ 50
Lesson Summary ___ 51
Lesson Summary ___ 52

Session 2: Configuration in Depth __ 53
Lesson Objectives __ 54

Java-based Configuration ___ 55
Java Configuration Overview ___ 56
Using Java-based Configuration ___ 57
Dependency Injection ___ 58
How Does it Work ? __ 59
Dependencies in Configuration Classes ___ 60
Injecting Configuration Classes__ 61
Other @Bean Capabiliites __ 62

Mini-Lab: Review Javadoc__ 63
Integrating Configuration Types__ 64

XML and @Component Pro / Con ___ 65
Java-based Configuration: Pro / Con__ 66
Choosing a Configuration Style ___ 67
Integrating Configuration Metadata __ 68
@Import: @Configuration by @Configuration__ 69
<import>: XML by XML __ 70
Importing Between XML/@Configuration ___ 71
Scanning for @Configuration Classes___ 72
Lab Options ___ 73

Lab 2.1: Java-based Configuration ___ 74
Bean Scope and Lifecycle__ 75

Bean Scope ___ 76
Specifying Bean Scope - XML __ 77
Using @Scope to Specify Bean Scope __ 78
Bean Creation/Destruction Lifecycle ___ 79
[Optional] Bean Creation Lifecycle Details __ 80
[Optional] BeanPostProcessor___ 81
[Optional] Event Handling ___ 82

Lab 2.2: Bean Lifecycle___ 83
Externalizing Properties___ 84

Externalizing Values in Properties Files ___ 85
Accessing Externalized Properties ___ 86
The Spring Environment ___ 87
SpEL: Spring Expression Language Overview __ 88
Additional SpEL Examples ___ 89

Mini-Lab: Review SpEL Reference ___ 90
Profiles ___ 91

Profile Overview ___ 92
The First Configuration __ 93
Defining Second Configuration__ 94
Using the Configurations___ 95
Declaring Profiles - @Profile ___ 96
Enabling Profiles ___ 97
Profiles - XML Configuration ___ 98
Profiles in JUnit tests__ 99

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved iii

Lab 2.3: Profiles__ 100
Review Questions ___ 101
Lesson Summary __ 102
Lesson Summary __ 103

Session 3: Introduction to Spring Boot____________________________________ 104
Lesson Objectives ___ 105

maven Overview __ 106
About Maven___ 107
How We'll Work With Maven__ 108
Core Maven Concepts __ 109
The POM (Project Object Model) ___ 110
POM - Required Elements___ 111
POM - External Dependencies ___ 112
Common Maven Artifacts for Spring __ 113
Repositories __ 114
Maven Project Structure __ 115
Executing maven Goals___ 116

Spring Boot Overview ___ 117
Motivation for Spring Boot __ 118
Spring Boot Project __ 119
Goals for Spring Boot Project __ 120
How is Spring Boot Structured? __ 121
Dependency Management with Spring Boot___ 122
Equivalent POM without Spring Boot__ 123
Configuration with Spring Boot __ 124
Programming with Spring Boot___ 125
Getting Started__ 126

Mini-Lab: Review Boot Reference ___ 127
Mini-Lab: Spring Boot - Starter Projects ___ 128

Spring Boot Hello World ___ 129
Our Goals for Hello World __ 130
POM for Hello World __ 131
spring-boot-starter-parent ___ 132
spring-boot-starter-parent POM Excerpt __ 133
spring-boot-dependencies POM Excerpt__ 134
spring-boot-starter ___ 135
spring-boot-starter POM Excerpt ___ 136
Summary __ 137

Mini-Lab: Spring Boot - Brief Review of POMs____________________________________ 138
Hello World Overview ___ 139
Hello World Code ___ 140
Output of HelloBootWorld __ 141
How it Works __ 142
Easy Configuration with Properties__ 143
Executable Jar Packaging ___ 144

Lab 1.1: Hello Boot World ___ 145
Recap of what we've seen ___ 146

Session 4: Spring Testing __ 147
Lesson Objectives ___ 148

Testing and JUnit Overview __ 149
Testing Overview ___ 150
JUnit Overview ___ 151

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved iv

Writing a Test – First Example ___ 152
Running Tests in the IDE ___ 153
Running Tests in Other Environments ___ 154
Naming Conventions and Organizing Tests ___ 155
Positive and Negative Tests__ 156
Writing Test Methods __ 157
Assertions ___ 158
Test Fixtures – @Before and @After __ 159
Test Fixtures – Example __ 160
Test Fixtures – @BeforeClass and @AfterClass __________________________________ 161
Order of Execution __ 162

[Optional] Lab 4.1: Using JUnit___ 163
Spring TestContext Framework ___ 164

Spring TestContext Overview __ 165
Common TestContext Types___ 166
Using Spring's TestContext __ 167
Context Management / Caching __ 168
Using Spring Boot Test ___ 169
Under the Hood ___ 170

Lab 4.2: Using Spring Testing __ 171
Session 5: Introduction to the Java Persistence API (JPA) __________________ 172

Lesson Objectives ___ 173
JPA Overview __ 174

The Issues with Persistence Layers __ 175
Object-Relational Mapping (ORM) Issues __ 176
Java Persistence API (JPA) Overview__ 177
JPA Benefits ___ 178
Java Persistence Environments ___ 179
JPA Architecture – High Level View __ 180
JPA Architecture – Programming View __ 181
Using JPA ___ 182

Mapping a Simple Class__ 183
Entity Classes __ 184
Entity Class Requirements___ 185
Event: An Example Entity Class __ 186
javax.persistence.Entity Annotation ___ 187
The Event Class___ 188
javax.persistence.Id and id property ___ 189
Field Access or Property Access __ 190
The EVENTS Table ___ 191
Generated Id - @GeneratedValue ___ 192
Sequences - @SequenceGenerator __ 193
Mini-Lab: Review Javadoc __ 194
Mapping Properties __ 195
Basic Mapping Types __ 196
How Do You Persist to the DB? __ 197

Lab 5.1: Mapping an Entity Class ___ 198
Persistence Unit and Entity Manager ___ 199

The Persistence Unit ___ 200
persistence.xml ___ 201
Classes included in a persistence unit __ 202
The EntityManager (EM) & Persistence Context _______________________________________ 203
EntityManager Interface __ 204

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved v

Obtaining an Entity Manager __ 205
Java SE Environments__ 206
Entity Manger and Transactions __ 207
Using JPA in Java SE __ 208
Retrieving Persistent Objects___ 209
Mini-Lab: Review Javadoc __ 210

Lab 5.2: Using an Entity Class __ 211
More About Mappings ___ 212

Default Mappings ___ 213
@Basic and @Column Annotations ___ 214
Field and Property Access ___ 215
Temporal (Date/Time) Mappings ___ 216
Java 8 Date/Time Support – Overview ___ 217
Date and Time Classes – Overview__ 218
JPA Support for Java 8 Date/Time __ 219
Mapping Enums___ 220

Lab 5.3: Refining the Mapping__ 221
Logging ___ 222

Logging Overview___ 223
hibernate.show_sql __ 224
Logging Overview___ 225
Spring Boot Logging Configuration ___ 226
JPA Logging with Spring Boot ___ 227
Hibernate Logging Categories__ 228

Lab 5.4: Controlling Logging ___ 229
Review Questions ___ 230
Lesson Summary __ 231
Lesson Summary __ 232

Session 6: Spring / JPA Integration ______________________________________ 233
Lesson Objectives ___ 234

Overview __ 235
Data Access Support ___ 236
Datasources __ 237
Example: Configuring a DataSource___ 238
Example: JNDI Lookup of a DataSource ___ 239
Properties Files ___ 240
XML vs Java Config vs Properties Files __ 241

Using Spring with JPA ___ 242
Spring Support for JPA ___ 243
Managing the EntityManager[Factory] ___ 244
1. JEE: Obtaining an EMF From JNDI ___ 245
2. LocalContainerEntityManagerFactoryBean ___ 246
Spring/JPA Integration Configuration__ 247
Example: XML Configuration__ 248
Example: @Configuration___ 249
3. LocalEntityManagerFactoryBean ___ 250
JPA Repository ___ 251
Extended Persistence Context __ 252

Lab 6.1: Integrating Spring and JPA __ 253
Review Questions ___ 254
Lesson Summary __ 255

Session 7: JPA Updates and Queries _____________________________________ 256

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved vi

Lesson Objectives ___ 257
Inserting and Updating __ 258

Persisting a New Entity ___ 259
Synchronization To the Database ___ 260
Updating a Persistent Instance__ 261
Removing an Instance __ 262
Detached Entities__ 263

Lab 7.1: Inserting and Updating __ 264
Querying and Java Persistence Query Language (JPQL) ________________________ 265

Java Persistence Query Language (JPQL)___ 266
JPQL Basics – SELECT Statement __ 267
Querying and the TypedQuery Interface __ 268
Executing a Query ___ 269
The Untyped Query Interface __ 270
Other Query Methods __ 271
Where Clause___ 272
JPQL Operators and Expressions ___ 273
Query Parameters ___ 274
Using Query Parameters __ 275
Named Queries ___ 276
Named Queries ___ 277

Lab 7.2: Basic Querying ___ 278
Additional Query Capabilities___ 279

Projection Queries ___ 280
Projection Queries Returning Tuples___ 281
Projection Query Returning Java Object __ 282
Additional Query Capabilities __ 283
Aggregate Queries ___ 284
Aggregate Query Examples__ 285
Bulk Update and Delete___ 286
Native SQL Queries ___ 287
Performance Considerations ___ 288

Lab 7.3: More Querying ___ 289
Session 8: Transactions __ 290

Lesson Objectives ___ 291
Transactions and JPA ___ 292

Transaction Overview __ 293
Transaction Lifecycle __ 294
Transactions Clarify Systems __ 295
JPA and Transactions __ 296
JPA Transaction Control __ 297
JPA EntityTransaction API __ 298
The EntityTransaction API __ 299

Spring Transaction Management __ 300
Spring's Transaction Managers ___ 301
Configuring Transaction Managers __ 302
Spring's JTA Transaction Manager __ 303
Spring Declarative TX Management ___ 304
Spring Transactional Scope__ 305
Transaction Propagation __ 306
Transaction Attributes for Propagation ___ 307
MANDATORY ___ 308

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved vii

NESTED __ 309
NEVER ___ 310
NOT_SUPPORTED ___ 311
REQUIRED__ 312
REQUIRES_NEW __ 313
SUPPORTS __ 314
Mini-Lab: Transaction Example __ 315
Transaction Attributes - Some Choices ___ 316
Transaction Attributes - Some Choices ___ 317

@Transactional Configuration __ 318
@Transactional Declarative Transactions ___ 319
Additional Transactional Attributes ___ 320
Example: Specifying Transaction Attributes___ 321
Transactional Attributes Guidelines ___ 322
Rolling Back and Exceptions __ 323
Aspect Oriented Programming (AOP) Defined___ 324
Aspect Oriented Programming Illustrated ___ 325
Spring TX and AOP ___ 326
Example – Invoking Directly __ 327
Example – Invoking Directly __ 328
@Transactional Pros and Cons ___ 329

Lab 8.1: Spring Transactions ___ 330
[Optional] Pointcut-based Configuration______________________________________ 331

Spring Transactions and AOP __ 332
Defining a Pointcut __ 333
Defining a Pointcut - XML __ 334
Specifying Transactions Using Pointcuts ___ 335
Example: Pointcut-based Transactions (XML) ___ 336
Linking Advice With Pointcuts ___ 337
Resulting Behavioc __ 338
<tx:method> Attributes ___ 339
Using Markers for Pointcuts ___ 340
Marker Interface for TX Control __ 341
Marker Annotation for TX Control __ 342
Why Use Pointcut-based Configuration __ 343
More About Pointcut Expressions___ 344
Sample execution Designator Patterns ___ 345
Sample execution Designator Patterns ___ 346
Other Spring AOP Designators ___ 347
Sample Designator Patterns__ 348
Review Questions ___ 349
Lesson Summary __ 350

Session 9: The JPA Persistence Lifecycle__________________________________ 351
Lesson Objectives ___ 352

The Persistence Lifecycle ___ 353
The Persistence Lifecycle ___ 354
JPA Entity States __ 355
Transient and Persistent State __ 356
Detached and Removed State __ 357
JPA Object States and Transitions___ 358
The Persistence Context __ 359
EM / Persistence Context Lifespan __ 360
EM-per-request ___ 361

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved viii

EM Propagation___ 362
Java SE and EM Propagation __ 363
The Persistence Context as Cache ___ 364
Synchronization To the Database ___ 365
Flushing the Entity Manager ___ 366
Persistence Context and Object Identity __ 367
Yes, It's Complicated___ 368

Lab 9.1: EntityManager Behavior ___ 369
Versioning and Optimistic Locking __ 370

Optimistic Locking __ 371
Using a Detached Instance __ 372
Using a Detached Instance Example ___ 373
Versioning ___ 374
Version Property in Java Class ___ 375
Automatic Version Maintenance __ 376
Optimistic Locking Example___ 377
Explicitly Locking Objects __ 378

[Optional] Lab 9.2: Versioning (Demo) ___ 379
Lifecycle Callbacks __ 380

Lifecycle Callbacks __ 381
Lifecycle Callback Example ___ 382
When Lifecycle Callbacks are Invoked___ 383
Entity Listeners ___ 384
Entity Listener Example __ 385

Lab 9.3: Lifecycle Callbacks__ 386
Review Questions ___ 387
Lesson Summary __ 388
Lesson Summary __ 389

Session 10: Entity Relationships ___ 390
Lesson Objectives ___ 391

Relationships Overview __ 392
Object Relationships ___ 393
Participants and Roles __ 394
Directionality___ 395
Diagramming Relationships ___ 396
Cardinality___ 397

Mapping Relationships___ 398
Mappings Overview ___ 399
Unidirectional Many-To-One Relationship__ 400
The Table Structure – Many-To-One __ 401
The Owning Side__ 402
@JoinColumn __ 403
Using the Relationship ___ 404
Bidirectional One-To-Many Relationship ___ 405
Mapping the One-To-Many Relationship ___ 406
Managing the Bidirectional Relationship ___ 407
More on the Inverse Side__ 408
More on the Collection Declaration ___ 409
Other Collection Types ___ 410

Lab 10.1: Relationships__ 411
Bidirectional One-To-One Relationship __ 412
Coding: Bidirectional One-To-One __ 413
Orphan Removal __ 414

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved ix

Many-To-Many Relationship __ 415
Defining Many-To-Many Relationship ___ 416
Mapping Many-To-Many Relationships __ 417
Specifying the Join Table ___ 418
Cascading Operations __ 419
Transitive Persistence __ 420
The cascade element ___ 421
Choosing Cascade Behavior ___ 422
Lazy and Eager Loading __ 423
Queries Across Relationships __ 424
OUTER and FETCH JOIN __ 425
FETCH JOIN Example ___ 426

Lab 10.2: Working With Relationships ___ 427
Mapping Inheritance __ 428

Inheritance Review __ 429
Entity Inheritance ___ 430
Details of Entity Inheritance ___ 431
Single-Table Strategy __ 432
Entity Definitions for Single-Table __ 433
Sample Table Entries___ 434
Single-Table: Pros and Cons ___ 435
Joined (Table per Subclass)__ 436
Entity Definitions for Joined ___ 437
Sample Table Entries: Table per Subclass___ 438
Joined: Pros and Cons __ 439
Table per Concrete Class__ 440

Lab 10.3: Working With Inheritance __ 441
Review Questions ___ 442
Review Questions ___ 443
Lesson Summary __ 444
Lesson Summary __ 445
Lesson Summary __ 446

Session 11: Spring / Web Integration (Regular Web Apps)____________________ 447
Lesson Objectives ___ 448

Integration with Java EE ___ 449
Spring and Java Enterprise Edition (JEE) ___ 450
Overview of JEE Web Applications ___ 451
Web Application Structure __ 452
Web Application Components__ 453
ApplicationContext and Java Web Apps__ 454
Configuring ContextLoaderListener - XML ___ 455
ContextLoaderListener - @Configuration___ 456
Using the Application Context ___ 457

Lab 11.1: Spring and the Web (Demo) ___ 458
Open EntityManager in View ___ 459

Problems with Web Applications ___ 460
Open EntityManager In View Pattern __ 461
Servlet Filter - Open EntityManager In View __ 462
Spring's OpenEntityManagerInViewFilter __ 463
Configuring OpenEntityManagerInViewFilter ___ 464
Using OpenEntityManagerInViewFilter __ 465

Lab 11.2: JPA and Web Apps (Demo)__ 466
[Optional] Session 12: Spring Data Introduction____________________________ 467

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Copyright © LearningPatterns Inc. All rights reserved x

Spring Data Overview ___ 468
Why do We Need Spring Data ___ 469
Spring Data Goals ___ 470
Spring Data Project __ 471
Spring Data Modules___ 472
POM for Using Spring Data JPA__ 473

Using Spring Data___ 474
How is Spring Data (JPA) Structured? ___ 475
CrudRepository/JpaRepository Methods__ 476
Mini-Lab: Review Javadoc __ 477
The Event Repository Type__ 478
Structure of our Repository __ 479
Using the Repository ___ 480
Using Other CrudRepository Methods ___ 481

[Optional] Lab 12.1: Using Spring Data __ 482
Defining Queries Using Naming Conventions ___ 483
More About Generated Queries___ 484
More Complex Queries ___ 485
Configuring Results__ 486
Defining Queries with JPQL ___ 487
Spring Data JPA and Transactions __ 488

Lab 12.2: Writing Query Methods___ 489
Lesson Summary __ 490

[Optional] Session 13: Additional Features ________________________________ 491
Spring 5: Core Updates __ 492

Specification Baselines ___ 493
Lambdas for Bean Registration ___ 494
Default Interface Methods___ 495
Candidate Component Index ___ 496
@Nullable and @NonNull __ 497

JPA: Embedded Objects ___ 498
Using Embedded Objects ___ 499
Example: Embeddable Class ___ 500
Reusing Embeddable Classes __ 501
Overriding Embedded Class Attributes ___ 502

JPA: Compound Primary Keys__ 503
Compound Primary Keys ___ 504
Compound Key With Embedded Id Class___ 505
Example: Using an Embedded Id Class___ 506
Compound Key With Id Class__ 507
Compound Key With Id Class__ 508

JPA: Element Collections___ 509
Element Collections__ 510
Modeling a Collection of Strings__ 511
Mapping an Element Collection (Basic Type) ___ 512
Using an Element Collection___ 513
Collections of Embeddable Components__ 514
Mapping Collections of Embeddables__ 515

Recap __ 516
Recap of what we've done ___ 517
Resources__ 518

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

1

Introduction to Spring 5 and JPA 2

Introduction to Spring 5 and JPA 2

Version: 20180824

Version: 20180824
– Spring Base: 20180521-b
– JPA Base: 20180820

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

2

Introduction to Spring 5 and JPA 2

Workshop Overview

An in-depth course teaching the use of Spring 5 and JPA 2 to
build data-driven enterprise Java applications
– And demonstrate best practices for Spring and JPA

The course covers the following areas of Spring technology
– Architecture and core features of Spring
– Spring Boot
– Data Access Features including Spring Data
– JPA Architecture and Features
– Mapping and Querying Persistent Objects with JPA
– Transaction Support (and its AOP Foundation)
– JPA Associations Mapping
– JPA Inheritance Mapping
– Integration with Web Applications

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

3

Introduction to Spring 5 and JPA 2

Workshop Objectives: Spring Capabilities

Understand the Spring framework and use its capabilities, including:

Spring Core: Dependency Injection (DI) and bean lifecycle
management
– Spring configuration and API for writing Spring programs
– XML, Java-based, and annotation-based config

Spring Boot: Easing dependency management and configuration

Spring Testing: JUnit intro and Spring testing support

Data Access: Data access via Spring's data support
– DataSource support and JPA-based Repositories
– Spring Data based repositories

Transactions: Controlling transactions declaratively with Spring

Web: Integrating Spring with Web applications
– Including JPA repositories

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

4

Introduction to Spring 5 and JPA 2

Workshop Objectives: JPA Capabilities

Understand and use JPA capabilities, including:

Object Mapping: Create applications using JPA to map persistent
Java objects to a relational database
– Understand and use the Entity Manager
– Understand the lifecycle of managed entities

Query: Create and execute JPA queries using JPQL

Associations: Map collections and associations using JPA

Inheritance: Model inheritance with JPA

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

5

Introduction to Spring 5 and JPA 2

Workshop Agenda

Session 1: Introduction to Spring

Session 2: Configuration in Depth

Session 3: Intro to Spring Boot

Session 4: Spring Testing

Session 5: Intro to the JPA

Session 6: Spring / JPA Integration

Session 7: JPA Inserts and Queries

Session 8: Transactions

Session 9: The JPA Persistence
Lifecycle

Session 10: JPA Entity
Relationships

Session 11: Spring / Web Integration
(Regular Web Apps)

Session 12: Spring Data
Introduction

[Optional] Session 13: Additional
Features

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

6

Introduction to Spring 5 and JPA 2

Typographic Conventions

Code in the text uses a fixed-width code font, e.g.:

Catalog catalog = new CatalogImpl()

–Code fragments are the same, e.g. catalog.speakTruth()

–We bold/color text for emphasis

–Filenames are in italics, e.g. Catalog.java

–Notes are indicated with a superscript number (1) or a star *

–Longer code examples appear in a separate code box - e.g.

package com.javatunes.teach;

public class CatalogImpl implements Catalog {
public void speakTruth() {

System.out.println("BeanFactories are way cool");
}

}

(1) If we had additional information about a particular item in the slide, it would appear here in the notes.

We might also put related information that generally pertains to the material covered in the slide.

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

7

Introduction to Spring 5 and JPA 2

Labs

The workshop has numerous hands-on lab exercises,
structured as a series of brief labs
– Many follow a common fictional case study called JavaTunes

• An online music store
– The lab details are separate from the main manual pages

Setup zip files are provided with skeleton code for the labs
– Students add code focused on the topic they're working with
– There is a solution zip with completed lab code

Lab slides have an icon like in the upper right corner of this
slide
– The end of a lab is marked with a stop like this one:

Lab

STOP

Introduction

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

8

Introduction to Spring 5 and JPA 2

Session 1: Introduction to Spring

Overview
Spring Introduction

Dependency Injection

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

9

Introduction to Spring 5 and JPA 2

Lesson Objectives

Understand why we need the Spring Framework

Understand what Spring does, and how it simplifies enterprise
application development

Learn how Spring uses configuration information and
Dependency Injection (DI)
– To manage the beans (objects) in an application
– To manage bean dependencies

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

10

Introduction to Spring 5 and JPA 2

Overview

Overview
Spring Introduction

The Spring Container
Dependency Injection

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

11

Introduction to Spring 5 and JPA 2

Spring and Enterprise Applications

Enterprise apps have complex requirements, including
– Many application types and dependencies
– Persistent data and transactions
– Remote clients (REST, Web Service, others)

Spring: Lightweight framework to build enterprise apps
– Non-intrusive, use only what you need, supports advanced capabilities

Capabilities include:
– Dependency Injection (Inversion of Control/IOC) to manage bean

dependencies
– DAO/Repository/Transaction support for persistent data
– ORM support (Object-relational mapping, e.g. JPA)
– AOP: Aspect-oriented programming
– Web: Integration with standard JEE Web apps
– Spring MVC: Model-View-Controller Web framework
– Security: Authentication and authorization

There really is no formal definition of an enterprise application.
Typically though, some of the characteristics they have are:

– Used in a business environment, often in business-critical domains.
– Have some form of persistent storage.
– Have some form of remote access (Web/HTTP, Web service, Distributed Objects, etc).
– Require some measure of scalability and fault tolerance.

The definition of enterprise application is not important.
– Many Java applications share some of the requirements that we are outlining here.

DAO: Data Access Object.

The Spring ecosystem is now very large.
– There are other capabilities that we don't list and won't cover in this course.
– We'll cover some of the more central technologies that many of the others rely on.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

12

Introduction to Spring 5 and JPA 2

The Spring Modules

Module diagram from the Spring Reference Documentation

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

13

Introduction to Spring 5 and JPA 2

The Spring Distribution

Spring home page: http://spring.io/

Distributed as modules in separate jars
– e.g. spring-beans-5.0.5.RELEASE.jar
– Has external dependencies - e.g. logging, JUnit, etc. (1)

– Generally use a tool like maven for dependencies
• We supply jars the jars for some labs, and use maven in others

Spring vs. JEE (Java Enterprise Edition) (2)

– JEE similarly supports enterprise apps
• e.g. CDI for lifecycle / dependency injection

– Which to use? What works best
• Based on your current and future system needs

– You might use both - e.g. a JEE Web container
• With Spring for lifecycle management and DI
• Or Spring MVC layered on top of JEE Servlets/JSP

In earlier releases (up to Spring 3), both the Spring distribution and its dependencies were available as
a separate download from the Spring download pages.

– These are no longer provided.
– It is assumed that you'll use a build tool like maven to get the Spring libraries and its

dependencies.

(1) The external dependencies for the core modules for dependency injection are (purposely) minimal.
– Basically you just have a logging framework.
– For other capabilities (e.g. AOP) there are more dependencies, but they're still rather small.
– If you use other technologies however, e.g. Hibernate/JPA, then there are more external

dependencies .

(2) Modern releases of Java/JEE offer many of the core capabilities of Spring.
– However, it is not productive to try to compare them in an absolute sense.
– Usually there are many constraints and requirements guiding your choice of technology.
– We'll present Spring's capabilities, strengths, and weaknesses, to support your decision making.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

14

Introduction to Spring 5 and JPA 2

The Spring jars

At right, are the Spring libraries we
supply for the early labs (1)

– They are a subset of Spring
– Later labs, which need more jars,

use maven for dependencies

These are external dependencies (2)

– Again, just a subset of what we'll
need in later labs

(1) We supply the Spring project jars needed for the early labs in the lab setup.
– We downloaded these using maven and a pom.xml specifying the different modules available in

Spring (e.g. spring-context) then gathered the jars together for the lab setup.
– The dependencies were done in the same way.
– Note that the actual jars in the lab setup may vary from this illustration - look at the setup to see

what is actually used.
– Note that the junit and hamcrest jars are not needed by Spring, but needed because we use JUnit

in our labs.
(2) You can see that there are not a large number of external dependencies for the basic Spring
functionality.

– You'll see when we do later, more complex, labs, that maven will include/download quite a few
additional dependencies.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

15

Introduction to Spring 5 and JPA 2

A Word About JUnit

JUnit: Open source Java testing framework
– Often used in examples and labs to test our work
– Labs also create console output - that's not standard (see notes)

JUnit capabilities include:
– Annotations for declaring test methods (e.g. @Test)
– Assertions for testing expected results
– Test fixtures for sharing common data
– Test runners for running tests

See next slide for an example
– We'll review in more depth in the Testing session

Most development environments have JUnit support
– We'll use them to run tests which drive the lab code
– The tests are the @Test annotated methods (see next slide)

We are using JUnit to drive our slide examples and lab code because it's convenient.
– And also because it gives an easy way to test lab results.
– However, since this is a class for learning new things, we often want some console indication of

what's going on, so we'll produce some console output in our test classes.
– That's not usually done in test classes written explicitly for testing, but it's good for our purposes.
– We don't need to adhere to any particular testing practices - our test cases are lab-oriented, not

for system testing.
– Where appropriate, we do adhere to standard conventions - e.g. in naming our test classes and

test methods.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

16

Introduction to Spring 5 and JPA 2

JUnit Example

To write a JUnit test, we:
– Create a class, one or more methods annotated with @Test
– Make assertions using static methods in org.junit.Assert (e.g.
assertTrue)

Note the @Test on testContextNotNullPositive()
– The test creates the application context, and checks that it's non-null
– We use org.junit.Assert.assertNotNull to perform the test
– See notes about import static and assertTrue usage

// JUnit relevant code shown - some imports / code omitted
import static org.junit.Assert.*;
import org.junit.Test;

public class SpringTests {
@Test
public void testContextNotNullPositive() {

ClassPathXmlApplicationContext ctx = new ClassPathXmlApplicationContext();
// Just an example - we'd probably never test that the new operator works
assertNotNull("spring container should not be null", ctx);

}
}

The assertXXX methods are all static method of Assert.
– The familiar way to use these methods would be to import org.junit.Assert, and then call

the static methods through the Assert class.
Assert.assertTrue(collection.isEmpty());

– This is a little cumbersome, so the static import feature of Java is used - which imports static
members from a class.

– The following import statement imports all the static members (including methods) from the
Assert class.

import static org.junit.Assert.*;

– This allows us to use the static members without qualifying them by the classname, as seen in
our earlier code.

assertTrue(collection.isEmpty());

There is much more capability in JUnit.
– We won't go into that, since it's beyond the scope of the course.
– We only cover enough to show how the labs work.
– The course is also NOT meant to teach JUnit or JUnit best practices.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

17

Introduction to Spring 5 and JPA 2

Lab 1.1: Setting Up the Environment

In this lab you'll set up the lab environment, boot the
Spring container, and test it with a unit test

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

18

Introduction to Spring 5 and JPA 2

Spring Introduction

Overview
Spring Introduction

Dependency Injection

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

19

Introduction to Spring 5 and JPA 2

Managing Beans: Core Spring Capability

Beans: Fancy name for application objects
– They're POJOs (Plain Old Java Objects)

The Spring container is the "manager"
– Uses configuration information (metadata) to define,

instantiate, configure, and assemble beans
• Metadata: Information about your beans (e.g. bean definitions)

– Container uses the configuration to create and manage beans (1)

Configuration choices include XML and annotations
– XML: The "classic" configuration from early Spring
– Two annotation choices (@Component, @Configuration)
– We'll cover all of these

The term bean doesn't mean that much - it's a common name (e.g. JavaBeans and EJB).
– Here, we use it to mean an object managed by the Spring container.

Spring Container: Software environment to manage beans and other capabilities.
– Also called the Dependency Injection (DI) or Inversion of Control (IoC) container.
– Programming to Spring basically means interacting with this software environment.

(1) Spring will create and initialize bean instances based on your configuration data.
– You can then request those instances from the Spring container by type or name.
– We'll see how this works soon.

Configuration metadata can also be provided in the Java properties format, or even provided
programmatically (using Spring's public API).

– These are generally more cumbersome to use, and we won't cover them in this course.
– In fact, the Spring IoC container is totally decoupled from the external form of the metadata.
– It has its own internal format which it uses to store this information.
– The XML format was the original one, and is still in use today, but there are now other, more

sophisticated, ways to configure the container.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

20

Introduction to Spring 5 and JPA 2

A Basic Spring Application

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

21

Introduction to Spring 5 and JPA 2

The JavaTunes Online Store

The course uses JavaTunes as an example and lab domain
– A simple online music store (1)

Some of the types you'll see include:

– com.javatunes.domain.MusicItem : JavaBean-style value class
representing a music item (e.g. an mp3)

– com.javatunes.service.Catalog : Interface defining JavaTunes
catalog functionality (including search)

– com.javatunes.service.CatalogImpl : Concrete Catalog
implementation (uses ItemRepository)

– com.javatunes.persistence.ItemRepository : Interface defining
data access API for items

– com.javatunes.persistence.InMemoryItemRepository :
Concrete ItemRepository implementation (simple in-memory storage)

(1) We use a simple online music store as our domain for examples in the slides and for the labs.
– We've tried to give it enough detail to provide good material to work with while keeping it

simple enough so you don't have to spend too much time in figuring it out.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

22

Introduction to Spring 5 and JPA 2

Some JavaTunes Types

Catalog and CatalogImpl are shown below
– Note how CatalogImpl implements the Catalog interface (1)

Let's look at how to configure some objects

package com.javatunes.service;

public interface Catalog {
public MusicItem findById (long id);
public Collection<MusicItem> findByKeyword(String keyword);
public long size();

}

package com.javatunes.service;

public class CatalogImpl implements Catalog { // Detail omitted

public MusicItem findById (long id) { /* */ }
public Collection<MusicItem> findByKeyword(String keyword)
{ /* */ }

public long size() { /* */ }
}

These two types are part of JavaTunes.
– We'll use them to motivate our discussion on how Spring works.

(1) Programming to interfaces provides many advantages by decoupling your code from concrete
implementation classes.

– This is not a concept unique to Spring.
– Many design patterns are based on the decoupling gained by programming to an interface.
– We'll soon see how the Spring framework makes these advantages even more usable and

powerful by helping manage the dependencies that have been abstracted using interfaces.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

23

Introduction to Spring 5 and JPA 2

XML Configuration Example

Spring can be configured in an XML file
– Default config file: applicationContext.xml, but can be anything (1)

– General structure: Top level <beans> containing <bean> elements
• Each <bean> defines a bean
• Generally specify id (a name) and class (fully qualified class name) (2)

– Supports other configuration also - we'll cover it as we encounter it
At bottom, we define one bean with XML (the metadata)
Many existing applications use XML
– But annotation-based approaches now recommended

<?xml version="1.0" encoding="UTF-8"?>

<!-- The beans namespace is the default one for the document -->
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="musicCatalog" class="com.javatunes.service.CatalogImpl"/>

</beans>

(1) applicationContext.xml is a standard (and default) name for the Spring config file, but you can name it
anything that you want.

– In fact, as we'll see, you can have multiple config files.
(2) There are more sophisticated ways to create beans, for example with a factory class (shown later), in

which case the class name may not be the actual implementation class.
Spring provides an XML Schema for this configuration file, and the examples and lab setup files have
the necessary XML namespace information in them to refer to this schema.

– This is standard XML usage, and we don't go into the details here of how to use an XML
Schema.

– Refer to an XML reference if you need more detail on this.
The xsi:schemaLocation property in the slide doesn't specify a version number for the schema.

– The latest version will automatically be picked up.
– For example, spring-beans-4.3.xsd (latest current version in Spring 5 as of this writing).

• You read that correctly, the latest schema version is 4.3, even for Spring 5.
Typically configure beans like service and repository objects, Hibernate sessions, JMS queues, etc.
Some BeanFactory implementations also permit the registration of existing objects that have been
created outside the factory (by user code).

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

24

Introduction to Spring 5 and JPA 2

The Spring Container

The Spring container
– Reads your configuration, and based on it:

• Instantiates/initializes application objects
• Resolves object dependencies

org.springframework.context.ApplicationContext
– Core API to access the Spring container in your code
– Several implementations with different capabilities, e.g.
– ClassPathXmlApplicationContext: Loads XML resources

from the class path

Interface ApplicationContext extends BeanFactory
– BeanFactory has many core methods - usually not used directly

Interface BeanFactory is in package org.springframework.beans.factory.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

25

Introduction to Spring 5 and JPA 2

Instantiating and Using the Container

Below, we create a ClassPathXmlApplicationContext
– Sometimes called "instantiating the container"
– We pass the name of our config file (or multiple file names)
– The container will create and manage the beans defined in the XML

Next, we look up our configured bean via the context
– Looked up by type (Catalog.class) - can look up by name also (1)

– We do any needed work, then close the context

import org.springframework.context.support.ClassPathXmlApplicationContext;

// Code fragment - other imports and much detail omitted
ClassPathXmlApplicationContext ctx=
new ClassPathXmlApplicationContext("applicationContext.xml");

// Note that getBean uses Java generics (no casting needed)
Catalog cat = ctx.getBean(Catalog.class);
// Or lookup by name: ctx.getBean("musicCatalog", Catalog.class);

MusicItem item = cat.findById(1L); // Use our bean
ctx.close(); // Close the context

Creating an instance of an ApplicationContext is often called "instantiating" or "bootstrapping" the
container.

– When the instance is created, it reads the configuration.
– Based on the configuration, it does whatever work it needs to get ready to supply you with beans.
– We then use that context instance to interact with the container.
– It contains the API that you have access to.

(1) It's generally easier and more reliable to look up beans by their type.
– However, sometimes that's not practical or possible - for example when there is more than one

concrete implementation of an interface.
– We'll see bean lookup by name later.

We can pass multiple config files when creating the context, for example as shown below.
ApplicationContext ctx =

new ClassPathXmlApplicationContext("ctx-1.xml", "ctx-2.xml");

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

26

Introduction to Spring 5 and JPA 2

Why Bother - What do we Gain?

Main benefit: Our code doesn't know about CatalogImpl
– It just knows about needed functionality (interface Catalog)
– We've decoupled our code from a dependency on the

implementation class

Can use any implementation in our configuration
– Client code will not change
– That's why we code to interfaces, not concrete types

Bean lifecycle is managed by container
– We don't instantiate our beans directly

Very useful for more complex systems
– We'll see more useful capabilities soon

In this simple example, it looks like we've done quite a bit of work to instantiate a single instance of a
single class.

– What is the benefit?

The decoupling we've achieved seems like a simple thing, but it has a lot of benefits, especially when
maintaining large systems.

– We'll see how useful it can be when we explore more of the capabilities.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

27

Introduction to Spring 5 and JPA 2

Summary: Working With Spring

Create Spring configuration data for your beans
– It's the "cookbook" telling Spring how to create objects
– Via an XML file like applicationContext.xml or via annotations

Initialize the Spring container
– e.g. create an application context instance to read config data
– It will initialize the beans in the config file(s)

Retrieve beans via the context instance and use them
– e.g. use getBean() to look up a bean by type or name
– Lookup by type is preferred, unless you can't do it

• For instance, if you have two beans implementing the same type

There are many, many usage scenarios for Spring.
– And many, many different alternatives for each scenario
– Spring is very large, and has a lot of flexibility and capability

In this initial introduction we show you one straightforward way of using Spring.
– We will gradually introduce more capabilities throughout the course.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

28

Introduction to Spring 5 and JPA 2

More on ApplicationContext

Access point for many Spring capabilities, including:
– Bean access
– Resource Access: Config files, URLs, other files
– Message resources with I18N capability
– Publishing events to managed beans that are listeners
– Multiple, hierarchical contexts

ClassPathXmlApplicationContext
– Loads XML config files from the classpath
FileSystemXmlApplicationContext
– Loads XML config files from the file system or URLs
– Both in org.springframework.context.support

AnnotationConfigApplicationContext
– Accepts annotated classes as input (more on this later)
– In org.springframework.context.annotation

The ApplicationContext is the full-fledged representation of the Spring container.
– It is often regarded as the type that supplies the "framework" capabilities of Spring, rather than

simple bean management.
If you are writing applications for a very resource-restricted environment, such as a mobile device,
you might consider using BeanFactory over ApplicationContext.

– Then again, even mobile devices these days usually have enough capability to make the
additional resources used by ApplicationContext negligible.

There are also Web-based application contexts we'll cover later.
We'll cover the ApplicationContext API in various parts of the course.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Some BeanFactory/ApplicationContext API

Useful methods include:
– boolean containsBean(String): true if named bean exists
– <T> T getBean(Class<T> requiredType): Get by type
– <T> T getBean(String, Class<T> requiredType): Get by name
– Class<?> getType(String name): Get type of named bean
– boolean isSingleton(String): Is bean a singleton
– String[] getAliases(String): Get any aliases for this bean
– Many more methods - see the javadoc

Can specify config files in multiple ways
– ant-style wildcards: e.g. conf/**/ctx.xml - All ctx.xml files under conf
– file: and classpath: prefixes - forces use of specified location, e.g.

• The following loads from the classpath:
• new FileSystemXmlApplicationContext("classpath:ctx.xml");

– Spring uses its resource classes under the hood to do this

The methods shown are a part of the BeanFactory API inherited by ApplicationContext.
getBean returns either a singleton (shared) instance, or a newly created bean.
– NoSuchBeanDefinitionException thrown if the bean can't be found
– BeansException thrown if an exception occurred while instantiating/preparing the bean
– BeanNotOfRequiredTypeException thrown if the bean is not of the required type

Object getBean(String) returns an object – which is then cast to the required type.
– The newer getBean(String,Class<T> requiredType) method is generally preferred.

getType(String) throws NoSuchBeanDefinitionException if the bean can't be found.
isSingleton(String) throws NoSuchBeanDefinitionException if bean can't be found.
The method <T> T getBean(String, Class<T> requiredType) may look strange.

– This is standard Java generics syntax - The first <T> in the return type simply indicates that this
is a generic method, parameterized by the type parameter <T>.

– The T return value indicates that the return type is generic (that is, it will take on different types
based on the <T> parameter).

– The Class<T> argument indicates that when you call the method, you pass in the class which
specifies what type <T> actually is in that call.

29

Introduction to Spring 5 and JPA 2 Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

30

Introduction to Spring 5 and JPA 2

Mini-Lab: Review Javadoc

Mini-Lab
We provide the Spring Javadoc
– Under StudentWork/Spring/Resources/SpringDocs/javadoc

In a browser, open index.html in the folder above

Review the javadoc for the following types
– BeanFactory

– ApplicationContext

– ClassPathXmlApplicationContext (especially the constructors)
– FileSystemXmlApplicationContext (especially the constructors)

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

31

Introduction to Spring 5 and JPA 2

Lab 1.2: Hello Spring World

In this lab, we will create and use a Spring context
to access a bean instance

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

32

Introduction to Spring 5 and JPA 2

Annotation-Based Configuration Example

Beans can be declared with annotations
– @Component (org.springframework.stereotype) - Spring specific

• @Component often called a "stereotype" annotation
– @Named (javax.inject) - Standard Java (JSR 330) annotation
– We'll use Spring style annotations in this course (1)

Below, @Component declares CatalogImpl as a bean
– Specifies id as musicCatalog (Default id: catalogImpl)

• Same bean as previous XML example
– Could also have used @Named("musicCatalog")

import org.springframework.stereotype.Component;

package com.javatunes.service;

@Component("musicCatalog") // Declares bean with id musicCatalog
public class CatalogImpl implements Catalog {
/* Most detail omitted … */
}

(1) Common usage in Spring projects is to use the Spring-based annotations.
– Some advocate the usage of JSR-330 annotations since they are a Java standard.
– This would (theoretically) allow you to port to another container that uses JSR-330 annotations -

for example JEE and its CDI capabilities.
• However, this would entail a lot more work than just the annotations on the beans, so we

don't consider this much of a benefit, especially since it's relatively rare to do this kind of
transition.

– In addition, the behavior of the JSR-330 annotations in the Spring container are not exactly the
same as in a JEE container, so using them is somewhat misleading.

– All these considerations lead us to choose the Spring-standard annotations over the JSR-330
annotations when working with Spring.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

33

Introduction to Spring 5 and JPA 2

A Brief Note on Annotations

Standard Java mechanism to add metadata to source code
– Like comments that the compiler is aware of

@ is used for both declaration and use of annotations (1)

– e.g. @Component

Annotations don't directly affect program semantics
– They are not executable code

Tools work with the annotated code
– And may affect the semantics of a running program
– @Named/@Component annotated beans are recognized as bean

defs by the Spring container

(1) There is a syntax for declaring annotations, a syntax for using them in declarations, a class file
representation, and an API to read them.

– We'll only cover the capabilities that we'll be using for our Spring coding.

Annotations can replace many "side files" – e.g. XML deployment descriptors.
– It's easier for tools to read the metadata and source if they're all in one place.
– They're often used for specifying details of high-level technologies (e.g. AOP, EJB, Web

Services …).
– These often result in code generation.

Annotations are present in the class file, and can be read by tools.
– The JDK also comes with a command line utility, called apt (Annotation Processing Tool), that

can be used to process annotations.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

34

Introduction to Spring 5 and JPA 2

Enabling Annotations / Detecting Beans

Spring can automatically scan for annotated beans on the
classpath
– This registers them as normal beans

Enable auto scanning via <context:component-scan/>
– A standard element from Spring's context namespace (see next slide)
– Includes the capabilities of <context:annotation-config/> (1)

– basePackage attribute configures the packages to scan
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="com.javatunes"/>

</beans>

(1) In addition to enabling scanning, context:component-scan also enables the capabilities of
context:annotation-config.

context:annotation-config activates the ability to detect annotations like @Autowired and
@Required.

– It only affects beans that are already registered.
– component-scan element in the slide example will scan for all components in the

com.javatunes package and all of its sub-packages, and register them as beans.
– Note that annotations are actually detected by bean postprocessors (not important to know, but

interesting if you want to know a bit about Spring internals).

There are other attributes to component-scan, including
– annotation-config: (default true): should the implicit annotation post-processors

(AutowiredAnnotationPostProcessor, CommonAnnotationPostProcessor) be
registered

– resource-pattern: Controls the class files eligible for component scanning. Default is
**/*.class, the recommended value

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

35

Introduction to Spring 5 and JPA 2

Overview - Spring's XML Schemas

Spring provides XML Schemas for configuration
– With custom namespaces and tags with complex behavior (1)

– e.g. the context: namespace we just used

Spring namespaces include:
– aop: Configures AOP support
– beans: The standard bean tags we've seen already
– context: Configures ApplicationContext related things
– jee: JEE related configuration such as looking up a JNDI object
– jms: Configures JMS related beans
– lang: Exposing objects written in language like JRuby as beans
– tool: Adds tooling-specific metadata
– tx: Configures transaction support
– util: Common, utility configuration issues

(1) We've seen the usage of <context:component-scan> previously.
– It is is a shorthand to introduce a number of bean definitions into the configuration.
– The tags in these schemas typically have capabilities beyond simple bean definitions and

injection.
– This is one of the nice things about the custom namespaces - they can make configuration much

easier.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

36

Introduction to Spring 5 and JPA 2

Lab 1.3: Spring Annotations

In this lab, we'll work with Spring Annotations

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

37

Introduction to Spring 5 and JPA 2

Dependency Injection

Overview
Spring Introduction

Dependency Injection

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

38

Introduction to Spring 5 and JPA 2

Dependencies Between Objects

In OO systems, multiple objects work together
– e.g., Object A directly uses Object B to accomplish a goal (1)

– So Object A depends on Object B

Direct dependencies have several issues
– Rigid: Changes affect other areas, so are hard to make
– Fragile: Changes cause unexpected failures in other areas
– Immobile: Hard to reuse functionality

• Modules can't be disentangled

We'll illustrate a direct dependency
– Then show an alternative approach

(1) In straightforward applications, Object A will often just create an instance of Object B and use it.
– Object A is highly coupled to, and directly dependent on, Object B.
– This is initially an easy way to structure a system, but often not the best way.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

39

Introduction to Spring 5 and JPA 2

Example of a Direct Dependency

CatalogImpl uses InMemoryRepository
– And creates an InMemoryRepository instance directly
– CatalogImpl depends on the lower level module details
– To use a different data store - e.g. a FileRepository,
CatalogImpl must change (see notes)

public class CatalogImpl implements Catalog {
InMemoryItemRepository rep = new InMemoryItemRepository();
public MusicItem findById(long ID) {

return rep.get(id);
}

}

public class InMemoryItemRepository {
public MusicItem get(Long id) { /* Details not shown */ }

}

Assume we want to get our information from a class called FileRepository.
– Assume it also has a get(Long id) method.

In that case, CatalogImpl might need to be changed to something like that below.

public class CatalogImpl implements Catalog {

FileRepository rep = new FileRepository();

public MusicItem findById(long id) {

return rep.get(id);

}

}

– This is not such a big deal if you have to change it in one place.
– But imagine if you had to change it in 100 places, or 10,000 places.

Assume that classes in the examples in this session are in the com.javatunes.service package.
– We'll be leaving out most package statements in the Java code examples for brevity.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

40

Introduction to Spring 5 and JPA 2

Dependency Inversion

All modules depend on abstractions, not each other
– In other words - program to interfaces
– CatalogImpl only knows about the abstract ItemRepository

• Can be initialized with another type (e.g. FileItemRepository)
• CatalogImpl need not change - the modules are decoupled

public class CatalogImpl implements Catalog {
private ItemRepository itemRepository; // get/set methods not shown
public MusicItem findById(Long id) { return itemRepository.get(id); }

}

// Much detail omitted …
public class InMemoryItemRepository implements ItemRepository { /*…*/ }

public interface ItemRepository {
public MusicItem get(Long id);

}

// Code fragment - most detail omitted
InMemoryItemRepository rep=new InMemoryItemRepository();
CatalogImpl catalogImpl=new CatalogImpl();
catalogImpl.setItemRepository(rep);
MusicItem found = catalogImpl.findById(1);

Dependency Inversion is not a new idea.
– The idea of "Programming to Interfaces" has been around since long before Java.
– It has been used in non-OO languages also, for example the stdio module in the C programming

language abstracted away the details of the actual devices doing the output.
We'll soon look at Spring's Dependency Injection which makes this design strategy even easier to use.
We talk of modules here, which in this example result in dependencies between different classes.
In the example, we see that CatalogImpl knows nothing about InMemoryItemRepository.

– It only depends on the ItemRepository interface (the abstraction).
– When CatalogImpl is created, you initialize it with an instance of an ItemRepository

implementation.
– But it doesn't know any details of this implementation, and doesn't even know its exact type.

InMemoryItemRepository also depends on the abstraction (it implements ItemRepository).
– The abstraction (the interface) is the common language that lets the different parts of the system

work together without depending directly on each other.
We are still creating the InMemoryItemRepository directly in our code (in this example).

– We'll have Spring do this soon, which gives even more benefit.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

41

Introduction to Spring 5 and JPA 2

Dependency Injection (DI) in Spring

The Spring container injects dependencies into a bean
– Into bean properties, constructors, or via factory method args

Dependencies are defined in the Spring configuration
– Spring initializes the dependencies ("injects" them) based on the config
– No need to explicitly initialize dependencies in your code

We illustrate XML config of this below (injecting via a set method)
– <property …> injects into the catalog's itemRepository property
– Automatically done when the container creates the bean

<beans … > <!-- Much detail / Namespace declarations omitted -->

<bean id="inMemoryRepository"
class="com.javatunes.persistence.InMemoryItemRepository"/>

<bean id="musicCatalog" class="com.javatunes.service.CatalogImpl">
<property name="itemRepository" ref="inMemoryRepository"/>

</bean>

</beans>

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

42

Introduction to Spring 5 and JPA 2

Injection with Autowired

Can also inject with @Autowired - shown below for the repository
– This injects a dependency by type - same result as previous XML

At bottom, we get a catalog from Spring
– With an already initialized repository (by Spring's DI)
– We're ready to work !

import org.springframework.stereotype.Component;
import org.springframework.beans.factory.annotation.Autowired;

@Component("musicCatalog") // Declares bean - most detail omitted
public class CatalogImpl implements Catalog {
@Autowired // can also apply to setter method or constructor
private ItemRepository itemRepository;

}

public class CatalogTests { // imports, other detail omitted
@Test testCatalogFindById() {
ClassPathXmlApplicationContext ctx =
new ClassPathXmlApplicationContext("applicationContext.xml");

Catalog cat = ctx.getBean(Catalog.class); // See note (1)

assertNotNull("item shouldn't be null", cat.findById(1L)); // Use cat
}

(1) The bean lookup with the code shown directly below works because there is only one bean that
implements Catalog, so the container can find this bean by type.
ctx.getBean(Catalog.class);

–We'll see ways to refine this type of lookup later.
Note that CatalogImpl and InMemoryItemRepository didn't need anything special to support
Spring's DI.

–They just need to be written according to the design principles of Dependency Inversion (i.e.
coding to an interface, not a concrete type) which is good practice anyway.
–Once this was done, we didn't need any special capabilities to support DI.

Note also that there is nothing in your CatalogTests code which shows that CatalogImpl
depends on InMemoryRepository.

–This is defined in your configuration, and handled for you by the container.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

43

Introduction to Spring 5 and JPA 2

@Named/@Inject (JSR-330) Example

Below, @Named is used to declare a bean
– @Inject is used to inject the dependency

Results are the same as with @Component style
– And the test client would look exactly the same

We'll use @Component style going forward, as mentioned earlier
– It's the more common choice

import javax.inject.Inject;
import javax.inject.Named;

@Named("musicCatalog") // Declares bean - most detail omitted
public class CatalogImpl implements Catalog {
@Inject
private ItemRepository itemRepository;

}

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

44

Introduction to Spring 5 and JPA 2

Dependency Injection Reduces Coupling

The simplest case,
CatalogImpl coupled to
InMemoryItemRepository

CatalogImpl coupled to
ItemRepository only
(Dependency Inversion)
– CatalogTests coupled to
CatalogImpl and
InMemoryItemRepository

Using DI – CatalogTests
only coupled to Catalog
– CatalogImpl only coupled

to ItemRepository

CatalogImpl InMemoryItemRepository

ItemRepository
<<interface>>

creates

CatalogImpl

InMemoryItemRepositoryCatalogTests
implements

creates

ItemRepository
<<interface>>

CatalogTests

Catalog
<<interface>> CatalogImpl

implements

looks up

ApplicationContext

injects

In the slide, we show diagrams of the three different ways we structured our code in the earlier slides.
– In the first, CatalogImpl is directly coupled to InMemoryItemRepository.
– In the second, CatalogTests is doing the dependency injection of the

InMemoryItemRepository into CatalogImpl.
• CatalogTests is coupled to both of these types, but CatalogImpl is only coupled to

ItemRepository.
– In the third, Spring is doing the DI, and so CatalogTests and CatalogImpl are only coupled

to abstract interfaces.

In the Spring DI version, all the dependencies in the code are ONLY to interfaces.
– This is much better than being coupled to actual implementation classes.
– It increases flexibility, testability, and ease of maintenance.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

45

Introduction to Spring 5 and JPA 2

Advantages of Dependency Injection

Hides dependencies and reduces coupling in your code
– Coupling is basically a measure of the dependencies

We see this in two ways:
– CatalogImpl is not coupled to InMemoryItemRepository
– CatalogTests is not coupled to CatalogImpl or
InMemoryItemRepository

The dependencies are still there but not in the code
– Dependencies are moved to the spring configuration
– They're injected into beans without you coding it
– Commonly referred to as wiring beans together

This leads to more flexible code that is easier to maintain
– At a cost – using Spring, and maintaining the spring configuration

Coupling is the measure of how much a module of code relies on other modules.
– Loosely coupled code is generally considered better code.

Consider some of the following scenarios, and how DI makes them easier.
– Testing your code with a testing framework such as JUnit can be much easier with DI – you can

configure the application to use mock objects wherever you want – without changing your code
at all.

– Testing different versions of classes can be done just by changing the configuration metadata.
– In fact, any implementation class that implements the particular interfaces being used can be

swapped into your program simply by changing the configuration information.
There is debate about how worthwhile DI and frameworks like Spring are.

– However, the principles that it is based on that lead to loose coupling are widely accepted.
– Spring simply makes it easier to apply these principles.
– The effort required to learn, adopt, and use Spring is not trivial, but the initial cost of adopting

Spring can be well worth it in writing and maintaining any reasonably sized system.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

46

Introduction to Spring 5 and JPA 2

Constructor Injection

Can easily inject into a constructor (ctor)
– Assume the CatalogImpl constructor shown below

With XML, <constructor-arg> means "inject into constructor"
With @Autowired, apply it to the constructor
See notes for some additional detail/capabilities

public class CatalogImpl implements Catalog { // Most detail omitted
public CatalogImpl(ItemRepository repository) { /* … */ }

}

<!-- XML config - Other detail omitted -->
<bean id="musicCatalog"

class="com.javatunes.service.CatalogImpl">
<constructor-arg ref="itemRepository"/> <!-- inject via ctor -->

</bean>

public class CatalogImpl implements Catalog { // Most detail omitted
@Autowired // Inject into ctor below
public CatalogImpl(ItemRepository repository) { /* … */

}

For @Autowired, if there is only one constructor, you can even leave out @Autowired.
– It will be inferred - but we believe it's better practice to include it explicitly.

If a constructor has multiple arguments, they will all be injected with @Autowired.
– For example, assuming that a CatalogImpl needs an ItemChecker to do some sanity

checking on items, you might have the following ctor, which will have both arguments injected.
@Autowired

public CatalogImpl(ItemRepository rep, ItemChecker checker)

In XML, multiple arguments would be handled with multiple <constructor-arg>s.
<bean id="musicCatalog" <!-- inject two ctor arguments -->

class="com.javatunes.service.CatalogImpl">

<constructor-arg ref="itemRepository"/>

<constructor-arg ref="itemCheck"/> <!-- itemCheck def not shown -->

</bean>

There are a lot of ways to configure the ctor injection.
– For example, you can specify the type and/or index of args with XML configuration.
– These details are best explored as needed in the documentation, not during class time.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

47

Introduction to Spring 5 and JPA 2

Setter Injection vs. Constructor Injection

Setter Injection Pros
– Easy, Flexible: Simple setters, easily choose properties to configure
– Good for optional properties (with defaults to reduce not-null checks)
– Supports reconfiguration after startup

Setter Injection Cons
– Doesn't guarantee property initialization (Forget to do it - BUG!)
– Setter methods are required

Constructor Injection Pros
– Guaranteed Initialization: Immediate error if you leave it out (1)

– Good for required properties (can be immutable if setter omitted)
Constructor Injection Cons
– Unwieldy and Brittle: Multiple constructors with multiple args unwieldy

• Refactor if you have this
– Less flexible: Need ctors for each scenario, and can't reset properties

(1) If you leave out a constructor argument while configuring a bean, you'll have an error.
– If using XML configuration or @Autowired, you'll get a runtime exception as soon as the code

is run.

You can mix constructor and setter injection.
– For example, using constructor injection on required properties, and setter injection on other

properties.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

48

Introduction to Spring 5 and JPA 2

Qualifying Injection by Name

Consider two repository implementations (first two examples below)
– What happens if we try to auto-wire one in?
– The first autowire below fails at runtime - which one to inject?
– The second try is "qualified" by the bean name using @Qualifier
– It injects based on the bean name

@Component // Declare as bean - default id inMemoryItemRepository
public class InMemoryItemRepository implements ItemRepository {…}

@Component // Declare as bean - default id cloudItemRepository
public class CloudItemRepository implements ItemRepository {…}

@Component public class CatalogImpl implements Catalog { // Autowire
@Autowired private ItemRepository itemRepository; // FAILS!

}

import org.springframework.beans.factory.annotation.Qualifier;

@Component public class CatalogImpl implements Catalog { // Autowire
@Autowired @Qualifier("cloudItemRepository")
private ItemRepository itemRepository; // Injects the Cloud-based

}

In the first example of injection, where the autowiring is done by type, it fails at runtime.
@Autowired private ItemRepository itemRepository; // FAILS!

–The container doesn't know which of the two possible types to use.
In the second example of injection we use @Qualifier to supply a bean name.

–This pinpoints exactly which bean should be injected, and works as you'd expect.
@Autowired

@Qualifier("cloudItemRepository")

private ItemRepository itemRepository; // Injects the Cloud-based

There are other, more sophisticated, ways to qualify an injection.
–This involves defining your own qualifiers, for example @CloudBased instead of using names.
–This is compile-time safe, as it is not a string-based approach, so useful for program correctness.
–However, it's fairly complex, and arguably the complexity is often not worth the benefit.
–With adequate testing, name-based qualifying should work fine.
–In those instances (rare) when it's not suitable, then you can use the more sophisticated approach,
which is beyond the scope of this course.

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

49

Introduction to Spring 5 and JPA 2

Lab 1.4: Dependency Injection

In this lab, we'll work with Spring's DI capabilities

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

50

Introduction to Spring 5 and JPA 2

Review Questions

What is Spring, and how does it help you build enterprise
apps?

What is Dependency Inversion?

What is Dependency Injection, and how does it work in
Spring

What is an ApplicationContext?

How does Spring use annotations on your bean classes for
defining and wiring beans?
– What are the pros/cons of using them?

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

51

Introduction to Spring 5 and JPA 2

Lesson Summary

Spring: Lightweight enterprise framework that supports:
– Dependency Injection
– Persistence support (Repository/DAO and ORM)
– Integration with standard Web technologies, and MVC Web apps

Manages complex dependencies - non-intrusive and lightweight
– Supports loose coupling between components
– Encourages coding to interfaces (good design)

• Also called Dependency Inversion

Uses configuration metadata to initialize beans and
dependencies
– Via XML configuration files or annotations

Dependency Injection: Injects dependencies based on config
– Complete decoupling from concrete implementation types

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

52

Introduction to Spring 5 and JPA 2

Lesson Summary

ApplicationContext: API to the Spring container functionality
– Configure/wire beans, access program resources, work with resource

bundles, load multiple contexts, and publish events to beans
– Common implementations include:

ClassPathXmlApplicationContext,

FileSystemXmlApplicationContext, and

AnnotationConfigApplicationContext

Provides resource access in a flexible and powerful way
– From file system, the classpath, URL access, and more
– Supports ant-style wildcards like conf/**/ctx.xml
– Uses its own resource classes to accomplish resource access

Session 1: Introduction to Spring

Copyright © LearningPatterns Inc. All rights reserved.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Introduction to Spring 5
and JPA 2

Lab Manual - Eclipse/Hibernate

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

This material is copyrighted by LearningPatterns Inc. This content and shall not be reproduced, edited, or
distributed, in hard copy or soft copy format, without express written consent of LearningPatterns Inc.
Copyright © LearningPatterns Inc.

For more information about Java Enterprise Java, or related courseware, please contact us. Our courses
are available globally for license, customization and/or purchase.

LearningPatterns. Inc. Services@learningpatterns.com | www.learningpatterns.com

Global Courseware Services 982 Main St. Ste. 4-167 | Fishkill NY, 12524 USA
 212.487.9064 voice and fax

Java, and all Java-based trademarks and logo trademarks are registered trademarks of Oracle, Inc., in
the United States and other countries. LearningPatterns and its logos are trademarks of LearningPatterns
Inc. All other products referenced herein are trademarks of their respective holders.

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1

Labs: Introduction to Spring 5 and
JPA 2 (Eclipse/Tomcat)

Version: 20180824

Version: 20180824
– Spring Base: 20180521-b
– JPA Base: 20180820

IntroductionLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2

Release Level

This manual has been tested with, and contains instructions
for, running the labs using the following platforms:

– Spring Boot (tested with 2.0.0.RELEASE)
– Spring 5 (tested with 5.0.4.RELEASE)

• Release used by Spring Boot
– JPA 2.2 (Using Hibernate 5.3)

• We override the Hibernate version used by Spring Boot
– Java (tested with and requires Java 8)
– Eclipse Java EE Edition (tested with Oxygen 4.7.3)
– Tomcat for the Spring/Web material (tested with Tomcat 8.5)

Recent similar versions of the software will likely work except
for potentially small configuration changes

Lab

Any 5.x version of Spring should work.
– The course materials are compatible with all 5.x versions.
– However, we include some Spring jars and their dependencies with the labs.
– If you want to use a different version, then it's up to you to make sure you have all the correct

Spring jars and the correct dependency jars.
– We will also introduce Maven and Spring Boot to manage all dependencies later in the course.

Spring Boot 2 is needed to support Spring 5.
– At the time of this writing the latest release version was Spring Boot 2.0.0.RELEASE.

All labs have been tested on Microsoft Windows using the software listed above.
– Many have been tested on Mac OS also.
– The labs should work on unix variants with little modification, except for the database setup

scripts, which need to use unix shell scripts, which we also supply.

IntroductionLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 18

Lab 1.2: Hello Spring World

In this lab, we will create and use a Spring context
to access a bean instance

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 19

Lab Synopsis

Overview: In this lab, we will:
– Become familiar with the different parts of basic Spring
– Create and use a Spring context to access a bean instance
– Write and run a simple Spring test

Builds on previous labs: None

Approximate Time: 20-30 minutes

Lab

The purpose of this lab is to become familiar with the different parts of a Spring application.
– Accordingly, the program is as simple as we can make it.
– It mirrors the code already shown in the manual pages.

In later labs, we'll work with more complex applications.

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 20

Object Model

Object Model: Our focus will be on the following types
– We'll cover more types shortly
– Note: Search methods in the catalog won't work yet

Lab

MSA-1

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 21

Lab Preparation

The new lab folder where you will do all your work is:
workspace\Lab01.2

Lab

Tasks to Perform
Close all open files and projects

Create a new Java project called Lab01.2 in the workspace
– See Lab 1.1 instructions on how to do this if you need to
– Remember to add the Spring user library
– You can expect to see compiler errors until the lab is

completed.

If you need to add the Spring Library after creating the project, do the following.
Right Click on the project in Package Explorer, select Build Path | Add Libraries.

– You should be in the Libraries tab, so click the Add Library button, and in the dialog , select
User Library then click Next.

– Check off Spring, then click Finish in all open dialogs.

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 22

Writing and Configuring a Bean in Spring

Tasks to Perform
Open CatalogImpl for editing
– The class is in the com.javatunes.service package, under src
– Make sure CatalogImpl implements the Catalog interface
– Remember - we code to interfaces to decouple from a specific

implementation
– Save your changes

Open applicationContext.xml in the src folder for editing
– Click the Source tab to edit
– Finish up the declaration of the <bean> element by declaring:

• An id of musicCatalog
• A class of com.javatunes.service.CatalogImpl

– Save your changes

Lab

There are a number of other types in the src tree that we will use in future labs.
– Ignore these for now.

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 23

Using a Bean in a Program

Tasks to Perform
Open com.javatunes.service.CatalogTest (test folder) and:
– In testCatalogLookupPositive(), modify the constructor for
ClassPathXmlApplicationContext
• Specify the applicationContext.xml file.

– Next, look up the musicCatalog bean (by type) from the context (1)

• Catalog catalog = ctx…

– Make sure the catalog bean is not null (use assertNotNull)
– Output the catalog bean (Just use System.out.println())
– Finally, call close() on the context and fix any compilation errors

Run CatalogTest as a unit test and make sure the test passes
– Right click | Run As …| JUnit Test as in previous labs
– Your tests should pass, and you should see some console output

You've successfully configured and used a bean with Spring
– Congratulations !

Lab

(1) Since there is only one bean that implements Catalog, we can look it up by type.
– Lookup by type is preferred as long as it's possible.

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 24

Logging and Additional Things (Optional)

Tasks to Perform
Open log4j2.xml in the src folder
– This configures some of the logging that Spring will do
– The root logger is configured at error level, spring at info
– You can decrease Spring logging by configuring it at warn
<Logger name="org.springframework" level="warn"/>

– debug level increases the logging - try some levels

[Optional] Other things to try
– Try looking up the bean by name, – what happens? What about

if you look it up by the wrong name?
– Try looking up a CatalogImpl instead of a Catalog

• Does this work? Is it a good idea? (see notes)
– Change your code back to your original solution

before proceeding
STOP

Lab

Spring has logging built into it.
– It uses a custom logging bridge (built on Apache Commons Logging).
– It will detect the log4j2 jar files and use that if it is on the classpath.

• It defaults to using JUL (java.util.logging - part of the JDK)
– You can see the logging by properly configuring it, as we do in the log4j2.xml file.
– The details of log4j2 are beyond the scope of this course.

Looking the bean up as a CatalogImpl will work.
– These are POJOs, and the actual type is CatalogImpl.
– It's not a good idea though, because you are defeating the purpose of decoupling your code from

the actual implementation type.

Lab 1.2: Hello Spring WorldLabs: Introduction to Spring 5 and JPA 2

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

7400 E. Orchard Road, Suite 1450 N
Greenwood Village, Colorado 80111

Ph: 303-302-5280
www.ITCourseware.com

9-06-00085-000-09-10-18

EVALUATION COPY

Unauthorized reproduction or distribution is prohibitied

