

20150115 Copyright © LearningPatterns Inc. All rights reserved i

Table of Contents: Fast Track to Spring 4

Fast Track to Spring 4 The Next Generation________________________________ 1
Workshop Overview ___ 2
Workshop Objectives __ 3
Workshop Agenda___ 4
Typographic Conventions ___ 5
Labs __ 6

Session 1: Introduction to Spring __ 7
Lesson Objectives ___ 8

Overview __ 9
The Challenge of Enterprise Applications__ 10
Spring vs. JEE ___ 11
What is Spring? __ 12
The Spring Modules __ 13
The Spring Distribution__ 14
The Spring jars __ 15

Lab 1.1: Setting Up the Environment ___ 16
Spring Introduction __ 17

Managing Beans ___ 18
A Basic Spring Application___ 19
The JavaTunes Online Store __ 20
Some JavaTunes Types __ 21
Configuration Metadata__ 22
XML Bean Definitions __ 23
Declaring Beans__ 24
Spring's XML Schemas __ 25

The Spring Container___ 26
The Spring Container ___ 27
Working With Spring ___ 28
A Simple Spring Example (1 of 2) ___ 29
A Simple Spring Example (2 of 2) ___ 30
Why Bother? __ 31
ApplicationContext Interface ___ 32
Common ApplicationContext Implementations ___ 33
Using an ApplicationContext ___ 34
Specifying Configuration Files __ 35
Some BeanFactory/ApplicationContext API__ 36
A Word About JUnit __ 37
JUnit Example ___ 38

Lab 1.2: Hello Spring World __ 39
Dependencies and Dependency Injection _______________________________________ 40

Dependencies Between Objects__ 41
Example of a Direct Dependency __ 42
Dependency Inversion Principal ___ 43
Example of Dependency Inversion ___ 44
Dependency Inversion Illustrated __ 46
Dependency Injection (DI) in Spring ___ 47
Dependency Injection Configuration__ 48
DI Hides Dependencies __ 49
Advantages of Dependency Injection ___ 50

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20150115 Copyright © LearningPatterns Inc. All rights reserved ii

Dependency Injection Reduces Coupling __ 51
Lab 1.3: Dependency Injection___ 52

Review Questions __ 53
Lesson Summary ___ 54

Session 2: Configuration in Depth __ 57
Lesson Objectives __ 58

Annotation-based Configuration__ 59
A Brief Note on Annotations__ 60
Annotations for Spring Configuration ___ 61
Declaring Beans and DI with Annotations ___ 62
Annotation-based Bean Definition and DI ___ 63
Complete Declarations Using Annotations ___ 64
Using @Inject/@Autowired __ 65
Additional Annotation Uses __ 66
Enabling Annotations / Detecting Beans___ 67
context:component-scan Example __ 68
Wiring Strategies So Far ___ 69

Lab 2.1: Annotation-Based Configuration ___ 70
Java-based Configuration ___ 71

Java Configuration Overview ___ 72
Using Java-based Configuration ___ 73
Dependency Injection ___ 74
How Does it Work ? __ 75
Dependencies in Configuration Classes ___ 76
Injecting Configuration Classes__ 77
Other @Bean Capabiliites __ 78
Java-based Configuration - Pro / Con ___ 79

Integrating Configuration Types__ 80
Choosing a Configuration Style ___ 81
Integrating Configuration Metadata __ 82
@Import: @Configuration by @Configuration__ 83
<import>: XML by XML __ 84
Importing Between XML/@Configuration ___ 85
Scanning for @Configuration Classes___ 86
Lab Options ___ 87

Lab 2.2: Java-based Config ___ 88
Bean Scope and Lifecycle__ 89

Bean Scope ___ 90
Specifying Bean Scope - XML __ 91
Using @Scope to Specify Bean Scope __ 92
Bean Creation/Destruction Lifecycle ___ 93
Construction/Destruction Callbacks __ 94
Bean Creation Lifecycle - Advanced Details ___ 95
BeanPostProcessor - Advanced Use __ 96
Event Handling __ 97

Lab 2.3: Bean Lifecycle___ 98
Review Questions __ 99
Lesson Summary __ 100

Session 3: Wiring in Depth ___ 102
Lesson Objectives ___ 103

Value Injection ___ 104

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20150115 Copyright © LearningPatterns Inc. All rights reserved iii

Value Based Properties ___ 105
XML Configuration and Conversion___ 106
Externalizing Values in Properties Files __ 107
Accessing Properties via the Environment __ 108
XML Configuration of External Properties__ 109
Summary __ 110

Constructor Injection __ 111
Constructor Injection Overview __ 112
Constructor Injection - @Configuration __ 113
Constructor Injection - XML___ 114
Constructor Injection - Multiple Arguments ___ 115
XML Shortcuts - p: and c: Namespaces __ 116
Setter Injection vs. Constructor Injection ___ 117
Guidelines - Setter/Constructor Injection ___ 118

Lab 3.1: Initialization ___ 119
Lab 3.1-XML: Initialization __ 120

Qualifiers / DSL __ 121
Additional Domain Types ___ 122
Consider Multiple Implementations ___ 123
When Autowiring is not Enough __ 124
Qualifiers and DSL __ 125
Defining Our Own Annotations __ 126
Annotation-Based DSL ___ 127
Using the DSL __ 128
A More Sophisticated DSL __ 129
Using the DSL __ 130
More about Annotation Declarations___ 131
Multiple Qualifiers __ 132
Qualifier Benefits ___ 133

Lab 3.2: Spring Qualifier DSL __ 134
Profiles __ 135

Profile Overview __ 136
The First Configuration ___ 137
Defining Second Configuration___ 138
Declaring Profiles - @Profile __ 139
Enabling Profiles __ 140
Configuration Inheritance ___ 141
Our Profile Configurations with Inheritance ___ 142
Profiles - XML Configuration __ 143

Lab 3.3: Profiles__ 144
SpEL__ 145

SpEL: Spring Expression Language Overview ___ 146
Other SpEL Capabilities __ 147
Review Questions ___ 148
Lesson Summary __ 149

Session 4: Database Access With Spring __________________________________ 151
Lesson Objectives ___ 152

Overview __ 153
Data Access Support ___ 154
Datasources __ 155
Configuring a DataSource - XML ___ 156
Looking up a DataSource in JNDI___ 157

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20150115 Copyright © LearningPatterns Inc. All rights reserved iv

Properties Files ___ 158
XML vs Java Config vs Properties Files __ 159

[Optional] Using Spring with Hibernate_______________________________________ 160
Hibernate Overview__ 161
Hibernate Configuration File Illustration ___ 162
Using Hibernate Directly__ 163
Spring Support for Hibernate __ 164
LocalSessionFactoryBean ___ 165
Configuring a Hibernate Session Factory ___ 166
Contextual Sessions__ 167
Spring Free Repository Class __ 168
Injecting the SessionFactory ___ 169

[Optional] Using Spring with JPA ___ 170
Spring Support for JPA ___ 171
Managing the EntityManager[Factory] ___ 172
1. JEE: Obtaining an EMF From JNDI ___ 173
2. LocalContainerEntityManagerFactoryBean ___ 174
Container-Managed EntityManager ___ 175
3. LocalEntityManagerFactoryBean ___ 176
Additional Spring Configuration __ 177
Spring Configuration Example ___ 178
@Configuration Example ___ 179
JPA Repository / DAO ___ 180
Extended Persistence Context __ 181

[Optional] Lab 4.1: Integrating Spring and JPA ___________________________________ 182
Review Questions ___ 183
Lesson Summary __ 184

Session 5: Aspect Oriented Programming _________________________________ 185
Lesson Objectives ___ 186

Overview __ 187
The Issue with Crosscutting Concerns ___ 188
Crosscutting Illustrated ___ 189
Aspect Oriented Programming (AOP) Defined___ 190

Spring AOP Introduction___ 191
Spring AOP Overview__ 192
@AspectJ Annotations / XML Config ___ 193
Defining an Aspect __ 194
Defining a Pointcut __ 195
Defining a Pointcut - @AspectJ __ 196
Defining a Pointcut - XML __ 197
Defining Advice - @AspectJ___ 198
Defining Advice - XML __ 199
Triggering Advice ___ 200
More on How Spring AOP Works___ 201
Configuring Spring __ 202

Lab 5.1: Hello AOP World ___ 203
Pointcut Expressions and Advice __ 204

Pointcut Expressions ___ 205
Sample execution Designator Patterns ___ 206
Other Spring AOP Designators ___ 208
Sample Designator Patterns__ 209
Combining Pointcut Expressions__ 210

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20150115 Copyright © LearningPatterns Inc. All rights reserved v

Kinds of Advice___ 211
Advice Examples__ 212
Around Example __ 213

Marker Annotations (Rubber Stamp AOP)____________________________________ 215
The Issue with Crosscutting Concerns ___ 216
Defining a Marker / Rubber Stamp __ 217
LogAspect ___ 218
Using the Aspect __ 219
Summary __ 220
XML vs @AspectJ __ 221

Lab 5.2: Rubber Stamp AOP ___ 222
Other Considerations __ 223

Spring Proxies and Direct Invocation __ 224
Working with Direct Invocation __ 226
Load-Time Weaving ___ 227
More on Spring Proxies___ 228
Strengths / Advantages of AOP___ 229
Caveats/Issues with AOP__ 230
Should I use AOP? __ 231
Review Questions ___ 232
Lesson Summary __ 233

Session 6: Transactions __ 235
Lesson Objectives ___ 236

Spring Transaction Management __ 237
General Transaction (TX) Overview ___ 238
General Transaction Lifecycle__ 239
Spring's Transaction Managers ___ 240
Configuring Transaction Managers __ 241
Spring's JTA Transaction Manager __ 242
Spring Declarative TX Management ___ 243
Spring Transactional Scope__ 244
Transaction Propagation __ 245
Transaction Attributes for Propagation ___ 246
MANDATORY ___ 247
NESTED __ 248
NEVER ___ 249
NOT_SUPPORTED ___ 250
REQUIRED__ 251
REQUIRES_NEW __ 252
SUPPORTS __ 253
Transaction Example ___ 254
Transaction Attributes - Some Choices ___ 255
Transaction Attributes - Some Choices ___ 256

@Transactional Configuration __ 257
Specifying Transaction Attributes ___ 258
Specifying Transaction Attributes ___ 259
Additional Transactional Attributes ___ 260
Transactional Attributes Guidelines ___ 261
Rolling Back and Exceptions __ 262
Spring TX and AOP ___ 263
@Transactional Pros and Cons ___ 264

XML Configuration ___ 265

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20150115 Copyright © LearningPatterns Inc. All rights reserved vi

Specifying Transactions Using XML __ 266
Linking Advice With Pointcuts ___ 268
<tx:method> Attributes ___ 269
Using Marker Annotations __ 270
Why Use XML Configuration__ 271

Lab 6.1: Spring Transactions ___ 272
Review Questions ___ 273
Lesson Summary __ 274

Session 7: Web Applications with Spring _________________________________ 275
Spring and Java Enterprise Edition (JEE) ___ 276
Overview of JEE Web Applications ___ 277
Web Application Structure __ 278
Web Application Components__ 279
ApplicationContext and Java Web Apps__ 280
Configuring ContextLoaderListener - XML ___ 281
ContextLoaderListener - @Configuration___ 282
Using the Application Context ___ 283

Lab 7.1: Spring and the Web ___ 284
[Optional] Session 8: XML Specific Configuration __________________________ 285

Lesson Objectives ___ 286
Collection Valued Properties __ 287

Working with Collections ___ 288
Collection Property Example___ 289
Configuring <list> and <set> Properties __ 290
Configuring Collection of Bean References ___ 291
Map Valued Properties ___ 292

Other Capabililties __ 293
- Bean Definition Inheritance - ___ 294
Inheritance Example ___ 295
- Factory Classes - ___ 296
Instance Factory Methods ___ 297
- Autowiring with XML - ___ 298
- Inner Beans - __ 299
- Compound Names -___ 300
Review Questions ___ 301
Lesson Summary __ 302

Recap __ 303
Recap of what we've done ___ 304
What Else is There___ 305
Resources__ 306

Appendix: Maven and Spring ___ 307
About Maven___ 308
How We'll Work With Maven__ 309
The POM (Project Object Model) ___ 310
POM - Required Elements___ 311
POM - External Dependencies ___ 312
Maven Artifacts for Spring __ 313
Repositories __ 314
Maven Project Structure __ 315
Eclipse / Maven Integration__ 316

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 120150115

Fast Track to Spring 4

Fast Track to Spring 4
The Next Generation

The Java Developer Education Series

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 220150115

Fast Track to Spring 4

Workshop Overview

An in-depth course teaching the use of Spring 4 to build
enterprise applications using Java
– We also demonstrate best practices for newer areas of

Spring/Java technology

The course covers the following areas of Spring technology

– Core features of Spring
– Data Access Features
– Aspect Oriented Programming (AOP)
– Transaction Support
– Web Application Support

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 320150115

Fast Track to Spring 4

Workshop Objectives

Understand the Spring framework and use its capabilities, including:

Spring Core: Dependency Injection (DI) and lifecycle management
of application objects
– Spring configuration and API for writing Spring programs
– XML, Java-based, and annotation-based config

Data Access: Data access via Spring's data support
– DataSource support
– Hibernate and JPA-based Repositories/DAOs

AOP: Spring's AOP (Aspect Oriented Programming) capabilities for
injecting crosscutting concerns
Transactions: Controlling transactions declaratively with Spring
– Via both Spring annotations and XML configuration

Web: Integrating Spring with Web applications

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 420150115

Fast Track to Spring 4

Workshop Agenda

Session 1: Introduction to Spring

Session 2: Configuration in Depth

Session 3: Wiring in Depth

Session 4: Database Access With Spring

Session 5: Aspect Oriented Programming (AOP)

Session 6: Transactions

Session 7: Web Applications with Spring

[Optional] Session 8: XML Specific Configuration

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 520150115

Fast Track to Spring 4

Typographic Conventions

Code in the text uses a fixed-width code font, e.g.:

Catalog catalog = new CatalogImpl()

–Code fragments are the same, e.g. catalog.speakTruth()

–We bold/color text for emphasis

–Filenames are in italics, e.g. Catalog.java

–Notes are indicated with a superscript number (1) or a star *

–Longer code examples appear in a separate code box - e.g.

package com.javatunes.teach;

public class CatalogImpl implements Catalog {
public void speakTruth() {

System.out.println("BeanFactories are way cool");
}

}

(1) If we had additional information about a particular item in the slide, it would appear here in the
notes

We might also put related information that generally pertains to the material covered in the slide

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 620150115

Fast Track to Spring 4

Labs

The workshop has numerous hands-on lab exercises,
structured as a series of brief labs
– Many follow a common fictional case study called JavaTunes

• An online music store
– The lab details are separate from the main manual pages

Setup zip files are provided with skeleton code for the labs
– Students add code focused on the topic they're working with
– There is a solution zip with completed lab code

Lab slides have an icon like in the upper right corner of this
slide
– The end of a lab is marked with a stop like this one:

Lab

STOP

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 720150115

Fast Track to Spring 4

Session 1: Introduction to Spring

Overview
Spring Introduction

The Spring Container
Dependency Injection

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 820150115

Fast Track to Spring 4

Lesson Objectives

Understand why we need the Spring Framework

Understand what Spring does, and how it simplifies enterprise
application development

Learn how Spring uses configuration information and
Dependency Injection (DI)
– To manage the beans (objects) in an application
– To manage bean dependencies

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 920150115

Fast Track to Spring 4

Overview

Overview
Spring Introduction

The Spring Container
Dependency Injection

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1020150115

Fast Track to Spring 4

The Challenge of Enterprise Applications

Enterprise applications are complex
– Many application types, with complex dependencies
– Persistent data retrieved from / stored to a data store
– Transactional requirements
– Remote access requirements (distributed apps)
– Web access requirements

Spring supports all these requirements
– They are the motivation behind Spring
– We'll start with managing object lifecycle and dependencies

• A core requirement
– We'll cover other capabilities later

There really is no formal definition of an enterprise application
Typically though, some of the characteristics they have are:

– Used in a business environment, often in business-critical domains
– Have some form of persistent storage
– Have some form of remote access (Web/HTTP, Web service, Distributed Objects, etc)
– Require some measure of scalability and fault tolerance

The definition of enterprise application is not important
– Many Java applications share some of the requirements that we are outlining here

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1120150115

Fast Track to Spring 4

Spring vs. JEE

JEE (Java Enterprise Edition) also supports enterprise apps
– Current JEE standards match many Spring capabilities
– e.g. CDI (Context and Dependency Injection) provides lifecycle

and dependency management
– This is an evolution in JEE capabilities

There has been a lot of conversation about Spring vs. JEE (1)

– Strengths / weaknesses, which to use, etc.
– Both are powerful frameworks - choose your technology based

on your requirements
• It may be dictated by existing constraints

– You may use both - fitting the best solution to your needs

(1) Current releases of Java/JEE offer many of the core capabilities of Spring
– Some people can feel very strongly toward one or the other
– However, it is not productive to try to compare them in an absolute sense (e.g. Spring beats the

heck out of JEE in every way)
– Generally, there are many constraints and requirements that will guide or dictate your choice of

technology to use
– We will not engage here in trying to declare a "winner" in some technology battle
– Rather, we'll present the capabilities that Spring has to offer, it's strengths as well as weaknesses,

so you can make an informed decision to meet your needs well

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1220150115

Fast Track to Spring 4

What is Spring?

Lightweight framework to build enterprise applications
– Non-intrusive in your programming
– Lets you use only what you need
– But still provides many advanced capabilities

Capabilities include:
– Dependency Injection (Inversion of Control/IOC) container to

manage objects and their dependencies
– DAO/Repository package that simplifies database use
– ORM package integrating with persistence technologies (e.g. JPA)
– AOP package for aspect-oriented programming
– Web package integrating with Web technologies
– MVC package providing a Model-View-Controller Web framework
– A security framework for authentication and authorization

DAO stands for Data Access Object
ORM stands for Object-Relational Mapping

The Spring ecosystem is now very large
– There are other capabilities that we don't list and won't cover in this course
– We'll cover some of the more central technologies that many of the others rely on

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1320150115

Fast Track to Spring 4

The Spring Modules

Module diagram from the Spring Reference Documentation

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1420150115

Fast Track to Spring 4

The Spring Distribution

Spring home page: http://spring.io/

Spring framework packaged as a set of jar files
– Each module packaged in its own archive

• e.g. spring-beans-4.1.0.RELEASE.jar

Spring also has dependencies on external technologies (1)

– e.g. - Apache commons logging, jars for AOP, and more

Dependencies usually provided by a build management tool
– e.g. maven, which can automatically download dependencies
– We provide all lab dependencies in the lab setup
– Maven is covered briefly in an Appendix

In the past, both the Spring distribution and its dependencies were available as a separate download
from the Spring download pages

– These are no longer provided
– It is assumed that you'll use a build tool like maven to get the Spring libraries and its

dependencies

(1) The external dependencies for the core modules for dependency injection are (purposely) minimal
– Basically just the Apache commons logging framework
– For other capabilities (e.g. AOP) there are more dependencies, but they're still rather small
– If you use other technologies however, e.g. Hibernate/JPA, then there are more external

dependencies

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1520150115

Fast Track to Spring 4

The Spring jars

At right, are the libraries we
supply for the labs (1)

Below, are the external
dependencies (2)

– We downloaded these all
using maven

(1) We supply most of the Spring project jars in the lab setup
– We downloaded these using maven and a pom.xml specifying the different modules available in

Spring (e.g. spring-aspects, spring-jdbc) then gathered the jars together for the lab setup
– The dependencies were done in the same way
– Note that the actual jars in the lab setup may vary from this illustration - look at the setup to see

what is actually needed
– Note that the junit and hamcrest jars are not needed by Spring, but needed because we use JUnit

in our labs
(2) You can see that there are not a large number of external dependencies

– We also supply all the Hibernate/JPA dependencies for the JPA labs in a separate folder
– These contain many more jars

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1620150115

Fast Track to Spring 4

Lab 1.1: Setting Up the Environment

In this lab you will set up the lab environment,
bootstrap the Spring container, and test it using a

unit test

Lab 1.1: Setting Up the Environment

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1720150115

Fast Track to Spring 4

Spring Introduction

Overview
Spring Introduction
The Spring Container
Dependency Injection

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1820150115

Fast Track to Spring 4

Managing Beans

Managing application objects is a core Spring capability

Managed objects are called beans (1)

– But they're just POJOs (Plain Old Java Objects)

The Spring container is the "manager"
– Also called the Dependency Injection (DI) or Inversion of

Control (IoC) container
– Uses configuration information (metadata) to instantiate,

configure, and assemble beans
– Config styles include two kinds of Java annotations and XML

Bean definitions / dependencies done via configuration (2)

– Container uses this to create and manage beans

(1) The term bean doesn't mean that much - it's a common name (e.g. JavaBeans and EJB)
– It basically means an object managed by the Spring container in this context

(2) Spring will create and initialize bean instances based on your configuration data
– You can then request those instances from the Spring container by type or name
– We'll see how this works soon

We'll cover the Spring container, and the principles behind it, in more detail later
– For now, we will just describe some of its basic capabilities

Configuration metadata can also be provided in the Java properties format, or even provided
programmatically (using Spring's public API)

– These are generally more cumbersome to use, and we won't cover them in this course
– In fact, the Spring IoC container is totally decoupled from the external form of the metadata
– It has its own internal format which it uses to store this information
– The XML format was the original one, and is still in use today, but there are now other, more

sophisticated, ways to configure the container

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 1920150115

Fast Track to Spring 4

A Basic Spring Application

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2020150115

Fast Track to Spring 4

The JavaTunes Online Store

The course uses JavaTunes as an example and lab domain
– A simple online music store (1)

Some of the types you'll see include:

– com.javatunes.domain.MusicItem : JavaBean-style value class
representing a music item (e.g. an mp3)

– com.javatunes.service.Catalog : Interface defining JavaTunes
catalog functionality (including search)

– com.javatunes.service.CatalogImpl : Concrete Catalog
implementation (uses ItemRepository)

– com.javatunes.persistence.ItemRepository : Interface defining
data access API for items

– com.javatunes.persistence.InMemoryItemRepository :
Concrete ItemRepository implementation (simple in-memory storage)

(1) We use a simple online music store as our domain for examples in the slides and for the labs
– We've tried to give it enough detail to provide good material to work with while keeping it

simple enough so you don't have to spend too much time in figuring it out

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2120150115

Fast Track to Spring 4

Some JavaTunes Types

Catalog and CatalogImpl are shown below
– Note how CatalogImpl implements the Catalog interface (1)

Let's look at how to configure some objects

package com.javatunes.service;

public interface Catalog {
public MusicItem findById (long id);
public Collection<MusicItem> findByKeyword(String keyword);
public int size();

}

package com.javatunes.service;

public class CatalogImpl implements Catalog { // Detail omitted

public MusicItem findById (long id) { /* */ }
public Collection<MusicItem> findByKeyword(String keyword)
{ /* */ }

public int size() { /* */ }
}

These two types are part of JavaTunes
– We'll use them to motivate our discussion on how Spring works

(1) Programming to interfaces provides many advantages by decoupling your code from concrete
implementation classes

– This is not a concept unique to Spring
– Many design patterns are based on the decoupling gained by programming to an interface
– We'll soon see how the Spring framework makes these advantages even more usable and

powerful by helping manage the dependencies that have been abstracted using interfaces

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2220150115

Fast Track to Spring 4

Configuration Metadata

Metadata: Information about your beans
– i.e. Configuration information
– Early on, only XML metadata was available
– Annotation-based approaches now available

We'll start with the XML configuration
– Still widely used in existing applications, so good to know
– We'll cover annotations also, as a lot of new work uses them

Once you understand Spring, all the configuration types are
fairly straightforward (1)

(1) Once you know how Spring works, any of the configuration styles become easily understandable
– The question then becomes - which is more applicable to your system
– We'll discuss that as we cover each option

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2320150115

Fast Track to Spring 4

XML Bean Definitions

Bean definitions configure objects managed by Spring
– Typically many bean definitions and dependencies

A top level <beans> element contains bean definitions
– <beans> contains namespace declarations and <bean>

elements as shown below
– The config file is often named applicationContext.xml (1)

• But can have any name

<?xml version="1.0" encoding="UTF-8"?>

<!-- The beans namespace is the default one for the document -->
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="musicCatalog" class="com.javatunes.service.CatalogImpl"/>

</beans>

(1) applicationContext.xml is a standard (and default) name for the Spring config file, but you can
name it anything that you want

– In fact, as we'll see, you can have multiple config files
Spring provides an XML Schema for this configuration file, and the examples and lab setup files have
the necessary XML namespace information in them to refer to this schema

– This is standard XML usage, and we don't go into the details here of how to use an XML Schema
– Refer to an XML reference if you need more detail on this

The xsi:schemaLocation property in the slide doesn't specify a version number for the schema
file

– The latest version will automatically be picked up
– For example, spring-beans-4.1.xsd

Typically you'll configure beans such as
– Service layer objects, Respository objects, Hibernate session factories, JMS queue references

Some BeanFactory implementations also permit the registration of existing objects that have been
created outside the factory (by user code)

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2420150115

Fast Track to Spring 4

Declaring Beans

Bean definitions specify a package-qualified class name
– Generally the bean implementation class - what the container

instantiates (1)

– Below, the class attribute specifies our implementation -
com.javatunes.service.CatalogImpl

In general, a bean identifier (or name) is specified
– It's a bean label – available in code and configuration
– A bean can have multiple names (aliases)
– Below, the id specifies musicCatalog
– Generally, bean names use camelCase

<bean id="musicCatalog" class="com.javatunes.service.CatalogImpl"/>

(1) There are more sophisticated ways to create beans, for example with a factory class (shown
later), in which case the class name may not be the actual implementation class
If you don't specify a bean name, the container will generate a unique name for the bean

– This can be useful in some more sophisticated scenarios
The id attribute must follow the standard XML rules for ids

– There is a limited set of characters that are allowed for XML ids
The name attribute can also be used to specify (multiple) names

– You can have a value that specifies multiple bean names separated by a comma, semicolon, or
whitespace

– If there is no id attribute, the first name becomes the identifier, the rest are aliases
<bean name="musicCatalog, myCatalog"

class="com.javatunes.service.CatalogImpl"/>

– You may use the id and name attributes at the same time
• This is generally not done - it can be confusing, and brittle to maintain

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2520150115

Fast Track to Spring 4

Spring's XML Schemas

Spring provides XML Schemas for configuration
– With custom namespaces and tags with complex behavior (1)

– e.g. the context: namespace we will use shortly

Spring namespaces include:
– aop: Configures AOP support
– beans: The standard bean tags we've seen already
– context: Configures ApplicationContext related things
– jee: JEE related configuration such as looking up a JNDI object
– jms: Configures JMS related beans
– lang: Exposing objects written in language like JRuby as beans
– tool: Adds tooling-specific metadata
– tx: Configures transaction support
– util: Common, utility configuration issues

(1) We'll soon see how some of the tags in the context namespace work
– In particular, the <context:annotation-config/> is a shorthand to introduce a number of

bean definitions into the configuration
– The tags in these schemas typically have capabilities beyond simple bean definitions and

injection
– This is one of the nice things about the custom namespaces - they can make configuration much

easier

We'll see examples of a number of these later in the course

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2620150115

Fast Track to Spring 4

The Spring Container

Overview
Spring Introduction

The Spring Container
Dependency Injection

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2720150115

Fast Track to Spring 4

The Spring Container

The Spring container
– Provides a configuration mechanism for objects (config files)
– Instantiates/initializes application objects
– Resolves object dependencies based on configuration

org.springframework.context.ApplicationContext
– Core API to access the container in your code
– Multiple implementations provided for flexibility, e.g.
– ClassPathXmlApplicationContext: Common implementation

loading resources from the class path

Interface ApplicationContext extends BeanFactory
– BeanFactory has many core methods - usually not used directly

Interface BeanFactory is in package org.springframework.beans.factory

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2820150115

Fast Track to Spring 4

Working With Spring

High level scenario for using Spring includes the following:

Create Spring configuration data for your beans
– It's the "cookbook" telling Spring how to create objects
– Via an XML file like applicationContext.xml or via annotations

Initialize the Spring container
– e.g. create an application context instance to read config data
– It will initialize the beans in the config file

Retrieve beans via the context instance and use them
– e.g. use getBean() to look up a bean by type or name

There are many, many usage scenarios for Spring
– And many, many different alternatives for each scenario
– Spring is very large, and has a lot of flexibility and capability

In this initial introduction we show you one straightforward way of using Spring
– We will gradually introduce more capabilities throughout the course

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 2920150115

Fast Track to Spring 4

A Simple Spring Example (1 of 2)

The code below provides a simple Spring example
– Instantiates a ClassPathXmlApplicationContext to read

applicationContext.xml from the classpath
• This creates the spring container
• Note: The no-arg constructor will look for applicationContext.xml by default

– Uses a JUnit assert to verify the container isn't null (JUnit details soon)

package com.javatunes.domain;

import static org.junit.Assert.*;
import org.junit.Test;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class UT_Catalog {
@Test
public void springTest() {

ClassPathXmlApplicationContext ctx=
new ClassPathXmlApplicationContext("applicationContext.xml");

assertTrue("spring container should not be null", ctx != null);

// Continued on next slide

ClassPathXmlApplicationContext(String) loads the named file from the classpath
– If you don't supply a name, "applicationContext.xml" is used
– The context implementation uses Spring-based resource classes

(org.springframework.core.io.Resource implementations) to access the file
– The resource classes abstract access to resources - often used by other classes to access data
– They allow you to flexibly specify paths to resources as resource strings
– These strings are then mapped by a particular implementation to the actual resource, for

example a file on a file system or from the Java classpath
– ClassPathResource is a concrete implementation that allows you to easily access resources

on the classpath, e.g.
Resource resource = new ClassPathResource("applicationContext.xml");

– ClassPathXmlApplicationContext accesses its resources like this under the hood

A bean definition can be seen as a recipe for creating one or more actual objects
– The container looks at the recipe for a particular bean when asked for it, and uses the

configuration metadata encapsulated by that bean definition to create (or acquire) an actual
object

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3020150115

Fast Track to Spring 4

A Simple Spring Example (2 of 2)

Our code:
– Prints out the Spring environment
– Looks up a catalog bean (by type) from the container

• Assumes only one bean matching the Catalog type
• Preferred over lookup by name - more on this later

– Uses the catalog to look up an item
– Closes the context (destroying all beans)

The example looks like a lot of work to create a single object !
– Let's examine what benefit it gives

System.out.println("Spring was bootstrapped for environment " +
ctx.getEnvironment());

// Note that getBean uses Java generics (no casting needed)
Catalog cat = ctx.getBean(Catalog.class);
MusicItem item = catalog.findById(1L); // Use our bean
ctx.close();

}
}

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3120150115

Fast Track to Spring 4

Why Bother?

Main benefit: We've decoupled our code from a dependency
on the implementation class CatalogImpl
– Our code doesn't know about CatalogImpl
– It just knows about needed functionality (interface Catalog)

Can use any conforming implementation in our configuration
– Client code will not change
– Which is why we code to interfaces, not concrete types
– Very useful for complex systems

We'll soon see additional capabilities that make Spring useful

In this simple example, it looks like we've done quite a bit of work to instantiate a single instance of a
single class

– What is the benefit?

The decoupling we've achieved seems like a simple thing, but it has a lot of benefits, especially when
maintaining large systems

– We'll see how useful it can be when we explore more of the capabilities

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3220150115

Fast Track to Spring 4

ApplicationContext Interface

The org.springframework.context.ApplicationContext
interface extends BeanFactory

Exposes large number of Spring's capabilities, including:
– Bean access
– Resource Access: Config files, URLs, other files
– Message resources with I18N capability
– Publishing events to managed beans that are listeners
– Multiple, hierarchical contexts

Generally use ApplicationContext (not BeanFactory)
– This is the recommended practice
– It builds on BeanFactory, and adds many additional capabilities

The ApplicationContext is the full-fledged representation of the Spring container
– It is often regarded as the type that supplies the "framework" capabilities of Spring, rather than

simple bean management

If you are writing applications for a very resource-restricted environment, such as a mobile device,
you might consider using BeanFactory over ApplicationContext

– Then again, even mobile devices these days usually have enough capability to make the
additional resources used by ApplicationContext negligible

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3320150115

Fast Track to Spring 4

Common ApplicationContext Implementations

ClassPathXmlApplicationContext: Standalone context
loading XML config files from the classpath

FileSystemXmlApplicationContext: Standalone context
loading XML config files from the file system or URLs

– Both in package org.springframework.context.support

AnnotationConfigApplicationContext: Standalone
context accepting annotated classes as input
– In package org.springframework.context.annotation

There are also Web-based application contexts we'll cover later

We'll cover the ApplicationContext API in various parts of the course

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3420150115

Fast Track to Spring 4

Using an ApplicationContext

Below, ClassPathXmlApplicationContext loads a config file
– applicationContext.xml must be in the classpath
– It's easy to load multiple files – as shown at bottom
– There are many constructors supporting different arguments (1)

package com.javatunes.teach;
import org.springframework.context.support.ClassPathXmlApplicationContext;
@Test
public class UT_Spring {

public void smokeTest() {
ClassPathXmlApplicationContext ctx =

new ClassPathXmlApplicationContext("applicationContext.xml");
assertTrue("spring container should not be null", ctx != null);
ctx.close();

}
}

// Load configuration from two files
ApplicationContext ctx =

new ClassPathXmlApplicationContext("ctx-1.xml", "ctx-2.xml");

(1) Some constructors include:
– (String… configLocation): Load configuration from the given XML file(s)

• Uses Java varargs - pass in any number of comma separated strings or array or string
– (String[] configLocations): Same as above

When the configLocation(s) do not have a prefix (e.g. file:), then the actual Resource type used to load the
bean definitions depends on the specific application context

– e.g. – a ClassPathResource for a ClassPathXmlApplicationContext
For FileSystemXmlApplicationContext:

– For historical reasons, plain paths are interpreted as relative to the current VM working directory, even if
they start with a slash. (Consistent with the semantics in a Servlet container.)

– This means that the following are equivalent
• new FileSystemXmlApplicationContext("applicationContext.xml")

• new FileSystemXmlApplicationContext("/applicationContext.xml")

– Use an explicit "file:" prefix to enforce an absolute file path.
• new FileSystemXmlApplicationContext("file:/applicationContext.xml")

– Note that if you use a FileSystemResource instance directly, then this behavior is different – it
behaves as you would expect, with a leading slash designating an absolute path

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3520150115

Fast Track to Spring 4

Specifying Configuration Files

ant style wildcards can be used
– conf/**/ctx.xml: All ctx.xml files under any subdir of conf
– conf/*-context.xml: All files in conf, ending in –context.xml

Can also use the file: and classpath: prefixes
– Forces use of the specified loading mechanism
– e.g. The following loads definitions from the classpath

• Even though FileSystemXmlApplicationContext is used

new FileSystemXmlApplicationContext("classpath:ctx.xml");

Spring uses its Resource classes under the hood to access
the config info for ClassPathXmlApplicationContext
– This functionality is part of Spring

In the case of ClassPathXmlApplicationContext Spring uses a ClassPathResource to
access the configuration files

– Resources are used internally by Spring in many places

The documentation provides this info about the classpath prefix
– This special prefix specifies that all classpath resources that match the given name must be

obtained (internally, this essentially happens via a ClassLoader.getResources(...) call), and then
merged to form the final application context definition

– The wildcard classpath relies on the getResources() method of the underlying classloader. As
most application servers nowadays supply their own classloader implementation, the behavior
might differ especially when dealing with jar files. [Spring Reference Documentation]

The Spring resource classes have quite a bit more functionality than the plain Java URL class

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Some BeanFactory/ApplicationContext API

boolean containsBean(String): returns true if container
contains a bean definition / instance with the given name
<T> T getBean(Class<T> requiredType): Return the bean
instance uniquely matching the given object type, if any
<T> T getBean(String, Class<T> requiredType): Returns a
bean instance registered under the given name (type-safe)
Class<?> getType(String name): Returns the Class object of
the bean with the given name
boolean isSingleton(String): Determines whether or not the
named bean is a singleton
String[] getAliases(String): Return the aliases for the given
bean name, if any
Many more methods - covered as needed
– View the javadoc for complete details

The methods shown are a part of the BeanFactory API inherited by ApplicationContext
getBean returns either a singleton (shared) instance, or a newly created bean
– NoSuchBeanDefinitionException thrown if the bean can't be found
– BeansException thrown if an exception occurred while instantiating/preparing the bean
– BeanNotOfRequiredTypeException thrown if the bean is not of the required type

Object getBean(String) returns an object – which is then cast to the required type
– The newer getBean(String,Class<T> requiredType) method is generally preferred.

getType(String) throws NoSuchBeanDefinitionException if the bean can't be found
isSingleton(String) throws NoSuchBeanDefinitionException if bean can't be found
The method <T> T getBean(String, Class<T> requiredType) may look strange

– This is standard Java generics syntax - The first <T> in the return type simply indicates that this
is a generic method, parameterized by the type parameter <T>

– The T return value indicates that the return type is generic (that is, it will take on different types
based on the <T> parameter)

– The Class<T> argument indicates that when you call the method, you pass in the class which
specifies what type <T> actually is in that call

Copyright © LearningPatterns Inc. All rights reserved. 3620150115

Fast Track to Spring 4 Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3720150115

Fast Track to Spring 4

A Word About JUnit

JUnit is an open source Java testing framework
– Our Spring examples and labs use JUnit to run program code

The JUnit 4 capabilities include:
– Annotations for declaring test methods (e.g. @Test)
– Assertions for testing expected results
– Test fixtures for sharing common data
– Test runners for running tests

See next slide for an example

Most development environments have JUnit support
– We'll use them to run tests which drive the lab code
– The tests are the @Test annotated methods (see next slide)

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3820150115

Fast Track to Spring 4

JUnit Example

To write a JUnit test, we will:
– Create a class, with at least one method annotated with @Test
– Make assertions using static methods in the org.junit.Assert

class (e.g. assertTrue)

Note how springTest() is annotated with @Test
– It creates the Spring application context, and checks that it's non-null
– We use org.junit.Assert.assertTrue to perform the test
– See notes about import static and assertTrue usage

// JUnit relevant code shown - some imports / code omitted
import static org.junit.Assert.*;
import org.junit.Test;

public class UT_Catalog {
@Test
public void springTest() {

ClassPathXmlApplicationContext ctx =
new ClassPathXmlApplicationContext();

assertTrue("spring container should not be null", ctx != null);
}

}

The assertXXX methods are all static method of Assert
– The familiar way to use these methods would be to import org.junit.Assert, and then call

the static methods through the Assert class
Assert.assertTrue(collection.isEmpty());

– This is a little cumbersome, so the static import feature of Java is used - which imports static
members from a class

– The following import statement imports all the static members (including methods) from the
Assert class

import static org.junit.Assert.*;

– This allows us to use the static members without qualifying them by the classname, as seen in
our earlier code

assertTrue(collection.isEmpty());

There is much more capability in JUnit
– We won't go into that, since it's beyond the scope of the course
– We only cover enough to show how the labs work

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 3920150115

Fast Track to Spring 4

Lab 1.2: Hello Spring World

In this lab, we will create and use a Spring context
to access a bean instance

Lab 1.2: Hello Spring World

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4020150115

Fast Track to Spring 4

Dependencies and Dependency Injection

Overview
Spring Introduction

The Spring Container
Dependency Injection

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4120150115

Fast Track to Spring 4

Dependencies Between Objects

Multiple objects work together in an OO system
– e.g., Object A directly uses Object B to accomplish a goal (1)

– So Object A depends on Object B

Direct dependencies can lead to unwanted traits
– Rigidity: Changes affect many other parts of the system, so are

hard to make
– Fragility: Changes cause unexpected failures in other system

areas
– Immobility: Hard to reuse functionality elsewhere - modules

can't be disentangled

We'll show a direct dependency example, then show an
alternative approach using Dependency Inversion

(1) In straightforward applications, Object A will often just create an instance of Object B and use it
– Object A is highly coupled to, and directly dependent on, Object B

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4220150115

Fast Track to Spring 4

Example of a Direct Dependency

Assume CatalogImpl uses InMemoryRespository
– Below, CatalogImpl creates an InMemoryRespository

instance directly
– CatalogImpl depends on the lower level module details
– To use a different data store - e.g. a FileRespository, then
CatalogImpl code must change (see notes)

public class CatalogImpl implements Catalog {
InMemoryItemRespository rep = new InMemoryItemRespository();
public MusicItem findById(long ID) {

return rep.get(id);
}

}

public class InMemoryItemRepository {
public MusicItem get(Long id) { /* Details not shown */ }

}

Assume that all the classes in the examples in this session are in the com.javatunes.service
package

– We'll be leaving out most package statements in the Java code examples for brevity
Assume we want to get our information from a class called FileRespository

– Assume it also has a get(Long id) method
In that case, CatalogImpl might need to be changed to something like that below

public class CatalogImpl implements Catalog {

FileRespository rep = new FileRespository();

public MusicItem findById(long id) {

return rep.get(id);

}

}

– This is not such a big deal if you have to change it in one place
– But imagine if you had to change it in 100 places, or 10,000 places

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4320150115

Fast Track to Spring 4

Dependency Inversion Principal

High level or low level modules should should depend upon
abstractions and not upon each other
– Use abstractions (e.g. interfaces) that all modules depend on
– High level modules are written in terms of the interfaces, and not

directly in terms of low level modules
– Dependencies exist, but not exposed in implementation classes

Using this design strategy has a number of advantages:

– Facilitates less coupled components
• With a high degree of separation of responsibilities

– Produces greater flexibility
• Implementations can be swapped without affecting other modules

– Facilitates reuse of components
• They're less coupled to other parts of an application

Dependency Inversion is not a new idea
– The idea of "Programming to Interfaces" has been around since long before Java
– It has been used in non-OO languages also, for example the stdio module in the C programming

language abstracted away the details of the actual devices doing the output

Many people don't use this design in building applications
– Even though we know of good design principals, there is no way to make sure people use them

We'll soon look at Spring's Dependency Injection which makes this design strategy even easier to use

We talk of modules here, which in Java are basically reflected as dependencies between different
classes

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4420150115

Fast Track to Spring 4

Example of Dependency Inversion

Both CatalogImpl and InMemoryItemRespository depend on
ItemRespository (an interface) – neither depend on the other

public class CatalogImpl implements Catalog {
private ItemRepository itemRepository;
public void setItemRepository(ItemRepository itemRepository) {

this.itemRepository = itemRepository;
}
public MusicItem findById(Long id) {

return itemRepository.get(id);
}

}

// Much detail omitted …
public class InMemoryItemRepository implements ItemRepository {

public MusicItem get(Long id) { /* Detail omitted */ }
}

public interface ItemRespository {
public MusicItem get(Long id);

}

In the code example, we can see that CatalogImpl knows nothing about
InMemoryItemRespository

– Instead, it depends on the ItemRespository interface (the abstraction)
– When CatalogImpl is created, it is initialized with an instance of some ItemRespository

implementation
– However, it doesn't know any details of this implementation, and doesn't even know its exact

type

InMemoryItemRespository likewise depends on the abstraction (it implements the
ItemRespository interface)

– The abstraction (the interface) is the common language that lets the different part of the system
work together with depending directly on each other

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4520150115

Fast Track to Spring 4

Example of Dependency Inversion

CatalogImpl is initialized with an instance of
InMemoryItemRespository (implementing ItemRespository)

– CatalogImpl only sees this as the ItemRespository type
– We could initialize CatalogImpl with any type implementing
ItemRespository – e.g. a FileItemRepository

– We've decoupled the modules
– This makes them more flexible and easier to use, reuse, and maintain

public class UT_Catalog {
@Test
public void catalogTest () {
InMemoryItemRespository rep=new InMemoryItemRespository();
CatalogImpl catalogImpl=new CatalogImpl();
catalogImpl.setItemRespository(rep);
MusicItem found = catalogImpl.findById(1);
assertTrue("item should not be null", found != null);

}
}

In the example above, we are still creating InMemoryRespository in a fairly straightforward way
– This exposes the actual implementation class of the lower level module

(InMemoryRespository) in our UT_Catalog code
– There are other, more sophisticated, ways to create these lower level modules
– For example, we could use factories of some sort to more completely abstract which

ItemRespository is being used
– We will soon show how Spring can do this for you

Whenever you have modules depending on one another, something has to know about the
implementation details

– Even if it's abstracted through multiple layers, there is still a layer somewhere which creates the
instance of the actual implementation

– The goal is to do this in a way that makes your code easier to write, reuse, and maintain

We'll see how Spring deals with this soon

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4620150115

Fast Track to Spring 4

Below, CatalogImpl depends on InMemoryItemRepository

At bottom, all types depend on the ItemRepository abstraction

Dependency Inversion Illustrated

CatalogImpl InMemoryItemRepository
Uses

ItemRepository
<<interface>>

CatalogImpl InMemoryItemRepository FileItemRepository

Uses

In the first illustration, CatalogImpl is directly depending on the lower level
InMemoryItemRepository

– InMemoryItemRepository is lower level because CatalogImpl is using
InMemoryItemRepository

In the bottom illustration, all modules are depending on the abstract ItemRepository interface
– There is no dependency on a lower level concrete implementation
– In fact, CatalogImpl is unaware of what concrete implementations exist

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4720150115

Fast Track to Spring 4

Dependency Injection (DI) in Spring

Dependency Injection lets you abstract dependencies more
– The Spring container injects dependencies into a bean
– Done via constructors, bean properties, or factory method args

Dependencies are defined in the Spring configuration
– The Spring container initializes a bean's dependencies

("injects" them) based on these definitions
– No need to explicitly initialize dependencies in your code

Your bean classes remain POJOs
– There is nothing else special about the bean classes
– Of course, the POJO needs to be consistent with the Spring

configuration (e.g. have a property to hold a dependency)

Dependency injection is a fancy way of saying that the container will initialize the dependencies in
the bean when the bean is created

– The bean has to be a bean whose lifecycle is managed by the container

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4820150115

Fast Track to Spring 4

Dependency Injection Configuration

The (XML-based) Spring configuration below uses DI

– Declares two beans: itemRespository and musicCatalog

– Injects the itemRespository property of musicCatalog
• Using the instance of InMemoryItemRespository defined before it

<property name=“itemRespository" ref=“inMemoryRespository"/>

– You don't need to write any Java code for the injection to happen

<beans … > <!-- Much detail / Namespace declarations omitted -->

<bean id="inMemoryRepository“
class="com.javatunes.persistence.InMemoryItemRepository"/>

<bean id="musicCatalog" class="com.javatunes.service.CatalogImpl">
<property name="itemRepository" ref="inMemoryRepository"/>

</bean>

</beans>

The container first creates an instance of InMemoryItemRepository, with the id
inMemoryRepository

The container next creates an instance of CatalogImpl using the no-arg constructor
The <property> element tells the container to use setter injection to initialize the dependency

– To accomplish the DI, the container calls musicCatalog's setItemRepository method,
passing in the instance of InMemoryItemRepository that it had created

– The result is a fully initialized CatalogImpl instance
The example uses "setter injection" because it's using the set method of the bean

– This follows standard property naming conventions, so if the property is named
itemRepository, it will call the setItemRepository method to initialize the dependency

– We'll see other ways of initializing the dependency later, such as constructor injection
– The container can also inject directly into the field (using annotation-based configuration)

The bean reference can also be declared using a nested <ref> element as shown below
<property name=“itemRepository"><ref bean=“itemRepository"/></property>

– Generally, the ref attribute shown in the slide is easier to use and understand
– You can use the nested element if for some reason it is clearer to express it this way than as an

attribute (this is also provided for backwards compatibility with earlier Spring releases)

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 4920150115

Fast Track to Spring 4

DI Hides Dependencies

The example below uses our newly defined beans
– NO dependencies on concrete types in the code
– Bean lookup done in terms of the Catalog interface (1)

Internally, CatalogImpl totally decoupled from the concrete class
InMemoryItemRespository
– Written in terms of interface ItemRespository
– The concrete instance is injected by the Spring container
– This is transparent to all your code

// Much detail omitted
@Test
public void catalogTest() {
ClassPathXmlApplicationContext ctx =

new ClassPathXmlApplicationContext("applicationContext.xml");
Catalog cat = ctx.getBean(Catalog.class); // See note (1)
MusicItem item = cat.findById(1L); // Use the catalog
ctx.close();

}

(1) The bean lookup with the code below works because there is only one bean that implements
Catalog, so the container can find this bean by type
ctx.getBean(Catalog.class);

–We'll see ways to refine this type of lookup later
Note that CatalogImpl and InMemoryItemRepository didn't need anything special to support
Spring's DI

–They just need to be written according to the design principles of Dependency Inversion (i.e.
coding to an interface, not a concrete type) which is good practice anyway
–Once this was done, we didn't need any special capabilities to support DI

Note also that there is nothing in your UT_Catalog code which shows that CatalogImpl depends
on InMemoryRepository

–This is defined in your configuration, and handled for you by the container
Note that the no-arg constructor is present by default in CatalogImpl since we haven't defined any
constructors at all

–If we defined constructors, and still wanted to use only setter injection, as for the configuration
file in this example, we would have to include a no-arg constructor
–We'll take a look at constructor injection, which allows us to use constructor arguments, later

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 5020150115

Fast Track to Spring 4

Advantages of Dependency Injection

DI reduces coupling between modules in your code
– Coupling is basically a measure of the dependencies

We see this in two ways:
– CatalogImpl is not coupled to InMemoryItemRespository
– UT_Catalog is not coupled to CatalogImpl or
InMemoryItemRespository

The dependencies are still there but not in the code
– Dependencies are moved to the spring configuration
– They're injected into beans without you coding it
– Commonly referred to as wiring beans together

This leads to more flexible code that is easier to maintain
– At a cost – using Spring, and maintaining the spring configuration

Coupling is the measure of how much a module of code relies on other modules
– Loosely coupled code is generally considered better code

Consider some of the following scenarios, and how DI makes them easier
– Testing your code with a testing framework such as JUnit can be much easier with DI – you can

configure the application to use mock objects wherever you want – without changing your code
at all

– Testing different versions of classes can be done just by changing the configuration metadata
– In fact, any implementation class that implements the particular interfaces being used can be

swapped into your program simply by changing the configuration information
There is debate about how worthwhile DI and frameworks like Spring are

– However, the principles that it is based on that lead to loose coupling are widely accepted
– Spring simply makes it easier to apply these principles
– The effort required to learn, adopt, and use Spring is not trivial, but the initial cost of adopting

Spring can be well worth it in writing and maintaining the code

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Notes:

Copyright © LearningPatterns Inc. All rights reserved. 5120150115

Fast Track to Spring 4

Dependency Injection Reduces Coupling

The simplest case,
CatalogImpl coupled to
InMemoryItemRepository

CatalogImpl coupled to
ItemRepository only
– UT_Catalog coupled to
CatalogImpl and
InMemoryItemRepository

Using DI – UT_Catalog only
coupled to Catalog
– CatalogImpl only coupled

to ItemRepository

CatalogImpl InMemoryItemRepository

ItemRepository
<<interface>>

creates

CatalogImpl

InMemoryItemRepositoryUT_Catalog
implements

creates

ItemRepository
<<interface>>

UT_Catalog

Catalog
<<interface>> CatalogImpl

implements

looks up

ApplicationContext

injects

In the slide, we show diagrams of the three different ways we structured our code in the earlier slides
– In the first, CatalogImpl is directly coupled to InMemoryItemRepository
– In the second, UT_Catalog is doing the dependency injection of the

InMemoryItemRepository into CatalogImpl
• UT_Catalog is coupled to both of these types, but CatalogImpl is only coupled to

ItemRepository

– In the third, Spring is doing the DI, and so UT_Catalog and CatalogImpl are only coupled to
abstract interfaces

In the Spring DI version, all the dependencies in the code are ONLY to interfaces
– This is much better than being coupled to actual implementation classes
– It increases flexibility, testability, and ease of maintenance

Session 1: Introduction to Spring

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

	eBookLabCover.pdf
	Using Pivot Tables
	Creating Pivot Tables
	Inserting Slicers
	Working with Pivot Tables
	Inserting Pivot Charts
	More Pivot Table Functionality
	Exercise: Working with Pivot Tables

	Auditing Worksheets
	Tracing Precedents
	Exercise: Tracing Precedents
	Tracing Dependents
	Exercise: Tracing Dependents
	Showing Formulas

	Data Tools
	Converting Text to Columns
	Exercise: Converting Text to Columns
	Linking to External Data
	Controlling Calculation Options
	Data Validation
	Exercise: Using Data Validation
	Consolidating Data
	Exercise: Consolidating Data
	Goal Seek
	Exercise: Using Goal Seek

	Working with Others
	Protecting Worksheets and Workbooks
	Exercise: Password Protecting a Workbook
	Exercise: Password Protecting a Worksheet
	Exercise: Password Protecting Ranges in a Worksheet
	Tracking Changes
	Marking a Workbook as Final
	Exercise: Tracking Changes

	Recording and Using Macros
	Recording Macros
	Exercise: Recording a Macro
	Running Macros
	Editing Macros
	Adding Macros to the Quick Access Toolbar
	Exercise: Adding a Macro to the Quick Access Toolbar

	Random Useful Items
	Sparklines
	Exercise: Inserting and Customizing Sparklines
	Preparing a Workbook for Internationalization and Accessibility
	Importing and Exporting Files
	Exercise: Importing Text Files
	Exercise: Copying Data from Excel to Word
	Exercise: Copying Charts from Excel to Word

	Microsoft Excel 2013 New Features
	Using Slicers to Filter Data
	Exercise: Filtering Data with Slicers
	Creating a PivotTable Timeline
	Exercise: Creating a Timeline
	Creating a Standalone PivotChart
	Workspaces in Excel 2013

	Cloud
	Using the Cloud
	Exercise: Using the Cloud

	ITCeBookfrontcover.pdf
	Laying out a Page with HTML5
	Page Structure
	New HTML5 Structural Tags
	Page Simplification
	Exercise: Converting an HTML 4 Page to an HTML5 Page

	HTML5 - How We Got Here
	The Problems HTML 4 Addresses
	The Problems XHTML Addresses
	The New More Flexible Approach of HTML5 - Paving the Cowpaths
	New Features of HTML5
	The HTML5 Spec(s)
	Current State of Browser Support

	Sections and Articles
	The section Tag
	The article Tag
	Exercise: Using section and article Elements
	Outlining
	Exercise: Determining the Outline

	HTML5 Audio and Video
	Supported Media Types
	The audio Element
	The video Element
	Exercise: Video - Multiple Sources
	Accessibility
	Scripting Media Elements
	Exercise: Media API
	Dealing with Non-Supporting Browsers

	HTML5 Forms
	Modernizr
	New Input Types
	HTML5 New Form Attributes
	Some Other New Form Field Attributes
	New Form Elements
	Exercise: An HTML5 Quiz

	HTML5 Web Storage
	Overview of HTML5 Web Storage
	Web Storage
	Exercise: Creating a Quiz Application
	Other Storage Methods

	HTML5 Canvas
	Getting Started with Canvas
	Drawing Lines
	Color and Transparency
	Exercise: Drawing a Sailboat
	Rectangles
	Circles and Arcs
	Exercise: Drawing a Snowman
	Quadratic and Bézier Curves
	Images
	Text
	Exercise: Images and Text

	Integrated APIs
	Offline Application API
	Drag and Drop API

