

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved i

™

Table of Contents – EJB 3.2 and JPA 2

Enterprise JavaBeans 3.2 (JEE 7) and the Java Persistence API _______________ 1
Workshop Overview ___ 2
Workshop Objectives __ 3
Workshop Agenda___ 4
Course Prerequisites ___ 5
Labs __ 6

Session 1: Introduction __ 7
Lesson Objectives ___ 8

Overview __ 9
What is EJB___ 10
EJB Goals __ 11
EJB Goals (continued)___ 12
Types of Enterprise JavaBeans __ 13
Java Persistence API __ 14
EJB and Java EE (Enterprise Edition)___ 15
EJB in Java EE Architecture __ 16
SOA and EJB__ 17
SOA with Web Services and EJB __ 18

EJB 3 __ 19
EJB 3 Overview__ 20
EJB 2.x Problems __ 21
EJB 3 Goals ___ 22
EJB 3.1 and 3.2 Goals ___ 24
Session Bean Usage___ 25
Session Bean Usage___ 26
Persistent Entity Usage __ 27
MDB Usage___ 28

Lab 1.1 – Setting Up the Environment __ 29
Review Questions __ 30
Lesson Summary ___ 31

Session 2: Session Beans __ 33
Lesson Objectives __ 34

Session Bean Overview__ 35
What are Session Beans__ 36
Stateless Session Beans (SLSB) ___ 37
Stateful Session Beans (SFSB) __ 38
Session Beans Can Be Distributed ___ 39
Defining a Session Bean ___ 40
Stateless Session Bean Definition __ 41
Calculator Remote Business Interface___ 42
Remote and Local Business Interfaces __ 43
Calculator Bean Local Business Interface__ 44
Simplified Interface Declaration (EJB 3.2) ___ 45
A Brief Note on Annotations__ 46
How Annotations Work__ 47
Annotation Definition ___ 48
Using Annotations__ 49
What Else Is Needed __ 50

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved ii

™

Packaging and Deployment __ 51
JEE Packaging___ 52
ejb-jar File __ 53
Deployment Descriptor (DD) ___ 54
Deployment Descriptors in EJB 3 __ 55
ejb-jar File Structure __ 56
Enterprise Archive (ear file) __ 57
Application.xml File __ 58
Web Application Structure - JEE 6 / 7 __ 59
Server Deployment ___ 60
EJB Container ___ 61
The EJB Container ___ 62
Server Deployment ___ 63

Lab 2.1 – Write and Deploy an EJB __ 64
JNDI Overview __ 65

How do Remote Clients Get EJB Access __ 66
JNDI – Java Naming and Directory Interface ___ 67
EJB Container Binds a Reference Into JNDI__ 68
Client Looks Up Reference In JNDI __ 69
JNDI Tree Structure __ 70
JNDI API Overview __ 72
The Context Interface ___ 74
The InitialContext Class ___ 75
Specifying the InitialContext Properties ___ 76
Using JNDI ___ 77

EJB Remote Client ___ 78
Client View of a Session Bean __ 79
EJB 3.1+ - Portable JNDI Names __ 80
Portable JNDI Name Example __ 81
Client Invocation of a Session EJB ___ 82
Running a Client ___ 83

Lab 2.2 – Write and Run an EJB Client ___ 84
Review Questions __ 85
Lesson Summary ___ 86

Session 3: Additional EJB Capabilities ____________________________________ 88
Lesson Objectives __ 89

Dependency Injection ___ 90
Dependency Injection ___ 91
The JavaTunes Online Music Store___ 92
An EJB Referencing Another EJB ___ 93
ItemRepository __ 94
Injection Using CDI / @Inject___ 95
More About @Inject __ 96
Injection Using @EJB___ 97
What is Happening ___ 98

Lab 3.1 – Dependency Injection __ 99
Deployment Descriptors__ 100

More about Deployment Descriptors___ 101
The XML Deployment Descriptor___ 102
Sample Standard Deployment Descriptor ___ 103

Obtaining Resources___ 104
Issues With Obtaining Resources ___ 105

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved iii

™

When @Inject is not Enough___ 106
Qualifiers__ 107
Resolving References with CDI / @Qualifier __ 108
More about Annotation Declarations___ 109
Old Style Using @EJB References __ 110
CDI Producer___ 111
Example of Producers __ 112
Injection with Producers __ 113
Producing Other Resources __ 114
Resource Manager Connection Factories ___ 115
Supported Connection Factories __ 116
The @Resource Annotation ___ 117
Using Logical Lookup Names__ 118
Resolving a Logical JNDI Name__ 119
Simple Environment Entries ___ 120
Simple Environment Entry Example ___ 121
Declaring Simple Environment Entries ___ 122
Setter Injection__ 123
More on the @Stateless Annotation ___ 124
@Stateless Example ___ 125
More on the @EJB Annotation ___ 126
Deployment Descriptor vs Annotation ___ 127

Lab 3.2 – Simple Environment Entry __ 128
Stateless Session Bean Lifecycle & Interceptors ________________________________ 129

Overview __ 130
Stateless Session Bean State Diagram__ 131
Life Cycle of SSB ___ 132
Client Call of a Stateless SB Method __ 133
Interceptors __ 134
Business Method Interceptors __ 135
Business Method Interceptors Example __ 136
InvocationContext Interface Details ___ 137
Interceptor Method Details __ 138
Interceptor Class __ 139
Using Interceptor Classes ___ 140
Method Level Interceptors___ 141
Lifecycle Callback Interceptors___ 142
Lifecycle Interceptor in the Bean Class___ 143
Lifecycle Interceptor in a Separate Class ___ 144

Lab 3.3 – Interceptors ___ 145
Asynchronous Methods, Singleton Session Beans _______________________________ 146

Overview __ 147
Singleton Session Bean ___ 148
Singleton Initialization ___ 149
Singleton Concurrency ___ 150
Asynchronous Method Invocations __ 151
Using Future ___ 152

Stateful Session Beans ___ 153
Stateful Session Bean (SFSB) Overview__ 154
Coding a Stateful Session Bean___ 155
Stateful Session Bean Removal___ 156
Stateful Session Bean Clients __ 157
Servlet Use of Stateful Session Beans __ 158
JSP/EL Use of Stateful Session Beans ___ 160

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved iv

™

Using the SFSB in a JSP __ 161
Stateful Session Passivation/Activation __ 162
When to Use Stateful Session Beans ___ 163
@PrePassivate and @PostActivate Callbacks__ 164
Stateful Session Bean State Diagram __ 165

Lab 3.4 – Stateful Session Beans __ 166
The Timer Service___ 167

Overview __ 168
Programmatic Timers __ 169
The javax.ejb.Timer Interface __ 170
The javax.ejb.TimerService Interface __ 171
TimerService Methods (contd.)___ 172
Timer Example ___ 173
How the Timer Works __ 174
ScheduleExpression: Calendar-Based Timers __ 175
ScheduleExpression Example __ 176
Issues with Programmatic Timers ___ 177
Automatic Timers - javax.ejb.Schedule___ 178
@Schedule Details __ 179

Lab 3.5 – Timers ___ 180
Review Questions ___ 181
Lesson Summary __ 182

Session 4: Message-Driven Beans__ 185
Lesson Objectives ___ 186

Overview of Messaging Systems ___ 187
What is Messaging?__ 188
Loose Coupling ___ 189
When is Messaging Used?___ 190
Two Messaging Models___ 191
Publish/Subscribe - Illustrated__ 192
More on Publish/Subscribe __ 193
Point-to-Point - Illustrated___ 194
More on Point-to-Point (P2P) __ 195
Message Delivery - Push versus Pull___ 196

Overview of JMS API__ 197
What is Java Message Service? ___ 198
API Structure___ 199
JMS Interfaces__ 200
Administered Objects __ 201
Administered Objects and JNDI - Illustrated __ 202
Client Workflow __ 203
Queue Producer Client Example __ 204
Synchronous Queue Consumer Client__ 206
Message Listener for Async Consumers __ 207
Asynchronous Queue Consumer Client___ 208
JMS Message Types ___ 209
Message Header Fields ___ 210

Message-Driven Beans ___ 211
JEE Message Producers and Consumers __ 212
Message-Driven Bean (MDB) Overview ___ 213
Simple MDB Example__ 214
MDB Consumption of a Message ___ 215
@MessageDriven Details ___ 216

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved v

™

Activation Configuration Properties ___ 217
Standard Activation Configuration Properties__ 218
Specifying a Destination for an MDB __ 219
Specifying a Destination Using a DD __ 220

Message-Driven Bean Lifecycle__ 221
Lifecycle Overview __ 222
MDB State Diagram ___ 223
Interceptor Methods__ 224

Lab 4.1 – Message Driven Bean ___ 225
Review Questions ___ 226
Lesson Summary __ 227

Session 5: Transactions and Security _____________________________________ 228
Lesson Objectives ___ 229

Transaction Definition ___ 230
Transaction Overview __ 231
Transaction Lifecycle __ 232
Transactions Clarify Systems __ 233

Transactional System Overview ___ 234
Overview of a Transactional System___ 235
Transactional System Components __ 236
Transactional Object ___ 238
EJB Transaction Support__ 239

Transactions in EJB ___ 240
EJB Declarative Transaction Management __ 241
Transactional Scope__ 242
EJB Transaction Attributes __ 243
Specifying Transaction Attributes ___ 244
Specifying Transaction Attributes ___ 245
NOTSUPPORTED __ 246
SUPPORTS __ 247
REQUIRED__ 248
REQUIRESNEW ___ 249
MANDATORY ___ 250
NEVER ___ 251
Beans Have a Say in Transactions___ 252
Beans Can be Notified of Transaction Status __ 253
Transaction Example ___ 254
Transaction Attributes – Some Choices __ 255
Transaction Attributes - Some Choices ___ 256
Explicit / Bean-Managed Transactions ___ 257
UserTransaction & Bean-Managed Example __ 258
Transaction Isolation Levels ___ 259
Transaction Isolation Levels Usage__ 260
Multi-process TX and Two Phase Commit __ 261

Lab 5.1 – Transactions __ 262
Security in EJB ___ 263

Security Requirements__ 264
JEE security__ 265
Roles ___ 266
JEE Security Overview ___ 267
EJB Security Overview ___ 268
Annotation Example ___ 269

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved vi

™

Example: Roles and Method Permissions ___ 270
Annotation Example ___ 271
Equivalent DD Example __ 272
Role ** (EJB 3.2+) __ 273
Authentication __ 274
Programmatic Security ___ 275
Example of Programmatic Security__ 276
Transport Level Security with SSL __ 277
Lab 5.2 – Security ___ 278
Review Questions ___ 279
Lesson Summary __ 280

Session 6: Exception Handling and Best Practices _________________________ 282
Lesson Objectives ___ 283

Exception Handling ___ 284
Overview of Exceptions __ 285
Exception Hierarchy ___ 286
Application Exceptions in EJB ___ 287
Defining Application Exceptions ___ 288
Application Exception Example __ 289
Container Handling of Application Exception ___ 290
Bean Throwing of Application Exception___ 291
Client Handling of Application Exceptions__ 292
System Exceptions Indicate Failure__ 293
Container Handling of System Exception ___ 294
Client Handling of System Exceptions ___ 295

EJB 3 Best Practices ___ 296
When To Use EJB ___ 297
Keep Business Interfaces Coarse Grained___ 298
Session Façade Structure__ 299
Use Container-Managed Transactions__ 300
Transaction Duration ___ 301
Local and Remote Business Interface __ 302
Tuning __ 303
Session Bean Tuning ___ 304
Clustering ___ 305
Clustering Session Beans__ 306
Review Questions ___ 307
Lesson Summary __ 308

Session 7: Introduction to the Java Persistence API (JPA 2) _________________ 310
Lesson Objectives ___ 311

JPA Overview __ 312
The Issues with Persistence Layers __ 313
Object-Relational Mapping (ORM) Issues __ 314
Java Persistence API Overview___ 315
JPA Benefits ___ 316
Java Persistence Environments ___ 317
JPA Architecture – High Level View __ 318
JPA Architecture – Programming View __ 319

Mapping a Simple Class__ 320
Entity Classes __ 321
Entity Class Requirements___ 322
An Example Entity Class__ 323

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved vii

™

javax.persistence.Entity Annotation ___ 324
The Event Class___ 325
javax.persistence.Id and ID property___ 326
Field Access or Property Access __ 327
The EVENTS Table ___ 328
Generated Id Property __ 329
Mapping Properties __ 330
Basic Mapping Types __ 331
Temporal (Date/Time) Mappings ___ 332
Persisting to the Database ___ 333

Lab 7.1 – Mapping an Entity Class __ 334
Entity Manager and Persistence Context ______________________________________ 335

The Persistence Unit ___ 336
persistence.xml ___ 337
Classes included in a persistence unit __ 338
The EntityManager & Persistence Context __ 339
EntityManager Interface __ 340
Obtaining an Entity Manager __ 341
Injecting an EntityManager __ 342
Container-Managed Entity Manager ___ 344
Retrieving Persistent Objects___ 345

Lab 7.2 – Using an Entity Class ___ 346
More About Mappings ___ 347

Default Mappings ___ 348
@Basic and @Column ___ 349
Field and Property Access ___ 350
Mapping Enums___ 351
Review Questions ___ 352
Lesson Summary __ 353

Session 8: Updates and Queries ___ 355
Lesson Objectives ___ 356

Inserting and Updating __ 357
Persisting a New Entity ___ 358
Persisting a New Entity Example ___ 359
Synchronization To the Database ___ 360
Updating a Persistent Instance__ 361
Removing an Instance __ 362
Detached Entities__ 363

Lab 8.1 – Inserting and Updating ___ 364
Querying and Java Persistence Query Language (JPQL) ________________________ 365

Java Persistence Query Language ___ 366
JPQL Basics – SELECT Statement __ 367
Querying and the Query Interface ___ 368
Executing a Query ___ 369
JPA 2 – Generic Query Enhancements ___ 370
JPA 2 – Generic Query Enhancements ___ 371
Other Query Methods __ 372
Where Clause___ 373
JPQL Operators and Expressions ___ 374
Query Parameters ___ 375
Using Query Parameters __ 376
Named Queries ___ 377

Lab 8.2 – Basic Querying __ 379

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved viii

™

Criteria API (JPA 2)___ 380
Criteria Overview ___ 381
A Simple Criteria Example (1 of 3)__ 382
Path Expressions __ 385
WHERE Clauses __ 386
Typed Path Expressions___ 387
Combining Predicates (and/or) ___ 389
Additional Criteria API Capabilities ___ 390

[Optional] Lab 8.3 – Criteria Query ___ 391
The Persistence Lifecycle ___ 392

The Persistence Lifecycle ___ 393
JPA Entity States __ 394
Transient and Persistent State __ 395
Detached and Removed State __ 396
JPA Object States and Transitions___ 397
The Persistence Context __ 398
Persistence Context Lifespan___ 399
Persistence Context Propagation __ 400
The Persistence Context as Cache ___ 401
Persistence Context and Object Identity __ 402
Synchronization To the Database ___ 403
Flushing the Entity Manager ___ 404
Yes, It's Complicated___ 405

Versioning / Optimistic Locking ___ 406
Optimistic Locking __ 407
Using a Detached Instance __ 408
Versioning ___ 411
Version Property in Java Class ___ 412
Optimistic Locking Example___ 413
Locking Objects___ 414

[Optional] Lab 8.4 – Versioning___ 415
Review Questions ___ 416
Lesson Summary __ 417

Session 9: Entity Relationships __ 419
Lesson Objectives ___ 420

Relationships Overview __ 421
Object Relationships ___ 422
Characteristics of Relationships __ 423
Directionality___ 424
Characteristics of Relationships __ 426

Mapping Relationships___ 427
Mappings Overview ___ 428
Unidirectional Many-To-One Relationship__ 429
The Table Structure – Many-To-One __ 430
The Owning Side__ 431
@JoinColumn __ 432
Using the Relationship ___ 433
Bidirectional One-To-Many Relationship ___ 434
Mapping the One-To-Many Relationship ___ 435
Managing the Bidirectional Relationship ___ 436
More on the Inverse Side__ 437
More on the Collection Declaration ___ 438
Other Collection Types ___ 439

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved ix

™

Cascading Operations __ 440
Transitive Persistence __ 441
The cascade element ___ 442

Lab 9.1 – Relationships __ 443
Bidirectional One-To-One Relationship __ 444
Orphan Removal (JPA 2) ___ 446
Many-To-Many Relationship __ 447
Defining Many-To-Many Relationship ___ 448
Mapping Many-To-Many Relationships __ 449
Specifying the Join Table ___ 450
Choosing Cascade Behavior ___ 451
Lazy and Eager Loading __ 452
Queries Across Relationships __ 453
OUTER and FETCH JOIN __ 454
FETCH JOIN Example ___ 455
Joins using Criteria API___ 456

Lab 9.2 – Working With Relationships ___ 457
Mapping Inheritance __ 458

Entity Inheritance ___ 459
Entity Inheritance ___ 460
Details of Entity Inheritance ___ 461
Single-Table Strategy __ 462
Entity Definitions for Single-Table __ 463
Sample Table Entries___ 464
Single-Table: Pros and Cons ___ 465
Joined (Table per Subclass)__ 466
Entity Definitions for Joined ___ 467
Joined: Pros and Cons __ 468
Table per Concrete Class__ 469

Lab 9.3 – Working With Inheritance___ 470
Embedded Objects __ 471

Using Embedded Objects ___ 472
Embeddable Class ___ 473
Reusing Embeddable Classes __ 474
Overriding Embedded Class Attributes ___ 475

Compound Primary Keys __ 476
Compound Primary Keys ___ 477
Compound Key With Embedded Id Class___ 478
Using an Embedded Id Class___ 479
Compound Key With Id Class__ 480

Element Collections (JPA 2) __ 482
Element Collections__ 483
Modeling a Collection of String Elements __ 484
Mapping an Element Collection (Basic Type) ___ 485
Using an Element Collection___ 486
Collections of Embeddable Components__ 487
Mapping Collections of Embeddables__ 488
Review Questions ___ 489
Lesson Summary __ 491

Session 10: [Optional] Additional Java Persistence Capabilities _______________ 495
Lesson Objectives ___ 496

More on Querying___ 497

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

20140414 Copyright © 2006-14 LearningPatterns Inc. All rights reserved x

™

Projection Queries ___ 498
Aggregate Queries ___ 499
Aggregate Query Examples__ 500
Bulk Update and Delete___ 501
Native SQL Queries ___ 502
Stored Procedure Queries (JPA 2.1) ___ 503

Extended Persistence Contexts __ 505
Stateful Session Beans with Entity State __ 506
Extended Persistence Context __ 507
Issues with Extended Persistence Context___ 508

XML Mapping Files ___ 509
XML Mapping Files ___ 510
A Simple Entity Class __ 511
JPA XML Mapping File __ 512
JPA XML Mapping File - Mapping Entities ___ 513
JPA XML Mapping File - Named Queries __ 514

Java Persistence with Java SE___ 515
Using JPA with Java SE __ 516
Java SE APIs ___ 517
Example of JPA in Java SE __ 518

Java Persistence Best Practices __ 519
Primary Key Considerations ___ 520
Use Named Queries__ 521
Use Lazy/Eager Loading Appropriately __ 522
Be Aware of Transaction Semantics ___ 523
Encapsulate JPA Code__ 524
Use Report Queries Where Applicable ___ 525
Optimize Read-Only/Mostly Data Access___ 526
Paging Data __ 527
Consider Going Outside of Java Persistence ___ 528
Know Your Provider Implementation __ 529

Resources (EJB3 and JPA) ___ 530
Resources__ 531

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Enterprise JavaBeans 3.2 (JEE 7)
and the

Java Persistence API

The Java Developer Education Series

Java, EJB, Enterprise JavaBeans and all Java-based trademarks are registered trademarks of Oracle,
Inc

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Workshop Overview

This course provides a thorough introduction to Enterprise
JavaBeans V3.2 (JEE 7), including
– The needs EJB is designed to address
– The basic concepts and architecture
– Thorough coverage of the EJB API and details on its use
– Thorough coverage of the Java Persistence API V2 (JPA 2)
– Design principles for correct usage

The workshop consists of at least 50% hands-on lab
exercises, including a series of labs designed to exercise all
important concepts
– Most of the labs follow a common fictional case study -

JavaTunes, an online music store
• CDs (Item table), Inventory (Inventory table) and others

Preface

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Workshop Objectives

At completion you should be able to

– Understand how EJB relates to the rest of Java/Java EE

– Understand EJB concepts and architecture

– Be familiar with the EJB API, including the Java Persistence API
(JPA)

– Be able to write and use EJBs

– Be familiar with the JPA API, and be able to write and use
persistent entities, including advanced capabilities like
relationships and inheritance

– Understand the tradeoffs involving EJB

– Understand important design principles for EJB

Preface

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Workshop Agenda

Session 1: Introduction to EJB

Session 2: Session Bean Architecture and API

Session 3: Additional EJB Capabilities

Session 4: Message-Driven Bean Architecture and API

Session 5:Transactions and Security

Session 6: Exceptions and Best Practices

Session 7: Java Persistence API 2 (Entity Beans) Intro

Session 8: Java Persistence API Inserts and Queries

Session 9: Java Persistence API Associations

Session 10: Java Persistence API Additional Capabilities

Preface

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Course Prerequisites

Proficiency in Java and Object-Oriented programming

General knowledge of Java EE (Enterprise Edition)

Knowledge of relational databases

Preface

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Labs

The workshop has numerous hands-on lab exercises,
structured as a series of brief labs
– Many follow a common fictional case study called JavaTunes

• An online music store
– There is a placeholder slide for each lab in the manual
– The detailed lab instructions are at the end of the manual

Setup zip files are provided with skeleton code for the labs
– Students add code focused on the topic they're working with
– There is a solution zip with completed lab code

The end of a lab is marked with a stop like this one:

Lab

STOP

Preface

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Session 1: Introduction

Overview
EJB 3.2

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Lesson Objectives

Gain a high level understanding of EJB and EJB architecture

Understand how EJB fits into the Java EE architecture

Understand how EJB relates to other technologies

Become acquainted with EJB 3.2, its goals, and the problems
with earlier versions

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Overview

Overview
EJB 3.2

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

What is EJB

EJB is a framework for creating server-side components
that are:
– Transactional, Distributed, Portable, Reliable, Secure, Scalable
– It simplifies the building of multi-tier distributed object

applications
– EJB is a technology to create business-tier components for these

kinds of applications

EJB provides a server-side framework for providing a core set
of system services to Java components
– Services such as low-level transaction and state management,

multi-threading, and connection pooling

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB Goals

Provide a standard distributed component architecture for
Java applications
– Allowing easy creation of distributed business applications
– Portable across many vendors (write once, run anywhere)
– Fitting into the Java EE (Enterprise Edition) architecture
– Enabling the use of third-party development tools
– Generally meant for creating business tier components

Relieve developers from managing transactions, threads,
security, resource management, while still providing access to
low-level APIs
– These kinds of issues are generally taken care of by the EJB

framework

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB Goals (continued)

Provide a persistence framework to simplify Object-Relational
Mapping (ORM)

– The issue of mapping a set of (Java) objects to information in a
relational database is complex

– The data is in different forms
– Going from one form to the other is difficult, and writing the code

is tedious

Persistent entities provide a framework to automate the
mapping of Java objects to relational data
– A mapping is defined via metadata, and the framework

generates the JDBC code to work with the data

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Types of Enterprise JavaBeans

Session Beans provide a business service
– Distributed, transactional
– Bean instances live in a software environment called the EJB

container
– The container manages the lifecycle of instances, as well as

distributed access, transactions, etc.

Message Driven Beans (MDB) integrate EJB with
messaging (JMS) systems
– An MDB is an asynchronous message consumer
– It consumes messages from a queue or topic
– Makes asynchronous processing of incoming messages on the

server simpler
– Allows for concurrent processing of a stream of messages by

means of container managed pooling

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Java Persistence API

The brand new Java Persistence API defines a Java
persistence framework

Persistent Entities provide Object-Relational Mapping
(ORM) capabilities
– Persistent entities are lightweight persistent domain objects
– Primary concern is mapping objects to relational data
– Persistent entities are not distributed objects, though they may

be accessed in a distributed way using a session bean façade

Persistent entities are not really "Entity Beans"
– They are a separate part of the specification now
– Can be used separately from other parts of EJB
– In a new package, javax.persistence, not in javax.ejb

The Java Persistence API is a separate part of the same specification defining EJB (JSR-220)
– It is required for all EJB containers
– However, it can also be used separately if only Java Persistence is needed

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB and Java EE (Enterprise Edition)

Java EE is an architecture for building multi-tier enterprise
applications
– Umbrella for many other Java technologies including:
– EJB, Servlets/JSP, JMS, RMI …

EJB serves as the distributed component technology and
persistence framework for Java EE
– Generally, EJB is used on the server side
– It is often invoked from the Web tier, but may be invoked by thick

clients (e.g. Swing clients)
– It can also be used in Service Oriented Architectures (SOA)

Java EE was previously known as J2EE
– With the release of Java 5 / Java EE 5, the 2 was dropped from the names

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

application server

client

client

EJB in Java EE Architecture

Web clients communicate via HTTP
Rich clients can communicate via HTTP or
RMI

DB server

data-
base

presentation
business

persistence

Swing
GUI

HTTPbrowser

RMI

HTTP

servlets
JSPs

Session
EJB

Persistent
Entity

This architecture may be attractive because you can support both
Web browser clients and Swing clients, and do so in several different
ways.

– Web browser clients interact with the EJB business tier
indirectly, via the servlet/JSP presentation tier.

– Swing clients can generate HTTP requests to the servlet/JSP
presentation tier or can interact directly with the EJB business
tier. You might want to do this to reuse an existing servlet/JSP
interface or to use HTTP to get through a firewall.

We will talk about MDB later

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

SOA and EJB

SOA (Service Oriented Architecture) is an important basis for
enterprise architectures
Based on providing resources on a network
– As independent services independent of their implementation
– Results in loosely coupled architecture

EJB can support SOA in multiple ways
– The services can be exposed directly as a session EJB

• SOA is usually thought of in terms of Web Services (e.g. SOAP), but
EJB may be a useful alternative in some cases

• This usually requires Java clients
– A Web Service can be implemented using EJB

• Web Services are just a façade for exposing a service
• The service has to be implemented in some way – either as an EJB

or as a regular Java object

Choosing to use EJB in a service oriented architecture is entirely valid
– Web Services add a layer of complexity and inefficiency
– If you don't need the advantages of Web Services, then don't use them

In fact, you can even invoke EJB from non-Java clients
– This uses CORBA
– It's not really a practical architecture unless you're already using a CORBA architecture

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

SOAP/
HTTP

application server

SOA with Web Services and EJB

Java Client

Web
Services

Web services
business

Web
Services
Servlet

Another popular Java EE architecture
Provides loosely coupled access via
standard protocols

SOAP/
HTTP

EJB

.NET Client

Web
Services

In this type of architecture, SOAP/HTTP is used as the
communication protocol, and the service is implemented using EJB

Servlets are used purely to support SOAP over HTTP, and are not
really involved in presentation layer aspects

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 1920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB 3

Overview
EJB 3

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB 3 Overview

Complete reworking of EJB specification
– Major differences from EJB 2.x
– Some areas have changed completely

Uses Java annotations heavily
– Reduces the use of XML configuration files (Deployment

Descriptor), and can eliminate them

Persistence is completely different from earlier releases
– Total overhaul of EJB persistence
– Persistent entities much lighter weight
– Based on mature ORM technologies such as Hibernate & Toplink
– Persistent entities can't be invoked remotely
– Persistence can be used separately from other parts of EJB

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB 2.x Problems

Cumbersome and difficult to program
– Each EJB required (at a minimum) an implementation class, a

home interface, a remote interface, and a deployment descriptor
– The API was invasive – all the interfaces and classes were

directly tied to EJB specific types (via inheritance, implementing
an interface, etc.)

– Client programs were also exposed to some of this complexity

Entity beans were not very useable
– Some would say they were broken
– The specification was also incomplete in terms of what was

required in terms of ORM, and how it was to be done
– They were not used very much

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB 3 Goals

Simplify development
– Annotations make programming simpler
– Fewer classes required
– API is simpler

Use POJOs and POJIs
– Bean implementations can be POJO (Plain Old Java Objects)
– Remote interfaces can be POJI (Plain Old Java Interfaces)
– These are much easier to program
– Reduces coupling to EJB specific types

Interceptor capability for session and message-driven beans

Remove need for home interfaces

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB 3 Goals

Make the most common usage easy
– Defaults for most things, to reduce need for developer to specify

common, expected behaviors
• e.g. – no empty ejbActivate() methods as in EJB 2.x

Resource and environmental dependencies easier
– Dependency injection, annotations simplify programming

Support entity persistence well
– Simpler API
– Much more powerful capabilities, including support for

inheritance, polymorphism, relationships, embedded components
– No required interfaces used - entities are POJOs

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

EJB 3.1 and 3.2 Goals

Improve usability and functionality of EJB, including:

– EJB without business interface (for local view)

– Define portable global JNDI names for lookup

– Add singleton session bean capability

– Easy-to-use calendar-based timer service

– Simple asynchronous session beans

– EJB packaging within WAR files

– EJB lite - subset of complete EJB capability

EJB 3.1 and 3.2 are incremental updates to the EJB 3.0 specification
– In general, they focus on increasing ease of use, and adding functionality in newly identified

areas
– The core functionality remains very similar to EJB 3.0

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Session Bean Usage

Session beans provide a number of useful capabilities

Transaction Management
– Session beans provide easy access to the transaction service

available in EJB
– Transactional behavior can be easily specified with annotations

in the bean class

Resource Management / Concurrent Access
– EJB container manages bean instances, threads, memory issues
– Very important for scalability in enterprise applications

Distributed Services / SOA
– Session beans can be accessed remotely (directly via RMI)
– Can also be used to implement Web Services

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Session Bean Usage

Fault Tolerance / Scalability
– Most EJB containers support failover/high availability and some

form of load balancing / clustering

Security
– Beans and individual methods in beans can be tied into the JEE

security system to secure access to them
– Can be done by setting security attributes (in bean class via

annotations, or in XML DD)

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Persistent Entity Usage

ORM – Persistent entities are exclusively devoted to ORM
– They model business data, and handle the interaction with the

database
– You define a mapping from the bean class to the database, and

the framework generates all the JDBC code
– Eliminates the need for complex, tedious, hand coded JDBC

Persistence available in Java SE - The persistence
framework (javax.persistence) can be used
independently
– Does not need Java EE server
– Can be used directly from Java SE (Standard Edition) program

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

MDB Usage

Integrate EJB/server with messaging
– Allows you to easily receive messages asynchronously on the

server side
– Previous to MDB, there was no standard way to do this

Transaction Management
– Allows you to easily start/control transactions when receiving

JMS messages
– Can't be done directly for asynchronous message receipt
with the JMS API

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 2920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Lab 1.1 – Setting Up the Environment

In this lab you will become familiar with and set up
your application server and development

environment

Lab 1.1: Setting up the Environment

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 3020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Review Questions

What is EJB?

What are the different kinds of beans defined in EJB, and
what are they used for?

How is EJB 3 better than previous versions of EJB?

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 3120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Lesson Summary

EJB is a framework for creating server-side components
– Transactional, Distributed, Portable, Reliable, Secure, Scalable
– It also defines a persistence API

EJB defines session beans, message-driven beans and
persistent entities
– Session beans provide distributed business services, and

access to container services such as transactions, concurrency
control, etc.

– Message-driven beans receive JMS messages asynchronously,
and integrate JMS with the EJB tier

– Persistent Entities provide an ORM framework to map between
Java objects and relational data

Session 1: Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 35520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Session 8: Updates and Queries

Inserting and Updating
Querying and JPQL

Criteria API
The Persistence Lifecycle

Versioning / Optimistic Locking

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 35620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Lesson Objectives

Lean how to do updates and inserts on persistent objects

Learn the Java Persistence Query Language (JPQL)

Retrieve persistent objects from the DB using JPA and the
query language

Learn how to implement optimistic locking with JPA

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 35720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Inserting and Updating

Inserting and Updating
Querying and JPQL

Criteria API
The Persistence Lifecycle

Versioning / Optimistic Locking

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 35820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Persisting a New Entity

It's very easy to insert new instances (rows) into the DB
– Simply create a new instance using new
– Set values for the properties (except for the ID property)
– Save the instance to the DB using an entity manager

EntityManager.persist() is used to persist an instance
void persist(Object entity)

The instance will be inserted into the DB
– When the transaction completes successfully, the insert will be

made permanent
– You can then retrieve its id value, if you need it

The semantics of the persist operation, applied to an entity X are as follows:
– If X is a new entity, it becomes managed
– The entity X will be entered into the database at or before transaction commit or as a result of

the flush operation.
– If X is a preexisting managed entity, it is ignored by the persist operation. However, the

persist operation is cascaded to entities referenced by X, if the relationships from X to these
other entities is cascade=PERSIST or cascade=ALL (covered later)

– If X is a removed entity, it becomes managed

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 35920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Persisting a New Entity Example

// imports, etc. not shown ...
public class EventServiceBean implements EventService {

@Inject EntityManager em;

public void addEvent(Event event) {
em.persist(event);

}
// ...
}

// Code fragment
EventService es = ... // Event service lookup not shown.
Event newEvent = new Event();
newEvent.setTitle("A party");
es.addEvent(newEvent);

It is the responsibility of the application to ensure that an instance is managed in only a single
persistence context

– The behavior is undefined if the same Java instance is made managed in more than one
persistence context.

The contains() method can be used to determine whether an entity instance is managed in the
current persistence context
The contains method returns true:

– If the entity has been retrieved from the database, and has not been removed or detached.
– If the entity instance is new, and the persist method has been called on the entity or the persist

operation has been cascaded to it.
The contains method returns false:

– If the instance is detached
– If the remove method has been called on the entity, or the remove operation has been cascaded to

it
– If the instance is new, and the persist method has not been called on the entity or the persist

operation has not been cascaded to it

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Synchronization To the Database

The call to persist() in the previous example may not
immediately write to the database
– The entity manager doesn't immediately write to the database

when an object is saved or updated
– This is a performance optimization to minimize writes

The persistence provider performs database writes when the
persistence context is synchronized to the database (at the
latest at the end of a transaction)
– We call this flushing the persistence context

Committing a transaction will automatically flush all writes
– You can also call flush() on the entity manager to force

objects in memory to be synchronized to the database
– You usually don't need to do this

The default behavior for a persistence context is to flush to the
database when a transaction is committed

– The persistence provider may also flush to the database
whenever it determines it may be necessary

– For example, it may flush before a query if the results of the
query may be changed by pending writes

We are using transaction-scoped persistence contexts here
– This means that all activity happens in the context of a

transaction
– This is the most common type of persistence context
– The behavior is different for other types of persistence contexts

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Updating a Persistent Instance

If you have a persistent instance (one currently associated
with a persistence context) you can just update that instance
– The changes will be persisted when the TX commits
– Remember, for a managed instance, JPA detects any changes

and synchronizes the state with the database when the TX
completes

// Assume the code fragment occurs in a transaction context and

// you have an initialized EntityManager reference (em)

Long partyId = new Long (5); // Assume this is the id we want
Event partyEvent = em.find(Event.class, partyId);

// Change will be automatically persisted
partyEvent.setTitle("A GREAT party");

// When Tx commits, the changes are persisted to database

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Removing an Instance

It's also very easy to delete an instance from the database
– The instance must be in the entity managers persistence context
– You can then call remove() on the instance
– When the context is synchronized with the database, the row will

be deleted
– Note that very often rows are not deleted in production systems
– It's more common to keep old data around because it may be

needed for historical queries
// Assume a transaction, and EntityManager reference, as before

Event partyEvent = em.find(Event.class,partyId);

// Remove the event

em.remove(partyEvent);

// When Tx commits, the deletion is persisted to database

The in-memory object becomes a transient instance again, with no representation in the database,
and not in the scope of any persistence context

– We'll talk about the lifecycle of persistent objects more later in a future session

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Detached Entities

It's also common in enterprise applications for an entity
instance to remain in memory after the persistence context is
closed
– For example, you may retrieve an entity instance, and then pass

it to the Web tier for a user to view, and perhaps modify

Any entity instance that is no longer associated with an active
persistence context is a detached object
– We will look at this a little later when we talk about versioning

and optimistic concurrency

A detached entity may result from the following:
– Transaction commit if a transaction-scoped container-managed

entity manager is used
– Transaction rollback
– Clearing the persistence context
– Closing an entity manager
– Serializing an entity or otherwise passing an entity by value—

e.g., to a separate application tier, through a remote interface,
etc.

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Lab 8.1 – Inserting and Updating

In this lab, you will create an instance of a MusicItem,
and insert it into the DB

Lab 8.1 – Inserting and Updating

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Querying and Java Persistence Query
Language (JPQL)

Inserting and Updating
Querying and JPQL

Criteria API
The Persistence Lifecycle

Versioning / Optimistic Locking

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Java Persistence Query Language

Java Persistence Query Language (JPQL) is an OO query
language that is part of JPA
– Similar to SQL in syntax and structure
– Leverages knowledge about SQL
– If you don't know the identifiers of the objects you are looking for,

you need a query since you can't use find() on the id

Designed to query object graphs, rather than relational tables
– Fully object-oriented
– Understands associations between objects
– Supports inheritance and polymorphism

Structure is similar to SQL
– SELECT, FROM and WHERE clauses
– Can use lower or upper case for keywords

The JPA spec says this about JPQL
– The Java Persistence query language is a query specification language for string-based dynamic

queries and static queries expressed through metadata. It is used to define queries over the
persistent entities defined by this specification and their persistent state and relationships.

– The Java Persistence query language can be compiled to a target language, such as SQL, of a
database or other persistent store. This allows the execution of queries to be shifted to the native
language facilities provided by the database, instead of requiring queries to be executed on the
runtime representation of the entity state. As a result, query methods can be optimizable as well
as portable.

– The query language uses the abstract persistence schema of entities, including their embedded
objects and relationships, for its data model, and it defines operators and expressions based on
this data model. It uses a SQL-like syntax to select objects or values based on abstract schema
types and relationships. It is possible to parse and validate queries before entities are deployed.

– The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which Java Persistence queries operate.
Queries over this persistent schema abstraction are translated into queries that are executed
over the database schema to which entities are mapped.

– Queries may be defined in metadata annotations or the XML descriptor.

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

JPQL Basics – SELECT Statement

Here's an example of the most basic query you can make

SELECT e FROM Event e

– This query will return all the Event instances in the database
– It is an object based query selecting from an entity, not a table
– Notice also that only the Event alias appears in the SELECT

clause, because the result type of the select is the Event entity
– The result of this query is a collection of Event entities

Path expressions navigate to a property via dot notation
– For example, the following returns a collection of the event dates:

SELECT e.date FROM Event e

Structure is similar to SQL

JPQL is similar to SQL so it can leverage the knowledge and tools that are available for SQL
The generated SQL will be something like
SELECT e.EVENT_ID, e.EVENT_DATE, e.TITLE FROM EVENTS e

The JPA spec defines a SELECT statement as a string which consists of the following clauses:
– A SELECT clause, which determines the type of the objects or values to be selected.
– A FROM clause, which provides declarations that designate the domain to which the expressions

specified in the other clauses of the query apply.
– An optional WHERE clause, which may be used to restrict the results that are returned by the

query.
– An optional GROUP BY clause, which allows query results to be aggregated in terms of groups.
– An optional HAVING clause, which allows filtering over aggregated groups.
– An optional ORDER BY clause, which may be used to order the results that are returned by the

query.

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Querying and the Query Interface

JPA provides a Query interface for executing queries
– You obtain a Query instance from the entity manager using:

Query createQuery(String qlString);

– It is an OO representation of a query – including methods to:
Set query parameters, execute a query, execute an update, and
set paging parameters on a query

– When created with this method, these are called dynamic queries

Once you have a Query instance you can execute it to
retrieve instances with the following Query methods

– List getResultList(): Return the query results as a list
• Result objects with their properties are returned

– Obect getSingleResult() : Convenience method to return a
single instance that matches the query (null if no match)

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 36920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Executing a Query

The example below uses Query.getResultList()
– getResultList executes the query, retrieving all the entities into

memory at once, and returns the result as a java.util.List
– We use a for-each loop to go through the list

Query q = em.createQuery("SELECT e FROM Event e");
List resultList = q. getResultList();
for (Object cur : resultList) {

Event e = (Event)cur();
System.out.println("Event: " + e.getId());

}

There are other useful methods on the Query type – e.g.
– Query setMaxResults(int maxResults)

• Sets maximum number of rows to retrieve
– Query setFirstResult(int startPosition)

• Sets the first row to retrieve
– Look at the documentation !

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

JPA 2 – Generic Query Enhancements

JPA 2 provides the TypedQuery interface, which enhances
type safety using generics
– Accessed from the entity manager via this method (see notes):

<T> TypedQuery<T> createQuery(java.lang.String qlString,

java.lang.Class<T> resultClass)

TypedQuery has generic versions of the query methods, e.g.

– List<X> getResultList(): Return the query results as a
typed list

– <X> getSingleResult() : Single, typed, result
– Of course, <X> will be the same type as <T> - the type you

created the TypedQuery with

The syntax of the generic createQuery method may look strange if you haven't used Java generics
before with methods - let's break it down

– The method signature is
<T> TypedQuery<T> createQuery(java.lang.String qlString,

java.lang.Class<T> resultClass)

– The first <T> in the return type simply indicates that this is a generic method, parameterized by
the type parameter <T>

– The TypedQuery<T> return value indicates that the return type is generic (that is, it will take on
different types based on the <T> parameter)

– The java.lang.Class<T> argument indicates that when you call the method, you pass in the
class which specifies what type <T> actually is in that call

The documentation for this method states:
– Create an instance of TypedQuery for executing a Java Persistence query language statement.

The select list of the query must contain only a single item, which must be assignable to the type
specified by the resultClass argument

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

JPA 2 – Generic Query Enhancements

In the example below, everything is written in terms of Event
– It is more type safe, and does not require casting
– Otherwise, the code works basically the same as our earlier code

TypedQuery<Event> q = em.createQuery("SELECT e FROM Event e",
Event.class);

List<Event> resultList = q.getResultList();
for (Event curEvent : resultList) {
System.out.println("Event: " + curEvent.getId());

}

Other methods are similarly parameterized, e.g.
– TypedQuery<X> setMaxResults(int maxResults)

– TypedQuery<X> setFirstResult(int startPosition)

There are also changes to the Query interface – we'll look at
more of this later

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Other Query Methods

There are a number of other query methods not directly
related to performing the query
– These all return the Query or TypedQuery instance itself unless

shown differently below
– int getFirstResult(): Position of first result that was set
– FlushModeType getFlushMode(): Get flush mode
– setFlushMode(FlushModeType flushMode): Set flush mode
– LockModeType getLockMode(): Get lock mode
– setLockMode(LockModeType lockMode): Set the lock mode
– java.util.Map<java.lang.String,java.lang.Object>
getHints(): Get hints in effect for this query

– setHint(java.lang.String hintName,
java.lang.Object value): Set a query property or hint (see notes)

– We'll talk more about some of these concepts (e.g. lock mode and flush
mode) later

We'll talk more about when the runtime flushes to the database later in the course
– The docs say this about the flush mode

• When queries are executed within a transaction, if FlushModeType.AUTO is set on the
Query or TypedQuery object, or if the flush mode setting for the persistence context is
AUTO (the default) and a flush mode setting has not been specified for the Query or
TypedQuery object, the persistence provider is responsible for ensuring that all updates to
the state of all entities in the persistence context which could potentially affect the result of
the query are visible to the processing of the query. The persistence provider implementation
may achieve this by flushing those entities to the database or by some other means.

• If FlushModeType.COMMIT is set, the effect of updates made to entities in the persistence
context upon queries is unspecified.

• If there is no transaction active, the persistence provider must not flush to the database.
The JPA spec defines the following hint for use in queries
javax.persistence.query.timeout // time in milliseconds

– Portable applications should not rely on this hint. Depending on the persistence provider and
database in use, the hint may or may not be observed.

– Vendors are permitted to support the use of additional, vendor-specific locking hints

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Where Clause

Of course, we can also provide selection criteria for a query in
a where clause
– You use path expressions that navigate to entity properties and

fairly standard expressions to create the criteria

SELECT e FROM Event e WHERE e.id > 10

– This query does what you expect it to do
– It returns all event instances with an id greater than 10

Notice that we can access properties of an entity in a query
– JPQL use a familiar dot notation to access properties
– In the query above, e.id refers to the id property of the returned

events
– We are working in terms of entities – not DB rows/columns

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

JPQL Operators and Expressions

JPQL supports the same basic operators as SQL
– Unary positive and negative: +, -
– Regular arithmetic operations on numeric values: *, /, +, -
– Binary comparison operators: =, <, >, <=, NOT, BETWEEN, etc.
– Binary operators on collections: IS [NOT] EMPTY, [NOT]

MEMBER [OF]
– Logical operators for ordering expression evaluation: NOT, AND,

OR

JPQL also supports familiar literals
– Strings in single quotes, e.g. 'Jane Doe'
– Java integers / floating point, including valid suffixes *
– Dates using JDBC syntax – e.g. e.date < {d '2010-12-31'}

Support for the use of hexadecimal and octal numeric literals is not
required by the JPA specification

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Query Parameters

JPQL allows you to specify and populate query parameters in a way
similar to JBDC prepared statements

– Named parameters, which are not available in JDBC, are preferred
because they:
• Are insensitive to the order they occur in the query string
• May occur multiple times in the same query
• Are self-documenting

SELECT e FROM Event e WHERE e.id > :id

– Positional Parameters also available:
• Cumbersome, but familiar to JDBC programmers
• NOTE: numbering starts at 1, as for JDBC

– SELECT e FROM Event e WHERE e.id > ?

Never use simple string concatenation to build queries (see
note)

Note that the positional parameters are consistent in numbering with JDBC
– This is different from Hibernate, where numbering starts from 0
– This difference from JDBC was a potential cause for confusion/bugs in Hibernate programs

You should never use simple string concatenation to create your query strings
– This is very inefficient, because each query is created anew, and the query can't be cached
– It is also a large security hole, as it leaves your query open to an SQL injection attack

Parameters prevent SQL injection attacks, because the query itself is never altered
– The text of the parameter string is effectively quoted by the database, preventing injection of

SQL strings

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Using Query Parameters

Query provides several methods to set query parameters
– setParameter(String name, Object value): Set the named

parameter to the given value
– setParameter(int position, Object val): Set by position
– setParameter(String name, Date value,

TemporalType temporalType): Set parameter to a date
– These methods all return the query instance itself
– There are a few other variations on setParameter *

// Named parameter example – find events by title
TypedQuery<Event> q = em.createQuery(

"SELECT e FROM Event e WHERE e.title = :title", Event.class);
q.setParameter("title", "Party");
List<Event> l = q.getResultList();

// Positional parameter example – find events by title
TypedQuery<Event> q = em.createQuery(

" SELECT e FROM Event e WHERE e.title = ?", Event.class);
q.setParameter(1, "Party");
List<Event> l = q.getResultList();

There are basically three kinds of setParameter methods
– For all of them, the first argument is always the name or number

(for named and positional parameters respectively)
– The second argument is the value to be set
– A Date and Calendar value require a third argument

specifying whether it is a date, time, or timestamp
– See the docs for all the different variations

The example in the slide example finds all the events where the title
is equal to "Party"

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Named Queries

Named queries let you define queries in the mapping file
– Scattering SQL in your code makes it difficult to maintain
– Named queries are also more efficient, because the runtime can

parse this query once (at startup) and save it
– @NamedQuery defines a a named query, as shown below
– It can appear on any entity class
– The scope of the query name is the persistence context, so

common practice is to prefix the query with the name of the entity
// Imports omitted

@Entity
@NamedQuery(name="Event.findByTitle",

query="SELECT e" +
"FROM Event e" +
"WHERE e.title = :title")

public class Event implements java.io.Serializable {
// ...

}

Named queries can be pre-compiled by the provider's query optimizer
– They don't change once they are defined
– Dynamic queries (those made in your code with the createQuery

method) will have to be compiled each time they are
encountered

In general, using named queries is considered a best practice

Named queries that are scoped to specific entities will be available in
a future release of JPA

Named queries may also be declared in XML mapping files

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Named Queries

You can define multiple named queries with @NamedQueries
– Which takes an array of @NamedQuery elements

@NamedQueries({
@NamedQuery(name="Event.findByTitle",

query="SELECT e FROM Event e WHERE e.title = :title"),
@NamedQuery(name="Event.findByMinDate"

query="SELECT e FROM Event e WHERE e.date > :date") })

Create the query with EntityManager.createNamedQuery()
– This is the JPA 2 type-safe version – see notes for JPA 1
– We've chained the calls necessary to create/run the query *

List<Event> results = em.createNamedQuery("Event.findByTitle",
Event.class)

.setParameter("title", "Party")

.getResultList();

Many of the Query methods return the query instance itself
– This allows you to chain the query calls as in the slide example
– This is very common practice, and makes for short, easily readable code
– The formatting shown above is also common practice, and makes the code more readable than

having it all on one line

The untyped, JPA 1 version of the query in the slide would be:

List results = em.createNamedQuery("Event.findByTitle")

.setParameter("title", "Party")

.getResultList();

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 37920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Lab 8.2 – Basic Querying

In this lab, we will create queries to search for a music
item based on a passed in keyword

Lab 8.2 – Basic Querying

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Criteria API (JPA 2)

Inserting and Updating
Querying and JPQL

Criteria API
The Persistence Lifecycle

Versioning / Optimistic Locking

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Criteria Overview

The Criteria API allows you to create object-based queries
– Rather than string-based using JPQL
– Useful when you want to build a query programmatically
– The queries are still entity-based – querying over the same

abstract schema as JPQL
This extensive API (in javax.persistence.criteria)
includes the following interfaces:
– CriteriaBuilder: Constructs criteria queries, compound

selections, expressions, predicates, orderings
– CriteriaQuery: Functionality specific to top-level queries
– Expression: Expression for queries
– Order: Defines ordering over query results
– Predicate: An expression containing restrictions
– Selection: Defines item to be returned in a query result

There are times when it is easier to build a query programmatically than to create a query string
– For example, when someone is entering a search query through some sort of user interface, and

you need to execute that query
From the JPA spec [JPA 2 Specification, Final, 6.4]

– The javax.persistence.criteria API interfaces are designed both to allow criteria queries to be
constructed in a strongly-typed manner, using metamodel objects to provide type safety, and to
allow for string-based use as an alternative:

• Metamodel objects are used to specify navigation through joins and through path
expressions. Typesafe navigation is achieved by specification of the source and target types
of the navigation.

• Strings may be used as an alternative to metamodel objects, whereby joins and navigation
are specified by use of strings that correspond to attribute names.

– Using either the approach based on metamodel objects or the string-based approach, queries can
be constructed both statically and dynamically. Both approaches are equivalent in terms of the
range of queries that can be expressed and operational semantics.

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

A Simple Criteria Example (1 of 3)

CriteriaBuilder.createQuery(Class<T> resultClass)
is used to create a CriteriaQuery instance (see notes)
– It returns CriteraQuery<T> a query against the class argument
– The example at bottom executes the equivalent of the query
SELECT e FROM Event e which selects all the Event instances
– CriteriaBuilder creates a CriteriaQuery<Event>, which is

then used by the EM to create the query
– Note: A CriteriaQuery is the equivalent of a JPQL string – it is

not the actual query object
– Next, we'll look at the code below in detail
CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Event> cq = cb.createQuery(Event.class);
Root<Event> ev = cq.from(Event.class);
cq.select(ev);
TypedQuery<Event> tq = em.createQuery(cq);
List<Event> allEvents = tq.getResultList();

The full signature of createQuery is:
<T> CriteriaQuery<T> createQuery(java.lang.Class<T> resultClass)

– It is parameterized by the result class
There is also a non-parameterized version with the signature
CriteriaQuery<java.lang.Object> createQuery()

– A CriteriaQuery object is created by means of one of the createQuery methods or the
createTupleQuery method of the CriteriaBuilder interface. A CriteriaQuery object is typed
according to its expected result type when the CriteriaQuery object is created. A TypedQuery
instance created from the CriteriaQuery object by means of the EntityManager createQuery
method will result in instances of this type when the resulting query is executed.

– The following methods are provided for the creation of CriteriaQuery objects:
• <T> CriteriaQuery<T> createQuery(Class<T> resultClass);
• CriteriaQuery<Tuple> createTupleQuery();
• CriteriaQuery<Object> createQuery();

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

A Simple Criteria Example (2 of 3)

Criteria have equivalents of all the JPQL select clauses
– SELECT, FROM, WHERE, ORDER BY, GROUP BY, HAVING

A query root corresponds to an identification variable in FROM
– Root<X> from(Class<X> entityClass) (in CriteriaQuery)

creates and adds a query root for the given entity
– This code returns an instance of Root corresponding to the Event

type – the e in our equivalent JPQL "FROM e" clause

Root<Event> ev = cq.from(Event.class);

CriteriaQuery.select() adds a select clause to a query
– Passing a Root to select indicates we want the entity to be the

result of the query (Root extends Selection)
– This code adds the equivalent of the SELECT e in our JPQL

cq.select(ev);

The full signature of select is
CriteriaQuery<T> select(Selection<? extends T> selection)

– It takes a Selection object as a parameter
– Selection is extended by many other interfaces, including Root, Predicate, Join, and

others
– See the documentation !

From the JPA spec [JPA 2 Specification, Final, sec. 6.5.2]
– A CriteriaQuery object defines a query over one or more entity, embeddable, or basic abstract schema

types. The root objects of the query are entities, from which the other types are reached by navigation. A
query root plays a role analogous to that of a range variable in the Java Persistence query language and
forms the basis for defining the domain of the query.

– A query root is created and added to the query by use of the from method of the AbstractQuery interface
(from which both the CriteriaQuery and Subquery interfaces inherit). The argument to the from method is
the entity class or EntityType instance for the entity. The result of the from method is a Root object. The
Root interface extends the From interface, which represents objects that may occur in the from clause of a
query.

– A query may have more than one root. The addition of a query root has the semantic effect of creating a
cartesian product between the entity type referenced by the added root and those of the other roots.

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

A Simple Criteria Example (3 of 3)

Creating the CriteriaQuery is the equivalent of creating a
JPQL string
– To create an actual query object, you pass the CriteriaQuery

to EntityManager.createQuery
– This code creates the query object for our criteria query

TypedQuery<Event> tq = em.createQuery(cq);

– You can change the CriteriaQuery after passing it to the entity
manager, but it will not effect the query already created

Once you have the query object, you execute it as you would
a JPQL query – it works exactly the same
– The criteria query is just an object-based representation of the

equivalent JPQL, and produces the same results

One might think, from the name CriteriaQuery, that it is an actual
query object

– You can see from the code though, that it is used by the EM to
create a TypedQuery

– It is more accurately thought of as a Java representation of the
equivalent JPQL query string

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Path Expressions

Consider the query:
SELECT e FROM Event e WHERE e.title="Party"
– How would you reference e.title with a criteria query

Path expressions (e.g. e.title) are supported via Path.get() -
there are several versions, but we'll use the simplest:

<Y> Path<Y> get(java.lang.String attributeName)

– This creates a path to the named attribute
To access e.title, we could use the code at bottom
– We create a variable to hold the path ev.get("title")
– Often, we create these inline, without a variable, as we'll see next

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Event> cq = cb.createQuery(Event.class);
Root<Event> ev = cq.from(Event.class);
Path pathToTitle = ev.get("title");

Root extends Path, and inherits all the methods of Path, including
the get() methods

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

WHERE Clauses

WHERE clauses are supported via CriteriaQuery.where(),
and CriteriaBuilder methods which act as factories for
expressions:
– CriteriaBuilder contains methods that support all the

predicates, methods and functions available in the JPQL, e.g:
– lessThan(), equal(), isNull(), isEmpty(), all(), avg()
– These can be used to generate arguments to where()

The code at bottom is equivalent to WHERE e.title="Party"
– cb.equal(ev.get("title"), "Party") generates a predicate

comparing the event title to "Party", which is then passed to where

– You could then execute the query as before

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Event> cq = cb.createQuery(Event.class);
Root<Event> ev = cq.from(Event.class);
cq.where(cb.equal(ev.get("title"), "Party"));

We are using a path expression (generated from the Root instance)
and a where clause (generated using the CriteriaBuilder instance)

– Remember that the JPQL equivalent is:
SELECT e FROM Event e WHERE e.title="Party"

– Let's compare our code to the JPQL
– The path expression ev.get("title") is equivalent to

e.title, since the root instance (ev) is equivalent to the
identification variable "e" in our JPQL equivalent

– cb.equal(ev.get("title"), "Party") is equivalent to
e.title="Party"

– cq.where(…) is equivalent to WHERE e.title="Party"

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Typed Path Expressions

There are times when the use of generics requires explicitly
declaring the type of a path expression
– Consider the query: SELECT e.title FROM Event e
– This query returns a collection of string, so the query will be

parameterized by <String> as shown below
– Problem: ev.get("title") returns a generic object, so
cg.select(ev.get("title")) returns objects

– This will not compile, as the query is written in terms of strings
– Using ev.<String>get("title") solves this problem; it is the

(obscure) way to parameterize the return of get as a string

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<String> cq = cb.createQuery(String.class);
Root<Event> ev = cq.from(Event.class);
cq.select(ev.<String>get("title"));
TypedQuery<String> tq = em.createQuery(cq2);
List<String> titles = tq2.getResultList();

The get method is defined as follows:
<Y> Path<Y> get(java.lang.String attributeName)

– Note that the return type is parameterized
– The way to specify the parameterization as a string is using the

ev.<String>get("title") syntax
– This admittedly obscure syntax is purely a result of the use of

generics in the Criteria API, and it is part of Java generics, and
not specific to criteria

– The criteria API uses generics a great deal, and this sometimes
complicates the syntax, though it does lead to more type safety

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Typed Path Expressions

Now consider the JPQL query:
SELECT e FROM Event e

WHERE e.date < date('1990-01-01')

– This checks for events where the date is less than 1990-01-01 *
– The code at bottom does this – note that once again we need to

parameterize the get method - using ev.<Date>get("date")
lessThan() requires the arguments implement Comparable
– Object (default return of get) doesn't, so we parameterize the call

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Event> cq = cb.createQuery(Event.class);
Root<Event> ev = cq.from(Event.class);
cq.select(ev).where(

cb.lessThan(ev.<Date>get("date"), new Date(90, 1, 1)));
TypedQuery<Event> tq = em.createQuery(cq);
List<Event> allEvents = tq.getResultList();w

The JPQL clause below uses the date function to generate a date
value from the ANSI formatted date string1990-01-01
e.date < date('1990-01-01')

– This is the same as the JDBC standard uses

Note also that we've chained the call to select and where
– cq.select(ev).where(…)
– This is common practice, as select() returns the query object

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 38920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Combining Predicates (and/or)

CriteriaBuilder includes methods to combine predicates:
– conjunction(): A conjunction (and) that is always true
– disjunction(): A disjunction (or) that is always false
– and(Expression<Boolean>x, Expression<boolean y):

Conjunction of the given expressions
– or(Expression<Boolean>x, Expression<boolean y):

Disjunction of the given expressions
– The example selects events where date<1990-01-01, and the
title="Party"

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Event> cq = cb.createQuery(Event.class);
Root<Event> ev = cq.from(Event.class);
Predicate criteria = cb.conjunction();
criteria = cb.and(criteria,

cb.lessThan(ev.<Date>get("date"), new Date(90, 1, 1)));
criteria = cb.and(criteria,cb.equal(ev.get("title", "Party")));
cq.select(ev).where(criteria);

You can also just chain the creation of the criteria
– That is a little harder to read in the code

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Additional Criteria API Capabilities

We covered a portion of the API called the string-based API
– This uses string names to refer to attributes in path expressions

There is another, more strongly typed, approach that uses the
Criteria MetaModel API
– Coverage of this API is beyond the scope of the course
– It uses many of the same types and methods, but instead of

string names for attributes, uses types from the MetaModel API

There is a huge amount of capability in the criteria API
– For every capability in JPQL there is a way to accomplish the

same thing using the Criteria
– We've given you a good start in understanding the structure, but

have not covered all the details (it would take all week!)
– To get further information, the javadocs and the JPA 2

specification are a good start

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

[Optional] Lab 8.3 – Criteria Query

In this lab, we will replace the query in findById()
with a query using the Criteria API

Lab 8.3 – Criteria Query

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

The Persistence Lifecycle

Inserting and Updating
Querying and JPQL

Criteria API
The Persistence Lifecycle

Versioning / Optimistic Locking

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

The Persistence Lifecycle

Applications need to interact with the JPA persistence service
when they are:
– Propagating state in memory to the database
– Propagating database state into memory

This involves the following parts/concepts in a JPA system:
– The persistence context: A cache of persistent entities

associated with an entity manager
– Unit-of-Work: A set of operations that are considered atomic

and that define the scope of a persistence context
– Entity Lifecycle: The states a persistent entity can be in

All of these interact with each other, and understanding them
is crucial to understanding how JPA works
– We'll cover all of these now

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

JPA Entity States

With JPA, an instance of a persistent class can be in one of
the following states
– New (or Transient): Newly created and not saved
– Managed (or Persistent): Has a persistent identifier, and is in

the scope of a persistence context
– Detached: Has a persistent identifier, exists in the database, but

is not in the scope of a persistence context
– Removed: Scheduled for removal from the database

– Creating and working with entity instances and the session will
cause transitions between the states

– Generally, in a JPA application, you think about these states, and
not about SQL statements being generated

– JPA takes care of the SQL

– Let's look at these states in detail

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Transient and Persistent State

New (Transient) instance: Has just been instantiated using new,
and hasn't been associated (saved) with an entity manager
– No representation in DB, no identifier assigned
– Not a transactional object - Modifications not known to the persistence

context
– If instance is lost, the data is lost
– Become persistent when saved via the entity manager, or by creating a

reference to it from another persistent object

Managed (Persistent) instance: Has a primary key value
– Possibly has a representation in the DB
– May also be an instance retrieved by a query
– By definition it is in a persistence context (covered next)
– JPA will detect any changes to the instance and synchronize the state

with the database when the unit of work completes

We'll soon see that a persistent instance may not yet have a
representation in the database because the entity manager may not
have been flushed

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Detached and Removed State

Detached instance: Has a persistent id, was persistent, but no
longer is (Either persistence context closed, or instance detached)
– The reference is valid, and the instance may be modified
– Can be reattached to an entity manager later, making it persistent
– Persistent objects become detached when their entity manager ends, or

when explicitly removed from the entity manager via detach or clear
– We will look at this in more detail later

Removed instance: An instance scheduled for removal from the
database at the end of a unit of work
– Is still managed by a persistence context and has a persistent id
– Calling remove() schedules the the instance for removal (the removal

of the database data), but does nothing to the in-memory instance
– Only applicable to managed entities
– A removed entity will be removed from the database at or before

transaction commit or as a result of the flush operation

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

JPA Object States and Transitions

New/Transient

Managed

Detached

Removed

find()
getReference()
Query methods

new

persist()
merge() **

detach()
clear()

"persistence
context closes" merge() **

remove()

garbage

garbage

garbage

All of the methods listed are methods on the EntityManager, except for methods on the Query

merge() returns a new persistent instance
– The original (detached) object doesn't change state
– We'll talk about detached objects shortly
– If merge() is called on a new instance, then a copy is made, and this copy is persisted as if

persist() was called on it – the copy is then returned

Once objects are no longer referenced, they are free to be garbage collected
– At this point their life ends

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

The Persistence Context

A persistence context, consisting of all currently managed
entities, is associated with every active entity manager
– All currently managed entities (all entities in the current unit of

work) are stored in the persistence context
– In fact, you can consider the persistence context to be a cache

of managed entity instances

The persistence context provides the following:
– Functions as a first level cache
– Guarantees a scope of object identity
– Implements TX write-behind and automatic dirty checking

The persistence context is not directly visible in JPA
– No class or API for it – all interaction through the entity manager

The persistence context is not really visible in your program
– There are no API calls that deal with it
– It is an internal part of the entity manager which is always present
– It is important to understand how it works

From the JPA spec: "A persistence context is a set of managed entity instances in which for any
persistent entity identity there is a unique entity instance. Within the persistence context, the entity
instances and their lifecycle are managed by the entity manager."

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 39920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Persistence Context Lifespan

A persistence context represents a single unit of work
– A unit of work can vary, depending on your needs

• It may span a single operation, or (more likely) a DB transaction
• It may even span several DB transactions

– The lifespan of the persistence context is bounded by the
beginning and end of the unit of work (sometimes called a
conversation, or a "logical" transaction)

Java SE typically uses an application-managed EM
– The EM is explicitly created, used in a unit-of-work, and closed

by code in your application (as in our earlier examples)
– The EM and persistence context have the same lifespan
– This works differently for a container-managed EM, such as a

Java EE environment, as we'll see later

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Persistence Context Propagation

Your persistence context (equivalent to application-managed
EM) must be propagated where it's needed in a unit of work
– You want to use the same EM (and its associated persistence

context) within the unit of work
– The lifespan of the EM must match that of the unit-of-work
– You propagate the EM, and control its lifespan in your code for

an application-managed EM

Consider a system more complex than the ones we've used
– Consider if we have an Event entity, an EventLocation Entity,

and a Data Access Object (DAO) for each encapsulating the JPA
code

– If we need to use both DAOs in the same unit of work - you'll
need to pass the EM reference to all of them

– For container-managed EMs, this is easier

Data Access Objects are a common pattern that encapsulate all the workings of a particular
persistence implementation

– They may be implemented with straight JDBC, or with a tool like JPA
– To the DAO client, it makes no difference

If using a DAO based on JPA, there will need to be a way for it to access the EM
– One simple way is to have methods that set the EM in each DAO
– This is possible but cumbersome
– And where does the code using the DAO get the EM from

We'll look later at several integration strategies using different technologies that answer this question
– specifically EJB3 and Spring

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

The Persistence Context as Cache

The persistence context is a first-level cache for your entities
– It is a cache that is associated with the EM
– We'll look later at the second-level cache which is associated

with the EntityManagerFactory and shared by all its EMs

One important job of the first-level cache is to optimize the
SQL generated by the JPA provider
– JPA can use the cache to minimize the number of queries

generated within a transaction
– Updates to the database can be minimized
– Queries to the database can be reduced because some entities

may already be in the cache

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Persistence Context and Object Identity

The persistence context contains every persistent entity in the
scope of the EM
– Only one instance with a given persistent identity can exist

within a persistent context
This means that within the scope of the persistence context,
database identity (having the same primary key) and Java
identity (having the same instance) are the same
– e.g., if you get an event with id=25 twice from a persistent

context, the 2nd retrieval returns the same instance as the 1st

This improves efficiency, as in the situation mentioned above
the second retrieval does NOT have to go to the DB
– It's one major efficiency advantage of JPA
– It also simplifies programming, as you always know that within a

given scope, you only have one instance for a given DB record

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Synchronization To the Database

There can potentially be a lot going on in a JPA program
– Objects being created and persisted, persistent objects being

modified, and so on
– This can represent a lot of activity in the database, spread out

over many operations
– When do these get propagated to the database?

JPA uses write-behind to synchronize with the database
– Changes made to persistent objects in the scope of a

persistence context are not immediately propagated to the DB
– This is done to improve efficiency
– For example, multiple modifications to a single persistent object

can be coalesced into a single UPDATE
– Database transactions can also be kept shorter

The default behavior for a persistence context is to flush to the database when a transaction is
committed

– The persistence provider may also flush to the database whenever it determines it may be
necessary

– For example, it may flush before a query if the results of the query may be changed by pending
writes

JPA, depending on the underlying provider, may also take advantage of JDBC batch updates when
executing multiple UPDATE, INSERT, or DELETE statements

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Flushing the Entity Manager

JPA performs database writes when the EM (and its
associated persistence context) is synchronized to the DB
– We call this flushing the EM
– This is done (at the latest) when a transaction commits

Flushing the EM may happen at a number of points
– Before some query executions (As determined by the provider)
– When the transaction commits
– When flushing explicitly via EntityManager.flush()

• Useful, for example if also using JDBC directly, and want to force
pending EM operations to be flushed to the DB

The flushing behavior can be changed to one of the following
via EntityManager.setFlushMode()
– AUTO: The default behavior described above
– COMMIT: flush only at transaction commit - not before queries

From the JPA 2 spec:
– "When queries are executed within a transaction, if FlushModeType.AUTO is set on the Query

or TypedQuery object, or if the flush mode setting for the persistence context is AUTO (the
default) and a flush mode setting has not been specified for the Query or TypedQuery object, the
persistence provider is responsible for ensuring that all updates to the state of all entities in the
persistence context which could potentially affect the result of the query are visible to the
processing of the query. The persistence provider implementation may achieve this by flushing
those entities to the database or by some other means.

– If FlushModeType.COMMIT is set, the effect of updates made to entities in the persistence
context upon queries is unspecified.

– If there is no transaction active, the persistence provider must not flush to the database. "
Your persistence context will be flushed if a transaction commits, and it is synchronized to the TX –
This is always the case:

– If you are using a container-managed EM
– If you're using an application managed EM, and use the JPA API to control the tx

If you're using an application-managed EM, and JTA, then the EM will automatically be
synchronized to the TX if the persistence context is created within the TX – if it is created before the
TX starts it can be manually synchronized to the TX by calling EntityManager.joinTransaction

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40520140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Yes, It's Complicated

There are a lot of moving parts to a JPA application
– And a lot of things are happening under the hood
– This is dictated by the nature of the problem, and the goals of

JPA
– If you want a flexible, capable ORM solution that is also efficient,

you have to have the mechanisms to support it

It's important to get an understanding of these lifecycle
concepts
– They'll become clearer as you work with JPA more
– Don't worry if you didn't catch it all the first time

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40620140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Versioning / Optimistic Locking

Inserting and Updating
Querying and JPQL

Criteria API
The Persistence Lifecycle

Versioning / Optimistic Locking

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40720140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Optimistic Locking

Sometimes it's not practical to have a transaction span a
complete business process
– Especially when there is a human user involved
– Long running transactions aren't generally a good idea

One strategy is to use detached objects
– Read an object, end any transaction used (the object is now

detached)
– Do some work / wait for user input
– Start a transaction and modify the object
– Try to save back to the database

Detached entity instances continue to live outside of the persistence context in which they were
persisted or retrieved, and their state is no longer guaranteed to be synchronized with the database
state
The application may access the available state of available detached entity instances after the
persistence context ends. The available state includes:

– Any persistent field or property not marked fetch=LAZY
– Any persistent field or property that was accessed by the application

If the persistent field or property is an association, the available state of an associated instance may
only be safely accessed if the associated instance is available. The available instances include:

– Any entity instance retrieved using find().
– Any entity instances retrieved using a query or explicitly requested in a FETCH JOIN clause.
– Any entity instance for which an instance variable holding non-primary-key persistent state

was accessed by the application.
– Any entity instance that may be reached from another available instance by navigating

associations marked fetch=EAGER

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40820140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Using a Detached Instance

You can update the persistent context with a detached
instance by merging its data back in
– Using the EntityManager.merge() method

<T> T merge(T entity): Merge the state of the given entity into
the current persistence context

– If the entity is already present in the persistent context, then its
state is overwritten with the detached instance's values

– If the entity is not present in the persistent context, then a new
entity is created, and its state is initialized with the detached
instance's values

– The entity from the persistent context (which is managed) is
returned, not the entity instance you passed in to merge()

If there is no entity with the same id in the database, then an
exception is thrown

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 40920140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Using a Detached Instance Example

Here's an example usage of a detached instance & merge()
// EventServiceBean as before – details not shown ...
public class EventServiceBean {
public Event findById(Long id) {
return em.find(Event.class,id);

}

public Event updateEvent(Event ev) {
return em.merge(ev);

}
}

// Code fragment using a detached instance
Long id = // You get an id from a user
EventService es = ... // Event service lookup not shown.
Event ev = es.findById(Event.class, id);
// Send to user, and assume user modifies the event's properties
// ... some time passes while user works
// Now merge the changes into the database.
Event mergedEvent = es.updateEvent(ev);

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 41020140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Using a Detached Instance Example

You can update the persistent context with a detached
instance
– Using the EntityManager.merge() method
– Below are two code fragments showing some usage
– Note that merge returns a managed entity – which is a different

object from the argument to the merge method (see notes)

Long id = // You get an id from a user
Event ev = em.find(Event.class, id);
// Send to user in Web application
// Assume user modifies the event instance

// Consider a session bean that is later called to merge
// the state of the detached event into a persistent context
public void updateEvent(Event ev) {
em.merge(ev);

}

The merge operation allows for the propagation of state from detached entities onto persistent entities
managed by the EntityManager.
The semantics of the merge operation applied to an entity X are as follows:

– If X is a detached entity, the state of X is copied onto a pre-existing managed entity instance X'
of the same identity or a new managed copy X' of X is created

– If X is a new entity instance, a new managed entity instance X' is created and the state of X is
copied into the new managed entity instance X'

– If X is a removed entity instance, an IllegalArgumentException will be thrown by the merge
operation (or the transaction commit will fail)

– If X is a managed entity, it is ignored by the merge operation, however, the merge operation is
cascaded to entities referenced by relationships from X if these relationships have been annotated
with the cascade element value cascade=MERGE or cascade=ALL annotation

– For all entities Y referenced by relationships from X having the cascade element value
cascade=MERGE or cascade=ALL, Y is merged recursively as Y'. For all such Y referenced by
X, X' is set to reference Y'. (Note that if X is managed then X is the same object as X'z

– If X is an entity merged to X', with a reference to another entity Y, where cascade=MERGE or
cascade=ALL is not specified, then navigation of the same association from X' yields a reference
to a managed object Y' with the same persistent identity as Y

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 41120140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Versioning

Consider what happens if someone has made changes to the
DB between when an entity was detached, then merged in
– You can get inconsistent results, unless you guard against it

Java Persistence has built in support for optimistic locking
– If you add a version property to your objects, JPA will

automatically manage the version during updates to a
row/instance

– The app doesn't need to deal with version checking
Version support requires
– A property in the Java class
– Metadata (e.g. annotations) to signify versioning
– A column in the DB that stores the version

Versioning can work with version number or timestamps
– Version number is recommended, and we will show that here

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 41220140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Version Property in Java Class

A normal property, usually named version but can be anything
– Annotated with @Version
– Can specify all usual property characteristics (e.g. column name)
– It's a normal property, except it's used by the provider to maintain

versioning information, and it has no set method
– Below, we assume that there is a column named version in the

DB, so all we need is @Version on the version property

package com.javatunes.schedule;

public class Event {
// Other properties omitted

@Version private int version;

public int getVersion() { return version; }
// No set method defined since user should never change version

}

The Version field or property is used by the persistence provider to perform optimistic locking. It is
accessed and/or set by the persistence provider in the course of performing lifecycle operations on the
entity instance

– An entity is automatically enabled for optimistic locking if it has a property or field mapped with
a Version mapping.

An entity may access the state of its version field or property or export a method for use by the
application to access the version, but must not modify the version value

– Only the persistence provider is permitted to set or update the value of the version attribute in the
object

The version attribute is updated by the persistence provider runtime when the object is written to the
database

– All non-relationship fields and properties and all relationships owned by the entity are included
in version checks

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 41320140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Optimistic Locking Example

In the example below, assume you have two event references
– e: The "original" reference which becomes detached (with ID=2)
– e2: A new instance that is retrieved for ID=2

Let's also say that you have three persistent contexts
– Represented by entity managers em1, em2, em3
– These are active for the life of each subpart
– The merge will fail because the version number of e is stale

Event e = em1.find(Event.class,new Long(2)); // Get object/row
// Assume persistent context for em1 is closed

Event e2 = em2.find(Event.class, new Long(2)); // Get same row
e2.setTitle(e2.getTitle()+ "x"); // Modify the row !

e.setTitle("Bar"); // This is the original (detached) instance
em3.merge(e); // THIS WILL FAIL !

The persistence provider's implementation of the merge operation must examine the version attribute
when an entity is being merged and throw an OptimisticLockException if it is discovered that
the object being merged is a stale copy of the entity—i.e. that the entity has been updated since the
entity became detached

– Depending on the implementation strategy used, it is possible that this exception may not be
thrown until flush is called or commit time, whichever happens first

If only some entities contain version attributes, the persistence provider runtime is required to check
those entities for which version attributes have been specified

– The consistency of the object graph is not guaranteed, but the absence of version attributes on
some of the entities will not stop operations from completing

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

Notes:

Copyright © 2006-14 LearningPatterns Inc. All rights reserved. 41420140414

Fast Track to EJB 3.2 (JEE 7) and JPA 2

Locking Objects

In general, Java Persistence doesn’t require you to deal with
locking – It just "does the right thing"
If you need to though, EntityManager.lock() will explicitly
obtain a lock on an object

void lock(Object entity,LockModeType lockMode)

– This obtains the specified lock level upon the given object
LockMode.READ: A shared lock
– Prevents dirty read and non-repeatable read
LockMode.WRITE:
– Prevents dirty read and non-repeatable read as above
– Also forces an update to the version column
– Basically forces a write

u A read lock is generally implemented by the entity manager
acquiring a lock on the underlying database row

u Implementations are not required to support this for non-versioned
objects, and if it can't support a call, a PersistenceException
must be thrown

Session 8: Updates and Queries

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited

