

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved i

™

Table of Contents – Intermediate Java 7

Intermediate Java and OO Development ____________________________________ 1
Course Overview__ 2
Workshop Agenda___ 3
Workshop Objectives - Java___ 4
Workshop Objectives - Tools __ 5
Course Methodology ___ 6
Labs __ 7
Typographic Conventions ___ 8

Session 1 - Getting Started__ 9
Session Objectives__ 10
A Simple Application Class __ 11
Compiling HelloWorld__ 12
Java Source and Java Bytecode __ 13
Life Cycle of a Java Program ___ 14
Java Programs Insulated From Environment__ 15
Java is Dynamic - The Runtime Process ___ 16

Lab 1.1 - HelloWorld___ 17
Session 2 – Review: Class and Object ______________________________________ 18

Session Objectives__ 19
Defining Classes ___ 20

Classes and Objects ___ 21
The Class in Java___ 22
Storing Data in Objects __ 23
Behavior and Methods___ 24
Data Access and Return Values in Methods __ 25
Pretty Pictures ___ 26
About Java Primitive Data Types __ 27
Strings ___ 28

Lab 2.1 - Writing a Class Definition __ 29
Working With Methods and Data___ 30

Working Within Methods __ 31
Local Variables __ 32
Overloading Methods ___ 33
The toString() Method___ 34

Encapsulation and Access Control __ 35
Encapsulation: Black Boxes __ 36
Encapsulation ___ 37
Private Access ___ 38
Public Access ___ 39

Lab 2.2 - Encapsulation___ 40
Constructors __ 41

Constructors___ 42
Using Constructors ___ 43

Lab 2.3 - Adding Constructors to a Class __ 44
Other Capabilities__ 45

Static Members __ 46
Accessing Static Members__ 47

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved ii

™

final Variables___ 48
Comparison ___ 49
Null Objects___ 50
Wrapper Classes ___ 51

Lab 2.4 - Using static Members __ 52
Session 3 - Review: Flow of Control, String and Array ________________________ 53

Session Objectives__ 54
Flow of Control __ 55

The Comparison Operators ___ 56
The Logical Operators___ 57
if-else Statement __ 58
switch Statement ___ 59
while Statement __ 60
do-while Statement___ 61
for Statement___ 62
break Statement __ 63
continue Statement___ 64

Lab 3.1 - Data Validation ___ 65
Strings ___ 66

Using Strings__ 67
Classes StringBuffer and StringBuilder_______________________________________ 68
Using StringBuffer and StringBuilder__ 69
Regular Expressions __ 70

Arrays ___ 71
Arrays ___ 72
Arrays ___ 73
Arrays of Class Types ___ 74
Iterating Over Arrays__ 75
varargs ___ 76

Lab 3.2 - Arrays___ 77
Session 4 - Review: Packages __ 78

Session Objectives__ 79
Packages Overview ___ 80

Packages ___ 81
The import Statement__ 82
Importing___ 83
Resolving Naming Conflicts __ 84
Creating a Package ___ 85
Access Control for Class Members ___ 86

Finding Classes __ 87
Finding Classes __ 88
Organizing Files and Packages __ 89
Class Path __ 90
Classpath Example ___ 91
Classpath Example ___ 92
What is a JAR? __ 93
Classpath Example ___ 94

Lab 4.1 - Packages ___ 95
Session 5 - Composition and Inheritance ___________________________________ 96

Session Objectives__ 97

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved iii

™

Composition___ 98
Dealing With Complexity and Composition __ 99
Composition ___ 100
Delegation ___ 101
Benefits of Composition __ 102
Issues with Composition __ 103
About Object Relationships__ 104
Other Kinds of Relationships __ 105

Lab 5.1 - Composition (Optional)__ 106
Inheritance___ 107

Inheritance and Dealing With Complexity __ 108
Inheritance Hierarchy __ 109
The extends Keyword __ 110
Inheriting from the Superclass__ 111
Inheritance and Superclass Data Members __ 112
A Subclass IS-A Superclass ___ 113
Accessing Superclass Members___ 114
Constructors and Inheritance___ 115
Final Classes ___ 116

Lab 5.2 - Inheritance __ 117
Overriding and Polymorphism __ 118

Changing Behavior with Method Overriding __ 119
OO Concepts - Polymorphism__ 120
Polymorphism __ 121
Importance of Polymorphism __ 122
The super Keyword __ 123
Access Control - protected Access ___ 124
Access Control - protected Access ___ 125
@Override ___ 126

Lab 5.3 - Polymorphism ___ 127
class Object___ 128

Class Object__ 129
Methods of Class Object __ 130
Automatic Storage Management __ 131

Abstract Classes __ 132
Abstract Classes___ 133
Abstract Methods__ 134
Using Abstract Classes ___ 135
Session Review ___ 136

Session 6 - Interfaces __ 137
Session Objectives___ 138
What if All You Have to Share is an Idea ___ 139
Interface Types ___ 140
Interface Definitions ___ 141
The implements Keyword __ 142
Example of Using Interface Types __ 143
Interface Types - Revisited __ 144
Interface Types - Revisited __ 145
Extending Interfaces ___ 146
Implementing Extended Interfaces __ 147
Example of Using Interface Types __ 148
Example of Using Interface Types __ 149

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved iv

™

Example of Using Interface Types __ 150
Interfaces are Abstract__ 151
Data Members in Interfaces__ 152
Implementing Multiple Interfaces ___ 153

Lab 6.1 - Interfaces ___ 154
Session Review ___ 155

Session 7 - Exceptions ___ 156
Session Objectives___ 157

Exception Hierarchy___ 158
Overview of Exceptions __ 159
Exception Hierarchy ___ 160
Exception Hierarchy ___ 161
Exception, Error, RuntimeException __ 162

Handling Exceptions try and catch __ 163
Handling Exceptions with try and catch ___ 164
Exceptions and Program Flow__ 165
Variable Scope__ 166
The throws Clause ___ 167
Throwing Exceptions with throw __ 168
User-Defined Exceptions__ 169
User-Defined Exceptions__ 170
Multiple catch Blocks __ 171
Multiple catch Blocks __ 172
finally Block __ 173
Runtime Exceptions__ 174
Multicatch (Java 7) __ 175
Using try-with-resources (Java 7) __ 176

Lab 7.1 - Using Exceptions ___ 177
Session Review ___ 178

Session 8 - Collections and Generics _____________________________________ 179
Session Objectives___ 180

Overview __ 181
Java Collections Framework Overview___ 182
java.util Collection Interfaces __ 183
Collection Interface __ 184
Generics and Type-Safe Collections ___ 185

List and ArrayList___ 186
List Interface ___ 187
ArrayList ___ 188
Using ArrayList - Example ___ 189
The for-each Construct ___ 190

Autoboxing and Collections of Object __ 191
Autoboxing __ 192
Using Autoboxing/Unboxing - Example __ 193
Summarizing Collection Features ___ 194
Collections of Object___ 195
Issues with Collection of Object __ 196

Lab 8.1 - Using Collections ___ 197
Other Collection Types___ 198
Set Interface___ 199

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved v

™

Using Sets ___ 200
Map Interface___ 201
HashMap ___ 202
Generic HashMaps __ 203
Creating and Using HashMap __ 204
Iterating Through a HashMap __ 205

Lab 8.2 - Using Sets ___ 206
Iterator__ 207

Processing Items with an Iterator ___ 208
Iterator Interface___ 209
Using Iterator - Example __ 210

[Optional] More About Generics___ 211
What Are Generics __ 212
Declaring a Generic Class ___ 213
Summary - Basic Generics Usage ___ 214
Using Generics - Example___ 215
Inheritance with Generic Types___ 216
Inheritance with Generic Types___ 217
Assignment with Generic Types __ 218
Wildcard Parameter Types __ 219
Generic Methods __ 220

[Optional] The Collections Class ___ 221
Collections Class__ 222
Unmodifiable Wrappers __ 223
Unmodifiable Example ___ 224
Checked Interface Example__ 225
Algorithms___ 226
Sort Example ___ 227
Session Review ___ 228

Session 9 - Database Access with JDBC and JPA ___________________________ 229
Session Objectives___ 230

JDBC Overview __ 231
What is JDBC? ___ 232
JDBC Architecture __ 233
The Fundamental JDBC API___ 234
Common JDBC Types__ 235
Naming Databases with URLs ___ 236
The Item Database Table__ 237
Database Connection - Example __ 238
Using Statement - Example ___ 239
Using PreparedStatement - Example ___ 240
Summary __ 241

Introduction to JPA ___ 242
Object-Relational Mapping (ORM) Issues __ 243
Java Persistence API (JPA) Overview__ 244
JPA Architecture – High Level View __ 245
JPA Architecture – Programming View __ 246
Mapping a Simple Class __ 247
Entity Classes __ 248
Annotation Overview __ 249
An Example Entity Class__ 250
javax.persistence.Entity Annotation ___ 251

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved vi

™

The Event Class___ 252
javax.persistence.Id and ID property___ 253
Field Access or Property Access __ 254
The EVENTS Table ___ 255
Generated Id Property __ 256
Mapping Properties __ 257
Basic Mapping Types __ 258

Lab 9.1 - Mapping an Entity Class___ 259
Persistence Unit and Entity Manager ___ 260

The Persistence Unit ___ 261
persistence.xml Structure__ 262
Accessing Entities ___ 263
The EntityManager API___ 264
EntityManager/EntityManagerFactory Example__ 265
Working with Transactions __ 266
Complete JPA Example___ 267
Summary __ 268

Lab 9.2 - Using JPA___ 269
JPA Updates and Queries __ 270

Persisting a New Entity ___ 271
Updating a Persistent Instance__ 272
Removing an Instance __ 273
Java Persistence Query Language (JPQL)___ 274
JPQL Basics – SELECT Statement __ 275
Executing a Query ___ 276
Example Query Execution___ 277
Where Clause___ 278
JPQL Capabilities ___ 279
Data Access Objects ___ 280
Simple DAO ___ 281
Using the DAO ___ 282

Lab 9.3 – 9.4: Inserting, Querying, Other Capabilities ______________________________ 283
Session Review ___ 284

Session 10 - Additional Language Features ________________________________ 285
Session Objectives___ 286

Assertions__ 287
Assertions Defined __ 288
Assertion Uses__ 289
Assertion Non-Uses__ 290
Assertion Syntax __ 291
Using Assertions to Check State - Example ___ 292
Using Assertions to Check Flow of Control ___ 293
Enabling/Disabling Assertions at Runtime __ 294
Enabling/Disabling Assertions - Examples __ 295
What They Look Like at Runtime___ 296

Type-Safe Enums ___ 297
Enumerated Types Defined __ 298
Problems with int Enumerated Types___ 299
The enum Keyword ___ 300
More enum Examples __ 301
switch on enum___ 302
for-each with enum__ 303

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved vii

™

Advanced enum Features ___ 304
Annotations __ 305

The Issue __ 306
Annotations - The Solution __ 307
Example Applications __ 308

Other Java Features ___ 309
XML and Web Service Support __ 310
Java DB ___ 311
Scripting Language Integration ___ 312
Monitoring and Management Tools (Java 6+) ___ 313
Other Features (Java 6+) __ 314
Session Review ___ 315

Session 11 - I/O Streams (Optional) ______________________________________ 316
Session Objectives___ 317

Readers and Writers __ 318
Overview of I/O Streams__ 319
Character Streams ___ 320
Class Reader__ 321
Class Writer__ 322
Common Reader Subclasses__ 323
Common Writer Subclasses__ 324
Using Readers and Writers___ 325
Using Readers and Writers - Example __ 326
Path Separators ___ 327

Filter Streams __ 328
High-Level and Low-Level Streams ___ 329
Using Filter Streams - Example___ 330

Converting between Streams and Readers/Writers ___________________________ 331
Byte Stream Classes ___ 332
Common Stream Subclasses ___ 333
Converting Between Byte & Character Streams __ 334
Converting Between Byte & Character Streams __ 335
Character Stream & Byte Stream Equivalents__ 336

Formatted Output___ 337
Formatted Output__ 338
Integer Format Specifiers ___ 339
Format Specifier Modifiers __ 340
Format Specifier Modifiers Example __ 341
Other Format Specifiers___ 342
Summary __ 343

New I/O (NIO) APIs ___ 344
New I/O (NIO) ___ 345
NIO Features ___ 346
NIO Features ___ 347

[Optional] Lab 11.1 - Formatted Output__ 348
Session Review ___ 349

Session 12: Nested / Inner Classes _______________________________________ 350
Lesson Objectives ___ 351
Nested and Inner Classes__ 352
Why Use Inner Classes ___ 353

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved viii

™

Example Inner Class ___ 354
Example Inner Class ___ 355
Types of Inner Classes__ 356
Anonymous Inner Classes ___ 357
Static Inner Classes __ 358
Local Inner Classes __ 359
Summary __ 360

[Optional] Lab 12.1 - Using Inner Classes___ 361
Review Questions ___ 362
Lesson Summary __ 363
Lesson Summary __ 364

Session 13: Reflection ___ 365
Lesson Objectives ___ 366
Reflection Overview ___ 367
The Class Class ___ 368
Getting Class Instances ___ 369
Accessing Information About a Type __ 370
Accessing Information About a Type __ 371
Accessing Information About a Type __ 372

Lab 13.1 – Inspecting with Reflection __ 373
Working With Constructor Objects__ 374
Creating an Object Using Reflection___ 375
Working With Method Objects ___ 376
Invoking a Method Using Reflection __ 377
Working With Field Objects ___ 378

[Optional] Lab 13.2 – Invoking with Reflection ____________________________________ 379
Review Questions ___ 380
Summary __ 381
Summary __ 382

Session 14: Introduction to ant __ 383
Lesson Objectives ___ 384

Overview __ 385
What is ant? __ 386
A Simple Build File__ 387
Running Ant ___ 388

Installing and Running ant ___ 389
Acquiring ant___ 390
ant Installation __ 391
Running ant __ 392
Command Line Options___ 393

Lab 14.1 – Setting Up ant __ 394
ant Basics __ 395

ant Buildfiles and Projects___ 396
ant Targets ___ 397
A More Complicated Buildfile ___ 398
ant Tasks __ 399
The <javac> Task ___ 400
The <java> and <delete> Tasks___ 401
A Complete Buildfile __ 402
Running our Buildfile __ 403
How is ant Useful? __ 404

Lab 14.2 – Working with Buildfiles __ 405
Working With Properties__ 406

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved ix

™

Working With Properties__ 407
Built-in Properties ___ 408
Properties Files ___ 409

Lab 14.3 – Working with Properties ___ 410
Other Capabilities___ 411

- Paths - ___ 412
Specifying the Classpath __ 413
- Resource Collections - __ 414
Patterns ___ 415
Other Uses of <fileset> ___ 416

Session 15: maven Overview __ 417
About Maven___ 418
Acquiring / Installing Maven___ 419
Maven Concepts __ 420
The POM (Project Object Model) ___ 421
POM - Required Elements___ 422
POM - External Dependencies ___ 423
Repositories __ 424
Maven Project Structure __ 425
Using maven ___ 426
Common maven Commands ___ 427
mvn compile ___ 428
mvn -exec:java__ 429
Creating Project Structure ___ 430
Creating Project Structure ___ 431
Setting Java Version ___ 432
Summary __ 433

Lab 15.1 – Using maven ___ 434
Session 16: JUnit ___ 435

Lesson Objectives ___ 436
JUnit Overview ___ 437

Testing Overview - Unit Testing __ 438
JUnit Overview ___ 439
Writing a Test - Simple Example ___ 440
Running a Test - Simple Example___ 441

Lab 16.1 – Running JUnit__ 442
Writing JUnit Tests ___ 443

What Is A Unit Test__ 444
The org.junit.Assert Class ___ 445
The org.junit.Assert Class ___ 446
The Assert Class and Static Imports ___ 447
Writing Tests ___ 448
A Simple Test Class ___ 449
Testing For Exceptions ___ 450
Running the Tests ___ 451
The Result and Failure Classes ___ 452
Example - Running Tests ___ 453
What to Test ___ 454

Lab 16.2 – Working with JUnit ___ 455
Session 17: Organizing Tests with JUnit __________________________________ 456

Lesson Objectives ___ 457

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

20131130-2 Copyright © 2004-13 LearningPatterns Inc. All rights reserved x

™

Fixtures and Suites __ 458
Test Fixtures ___ 459
Test Fixture Example __ 460
Test Suites ___ 461
Test Suite Example __ 462

Lab 17.1 – Test Fixtures and Test Suites__ 463
<junit> ant task___ 464

<junit> ant Task___ 465
<junit> Output __ 466
Setting Up Ant for Using <junit> ___ 467

Session 18: Introduction to Logging & log4j_______________________________ 468
Lesson Objectives ___ 469

Overview __ 470
Logging Overview___ 471
Apache Log4J Overview __ 472
Apache log4j Overview___ 473
Using log4j __ 474
log4j - Simple Example ___ 475

Lab 18.1 – Using Log4j __ 476
Configuring log4j ___ 477

Lab 18.2 – Configuring log4j ___ 478
Loggers, Levels, and Appenders ___ 479

log4j Loggers___ 480
Using Loggers __ 481
log4j Appenders___ 482
Configuration File Details ___ 483
Configuring Appenders and Loggers___ 484
Logger Hierarchy__ 485
Configuring Logger Levels __ 486
Level Inheritance__ 487

Lab 18.3 – Configuring Levels __ 488
log4j Appenders___ 489
Configuring Appenders ___ 490
Appender Additivity ___ 491
Additivity Example __ 492

Lab 18.4 – Appenders ___ 493
Layouts__ 494

Layout __ 495
PatternLayout __ 496
PatternLayout __ 497
HTMLLayout __ 498
About Categories and Priorities___ 499

Lab 18.5 – Layouts ___ 500
Other Details ___ 501

Disabling Debugging and Performance___ 502
Java Logging ___ 503
Apache Commons Logging__ 504

Recap __ 505
Tools - Recap of what we've done___ 506
Tools - What Else is There __ 507
Tools Resources___ 508

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Intermediate Java 7 and OO Development

The Java Developer Education Series

LearningPatterns Inc.

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

1

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Course Overview

A very full intermediate level course:
– Provides a strong grounding in using Java productively
– Goes well beyond the basics
– Covers important topics such as composition, inheritance,

polymorphism, interfaces and exceptions, and JDBC/JPA
– Also covers tools such as JUnit, and log4j to make your

programming more productive and your code of higher quality

Be prepared to work hard and learn a great deal!

The course contains numerous hands-on labs
– They exercise all the important concepts discussed
– The lab solutions for the course are provided to you

The course is suitable for Java 7 and later
Introduction

The Java platform has evolved rapidly
– However, many people are still using older versions

The labs are designed to support those using Java 5 and any later versions

Java 6 and 7 primarily introduced advanced features for running Java programs, and did not change
the API, though it did add to it

– However, those features are mostly beyond the scope of this course
– Accordingly, this course can be used in any of these environments

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

2

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 320131130-2

Intermediate Java 7 and OO Development

Course Outline

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Workshop Objectives - Java

Review Java basics and basic OO programming concepts
Understand advanced OO principles such as inheritance and
polymorphism
Use Java packages to organize code
Understand interfaces, their importance, and their uses
Understand how exceptions are used for error handling
Understand the basics of database access with JDBC and
JPA
Learn the basics of the Collections Framework
See some of the new/advanced Java language features
Understand and use basic I/O streams
Understand and use inner classes
Understand Java reflection, and examine classes at runtime

Introduction

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

4

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Workshop Objectives - Tools

ant:
– Understand how ant and buildfiles work
– Create buildfiles, and use ant to control a build

maven:
– Understand the basics of maven for managing dependencies

and building projects

JUnit:
– Be familiar with testing and test-driven development
– Use JUnit to create good testing structures for your Java code

Logging:
– Understand and use log4j for logging
– Be aware of other logging choices available in Java

Introduction

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

5

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Course Methodology

This course reviews basic Java and Object-Oriented (OO)
programming
– Basic Java knowledge and programming experience is required
– Reasonable comfort in using Java is required to do the labs in a

timely manner

Covers more advanced concepts in depth
– Including composition, inheritance, exceptions, JDBC, inner

classes, reflection
– Including the tools; ant, JUnit and log4j

The concepts and syntax are reinforced by frequent practice
in the form of hands-on labs

Introduction

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

6

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Labs

The workshop has numerous hands-on lab exercises,
structured as a series of brief labs
– The detailed lab instructions are separate from the main student

manual

Setup zip files are provided with skeleton code for the labs
– Students add code focused on the topic they're working with
– There is a solution zip with completed lab code

Lab slides have an icon like in the upper right corner of this
slide
– The end of a lab is marked with a stop like this one:

Lab

STOP

Introduction

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

7

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Typographic Conventions

Code in the text uses a fixed-width code font, e.g.:

JavaInstructor teacher = new JavaInstructor()

–Code fragments use the same font, e.g. teacher.teach()

–We bold/color text for emphasis

–Filenames are in italics, e.g. JavaInstructor.java

–We denote more info in the notes with a superscript number (1) or
a star *

–Longer code examples appear in a separate code box - e.g.

package com.javatunes.teach;
public class JavaInstructor implements Teacher {

public void teach() {
System.out.println("Java is way cool");

}
}

Introduction

(1) If there was more info about the slide content with the superscript (1), we would put it here

Additional notes would appear here

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

8

Introduction

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Session 1 - Getting Started

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

9

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Session Objectives

Look at a simple Java program, and how it is compiled and
run

Set your computer up for Java development
– Setting paths, environment variables, etc.

Use a text editor to type in a simple Java class

Use the Java Development Kit to compile and run the code

Session 1: Getting Started

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

10

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

A Simple Application Class

To get started, we'll look at a very simple Java application, that
displays the string "Hello World"
– This is a simple non-graphic standalone application that runs on its own

All programs in Java are just a class with a main method in it
– The HelloWorld class needs to appear in a file HelloWorld.java

The main method is a special method that is the starting point for
every Java application
– It must be declared as shown, and has to appear in a class
– System.out.println how you print things to the console

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World");
}

}

Session 1: Getting Started

Java classes can be deployed into several runtime execution environments, including:
– Standalone applications that are run explicitly, like our Hello World application.
– Servlets, which are run in a Web server.
– Applets, which are downloaded from a Web server and run in a Web browser.

We will concentrate on applications in this course.
main is the special method which is the starting point for every standalone Java application.

– Applets and servlets work a little differently
The main method has to appear inside a class.
– main takes an argument – an array of Strings.
– This array holds arguments that are given on the command line when the application is run.

System.out.println causes something to be printed to System.out, which is the standard
output (the console) – more on this later.

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

11

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Compiling HelloWorld

To use a Java class, you have to compile the Java code

C:\StudentWork>javac HelloWorld.java

– After compiling, a file called HelloWorld.class (containing Java
bytecode) is created

You use the Java Virtual Machine (JVM), to run a Java program
– The JVM comes with Java as the java executable

C:\StudentWork>java HelloWorld

– This would produce the output "Hello World" printed in your
command prompt window

Session 1: Getting Started

HelloWorld.class is the bytecode for the program produced by the compiler

We will talk more about all these details later in the course
For now, we're giving you enough information to just run the program

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

12

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Java Source and Java Bytecode

You write a program in the Java programming language
– And store it in a .java file, for example MyClass.java

Before running it, you compile it, which translates it into an
intermediate language called Java bytecode
– Stored in a .class file, for example MyClass.class
– These are platform independent codes that are interpreted by an

interpreter, the Java Virtual Machine, or JVM
– You can think of bytecode as the native instructions for the JVM
– Bytecode helps make "write once run anywhere" possible

The JVM converts the bytecode into the native code for the
target machine it is running on

Session 1: Getting Started

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

13

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Life Cycle of a Java Program

public class HelloWorld {

}

Windows
Native code

Solaris
Native code

MVS
Native code

Mac OS
Native code

UNIX
Native code

Java Compiler
javac

0 aload_0
1 invokespecial #3
4 aload_0
5 aload_1

Java Bytecode
HelloWorld.class

Java Source Code
HelloWorld.java

UNIX JVM
java

Windows JVM
java

Solaris JVM
java

MVS JVM
java

Mac OS JVM
java

Session 1: Getting Started

The JVMs for Solaris and Windows are available from Sun Microsystems.

JVMs for other platforms are available from their respective vendors.

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

14

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Java Programs Insulated From Environment

Java provides a platform that programs can run on
independently of the environment
– It is a software only platform made up of the Java API and the

JVM

Java API

Java Virtual Machine

SomeProgram.java

Native Platform

Session 1: Getting Started

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

15

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Java is Dynamic - The Runtime Process

Several phases take place at runtime

Java Bytecode
HelloWorld.class

Java Class Loader
java

Java Verifier
java

Loads bytecode into
memory

Confirms that
bytecodes are valid
and follow security
rules

Java Interpreter
java

Translates bytecode
into native code and
performs final name
resolution (linking)

Includes symbolic
reference information
from the compiler

Session 1: Getting Started

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

16

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Lab 1.1 - HelloWorld

In this lab, we'll become familiar with the Eclipse
development environment and run a simple Java
program

20131130-2 Copyright © LearningPatterns Inc. All rights reserved.

Intermediate Java 7 and OO Development

17

Session 1: Getting Started

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 24720131130-2

Intermediate Java 7 and OO Development

Mapping a Simple Class

JDBC Overview
Introduction to JPA

Mapping a Simple Class
Persistence Unit and Entity Manager

JPA Updates and Queries

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 24820131130-2

Intermediate Java 7 and OO Development

Entity Classes

Entity: A lightweight persistent domain object
– Represents data stored in a DB

Entity metadata describes the mapping to the DB
– With annotations (usually preferred) or XML
– Core annotations are in the package javax.persistence

Entities must:
– Implement a no arg constructor (so JPA can instantiate it)
– Contain fields to hold persistent state

• Must be non-public - clients use get/set methods for access
– Provide an identifier (usually called id - maps to DB primary key)

Persistence operations (read, write, etc.) in a separate class
– EntityManager, covered later

The concept of an entity has been present in database architecture for a long time
– An entity is basically a set of data that is grouped together
– It may participate in relationships to other entities

In JPA any application defined object can be an entity, but they:
– Must be persistable – i.e. have a database representation
– Have a persistent identity – basically the primary key in the DB
– Are normally created/updated/deleted within a transaction

An entity manager (abbreviated EM) is used to persist to the database
– It is represented by the javax.persistence.EntityManager interface
– This interface encapsulates the API for persisting to the database
– We'll look at this shortly

The entity manager API is completely separate from the mapping definition of an entity class
– These responsibilities are not included in the mapping definition
– This allows for a much cleaner definition of an entity class

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 24920131130-2

Intermediate Java 7 and OO Development

Annotation Overview

Mechanism for adding metadata to your source code
– It’s a rubber stamp usable on fields, methods, types, etc

Annotations are just special comments that can be inspected
– Used by tools (like the JPA runtime), which read them
– Annotations start with an @ - @Entity

Think of an envelope stamped Fragile and Next Day
– They don't change the envelope or its contents
– They might change how a postal worker processes the envelope

Similarly, JPA annotations affect how JPA processes entities
– By generating JDBC/SQL code conforming to their annotations
– In the end, saving you a lot of work !!

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25020131130-2

Intermediate Java 7 and OO Development

An Example Entity Class
package com.javatunes.schedule;

import java.sql.Date;
import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Event implements java.io.Serializable {

@Id
private Long id;
private String title;
private Date date;

Event() {}

public Event(Long id) { setId(id); }

public Long getId() { return id; }
private void setId(Long id) { this.id = id; }

// get/setDate and get/setTitle not shown but are as you expect
}

Regular classes can be transformed into entities by simply adding appropriate annotations
– The class needs a no-arg constructor

You can also use an XML configuration file to declare that a class is an entity
– In general, annotations are much more widely used, and will be used in this class

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25120131130-2

Intermediate Java 7 and OO Development

javax.persistence.Entity Annotation

@Entity declares the class to be a persistent entity

Entity name default: Unqualified name of the class (Event)
– Used in queries and other places (more later)
– The name can also be set with the name element of @Entity
@Entity(name="OurEventEntity")

Table name default: Entity name (Event)
– Use @Table to declare a table name, as shown below
– For example, if the table was called "EVENTS" you could use:

import javax.persistence.*;
@Entity
@Table(name="EVENTS")
public class Event { /* ... */ }

@Entity has only one element
– name: The name of the entity for use in things like queries

The default table name is the Entity name
– Which in our case is the default value of the unqualified name of the class
– It can be changed using @Table(name="TableName")

@Table also has the following elements:
– catalog: The catalog of the table
– schema: The schema of the table
– uniqueConstraints: Unique constraints to be placed on the table (used only if the table is

generated from the Entity class)
– These are all only useful if you are generating the DDL (table definitions) from the JPA entities
– It is in the javax.persistence package

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25220131130-2

Intermediate Java 7 and OO Development

The Event Class

The event class has three properties
– id (Long), date (java.sql.Date), title (String)
– id holds a unique identifier for each event
– Provides get/set methods for all the properties
– Has no-argument constructor

Default: all non-transient properties are persistent
– They are stored in the database
– Default: Column name is the same as the property name
– The DB column type also uses reasonable defaults

Annotate non-persistent properties with @Transient
– Fields that use the Java transient modifier are also not

persisted

JPA tries to use defaults that minimize the amount of metadata (annotation) information that is
required in your entity classes

– If a property is present in your class, it is persistent according to the standard, basic defaults
– An optional @Basic annotation may be placed on the property to document this, but it's not

necessary

Note that the setter for id is private in our class definition
– Programs will not be allowed to change this value
– This is a common way of defining the accessor methods for the id

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25320131130-2

Intermediate Java 7 and OO Development

javax.persistence.Id and ID property

@Id denotes that this property holds the primary key
– A class must have a primary key
– A non-composite primary key must correspond to a single field in

an entity (e.g. the id field in the Event class)

A simple primary key must be one of the following:
– Java primitive or wrapper class (integral types most common)
– java.lang.String, java.util.Date, java.sql.Date

Generated primary keys are supported
– Only integral types will be portable

Composite primary keys are also possible
– These use a primary key class

A composite primary key must correspond to either a single
persistent field or property or to a set of such fields or properties

– A primary key class must be defined to represent a composite
primary key

– Composite primary keys typically arise when mapping from
legacy databases when the database key is comprised of several
columns

– @EmbeddedId and @IdClass are used to denote composite
primary keys

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25420131130-2

Intermediate Java 7 and OO Development

Field Access or Property Access

In class Event, JPA will access the persistent fields directly
– Because we annotated the persistent fields
– It's possible to annotate the accessor methods

• JPA will then access the properties via those methods
– Useful if you have logic in the accessors (e.g. validation)

Don't mix field and accessor styles within a class
– This is not portable

@Id // property access is used
public Long getId() { return id; }

Caution should be exercised in adding business logic to the accessor methods when property-based
access is used. The order in which the persistence provider runtime calls these methods when loading
or storing persistent state is not defined. Logic contained in such methods therefore cannot rely upon
a specific invocation order. [JPA 2 Specification, Final, sec. 2.2]

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25520131130-2

Intermediate Java 7 and OO Development

The EVENTS Table

Let's assume that the EVENTS table is declared as below

Assume you are using a generated primary key
– A very common situation
– The SQL shown is for the open source Derby database using an

Identity column

We'll look at how to map our Event class based on this table

CREATE TABLE EVENTS
(

EVENT_ID BIGINT NOT NULL
GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1)

EVENT_DATE DATE,
TITLE VARCHAR(80),
CONSTRAINT PK_EVENTS PRIMARY KEY(EVENT_ID)

);

JPA has support for other types of generated values
– For example, sequences and table generated keys

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25620131130-2

Intermediate Java 7 and OO Development

Generated Id Property

@GeneratedValue specifies a primary key generation
strategy - possible values are:
– AUTO: Persistence provider picks best strategy for DB
– IDENTITY: Uses DB identity column
– SEQUENCE: Uses DB sequence column
– TABLE: Uses underlying database table

You use @Column to specify the column name

Both annotations are in javax.persistence

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name="EVENT_ID")
private Long id;

@GeneratedValue also allows you to define a generator for the strategy
@GeneratedValue(strategy=SEQUENCE, generator="EVENT_SEQ")

@Column has a large number of optional elements
– For example: nullable, unique, …

@Column(name="SOME_COLUMN", nullable="false", unique=true)

– Some of these (e.g. nullable) are only used if you are generating the DDL from the entity
declarations

– We'll cover some of them in the course
– See the documentation for complete coverage

All these types are in the javax.persistence package

The AUTO strategy only makes sense if the runtime is generating the table definitions
– Otherwise, of course, you'll need to use what's actually in the DB definition

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25720131130-2

Intermediate Java 7 and OO Development

Mapping Properties

Default: Properties are persistent and mapped to columns with the
property name
– Change this as needed
– Below, we map the date property to the EVENT_DATE column
– The title property maps to the TITLE column by default

• So we leave it as is

// package / imports not shown in most examples ...

@Entity
public class Event implements java.io.Serializable {

@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name="EVENT_ID")
private Long id;
private String title;
@Column(name="EVENT_DATE")
private Date date;
// Other code omitted ...

}

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25820131130-2

Intermediate Java 7 and OO Development

Basic Mapping Types

JPA mapping supports many types automatically
– Mapping them to their JDBC type in the DB
– If the DB type is different, it tries to convert

– Persistent properties may be:
• Java primitive types and wrappers of the primitive types
• java.lang.String;
• java.math.BigInteger, java.math.BigDecimal
• java.util.Date, java.util.Calendar, java.sql.Date,
java.sql.Time, java.sql.Timestamp

• byte[], Byte[], char[], and Character[]);
• Enums;
• User-defined serializable types,
• Entity types and/or collections of entity types;
• Embeddable classes

The simple types above are mapped as part of the immediate state of the entity
– They include almost all information that you want to persist

Sometimes the type in the database is not exactly the Java type
– In almost all cases, the provider runtime can convert between the two types
– If the provider can't do the conversion, then generally an exception will be thrown

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 25920131130-2

Intermediate Java 7 and OO Development

Lab 9.1 - Mapping an Entity Class

In this lab, we will map a class to a database using
JPA annotations - we won't access the DB yet

Lab 9.1: Mapping an Entity Class

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26020131130-2

Intermediate Java 7 and OO Development

Persistence Unit and Entity Manager

JDBC Overview
Introduction to JPA

Mapping a Simple Class
Persistence Unit and Entity Manager

JPA Updates and Queries

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26120131130-2

Intermediate Java 7 and OO Development

The Persistence Unit

A persistence unit defines the set of entities an entity
manager can manage (covered next)
– Plus DB connection info, and other information

Persistence units are named/configured in a configuration file
– Usually called persistence.xml, and shown on next slide
– The central configuration file for JPA
– Should be located under META-INF folder
– Allows database configuration for your provider

The classes included in a persistence unit are defined by:
– Annotated entities (may be in jar files)

• They are usually auto-detected by scanning
• Can also be listed in persistence.xml (1)

persistence.xml must be included in the META-INF directory of one of the jar files in the
application (called the root of the persistence unit)

– It provides for standard JPA configuration
– Also allows provider specific configuration properties which are passed through to the

underlying provider

(1) You can list persistence classes in <class> elements in persistence.xml, e.g.
<class>com.javatunes.persist.MusicItem</class>

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26220131130-2

Intermediate Java 7 and OO Development

persistence.xml Structure

<persistence-unit> defines the persistence unit

– The name attribute specifies the persistence unit name (required)
– The optional transaction-type attribute specifies transaction type

• Resource local (i.e. JDBC transactions) used here – suitable for Java SE *
– <properties> allows you to pass configuration properties to the

provider, as with the hibernate.dialect property in the example (1)

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="…" version"2.0"> <!-- namespaces not shown -->
<persistence-unit name="javatunes"

transaction-type="RESOURCE_LOCAL">
<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.DerbyDialect"/>
</properties>

</persistence-unit>
</persistence>

The root <persistence> element specifies the namespaces and version according to the JPA spec
– The labs and the example above are compatible with JPA 2
– The labs include the complete namespace declarations which are not shown to save space

Different environments will use different transaction types
– For example, in a Java EE environment, we would use JTA transactions, and have transaction-

type="JTA"

(1) Different databases may use slightly different dialects of SQL, or have different capabilities in
different areas

– Usually JPA and other ORM implementations, like Hibernate, require you to configure the
database you are using

– Hibernate, as shown in the example, uses a hibernate.dialect property to do this
– It takes a fully qualified class name as its value - which must be a class written to a specific

Hibernate API (which is defined as in interface in the Hibernate API)

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26320131130-2

Intermediate Java 7 and OO Development

Accessing Entities

Persistent entities in a persistent unit are defined by
– Annotated classes in the root of a persistence unit or in jar files
– XML mapping files or an explicit list of classes (1)

– Often these are detected via scanning

Interact with persistent entities via an EntityManager (EM)
– It contains the API for persistence operations
– e.g. creating, reading, writing, querying for entities

The EM manages all entities that are obtained through it (1)

– This set of entities is called a persistence context
– Each EM has its own persistence context
– There is only one instance with a given id in a persistence

context

(1) A persistence context is associated with an EM, and is comprised of the set of all managed
entities within it

– The EM manages these entities, for instance it makes sure that there is only one instance with a
given persistent identity within its persistence context

– e.g., if you get an event with id=25 twice from a persistent context, the 2nd retrieval returns the
same instance as the 1st

Generally, in a Java SE environment, you will use auto-scanning, where annotated persistent classes
are automatically detected

– The code sample below shows how to list them explicitly, if desired
<!-- Disable scanning -->

<exclude-unlisted-classes>true</exclude-unlisted-classes>

<!-- Include the Event class -->

<class>com.javatunes.Event</class>

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26420131130-2

Intermediate Java 7 and OO Development

The EntityManager API

Some important EntityManger methods include:
– <T> T find(Class<T> entityClass, Object primaryKey): Find

an entity by its primary key
• We'll look at the syntax of this later - it's easy to use it

– void persist(Object entity): Make a new entity instance
managed and persistent

– void refresh(Object entity): Refresh instance state from db
instance from the db, overwriting changes made to the entity

– void remove(Object entity): Remove the entity instance

An EntityManagerFactory (EMF) produces the EM
– Obtain an EMF via the Persistence class (for Java SE - shown later)
– Using the persistence unit name in persistence.xml
– In other environments (e.g. JEE) the EM is generally injected (1)

(1) In environments that support Dependency Injection (DI), the EM is generally injected into
classes that use it

– For example, Spring or Java EE
– These environments also support container managed transactions and TX scoped entity

managers, which make JPA very easy to use
– Coverage of these capabilities is beyond the scope of this course

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26520131130-2

Intermediate Java 7 and OO Development

EntityManager/EntityManagerFactory Example

In Java SE, the Persistence class reads persistence.xml and
creates an EMF

Below we get an EMF for the javatunes persistence unit
– Whose name is configured in persistence.xml
– We get an EM from it
– We close the EM and EMF when done to release all resources

// Get an entity manager factory
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("javatunes");
// Get an entity manager
EntityManager em = emf.createEntityManager();
try {

// Do persistence related work here
}
finally {
em.close(); // Close the entity manager
emf.close(); // Close the entity manager factory

}

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26620131130-2

Intermediate Java 7 and OO Development

Working with Transactions

A resource-local entity manager generally used for Java SE
– The app controls transactions via the entity manager API
– Configured in the persistence.xml file:

<persistence-unit name="javatunes"

transaction­type="RESOURCE_LOCAL">

Use a javax.persistence.EntityTransaction object obtained
from the EM to control transactions
– In the example below, we use EntityTransaction as well as
EntityManager.find() to retrieve an item by id
• Note that we pass Event.class as an argument to find
• Indicates that the generic find method returns an instance of Event

EntityManager em = // Initialization as shown previously
em.getTransaction().begin(); // Begin a transaction
Event m = em.find(Event.class, new Long(1));
em.getTransaction().commit(); // Commit a transaction

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26720131130-2

Intermediate Java 7 and OO Development

Complete JPA Example

We get an EMF and then an EM
– We use the EM to control transactions, and get an Event
– We close the EMF and EM after we use them

// Get an entity manager factory
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("javatunes");
// Get an entity manager
EntityManager em = emf.createEntityManager();
try {
em.getTransaction().begin(); // Begin a transaction
Event m = em.find(Event.class, new Long(1));
em.getTransaction().commit(); // Commit a transaction

}
finally {
em.close(); // Close the entity manager
emf.close(); // Close the entity manager factory

}

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26820131130-2

Intermediate Java 7 and OO Development

Summary

Standard steps for using JPA
– Get an EntityManagerFactory

• With Java SE, we use the Persistence class for this
– Get an EntityManager from the EntityManagerFactory

• Note: In a Java EE environment, these are both done differently (1)

– Start a TX using the EntityManager
– Do your work, e.g. do a find(), and any other work needed
– Finalize the TX, and close all resources

The setup is complicated - is it worth it ?
– It also uses sophisticated Java language capabilities (1)

– Once it's set up, it saves a huge amount of work over plain JDBC/SQL
– In general, it is well worth it

JPA takes advantage of several more advanced techniques that you may just be learning
– Interfaces, exceptions, delegation, etc
– This is a good example of why the Java language has these capabilities

In a Java EE environment an EM is usually injected
– Meaning that you don't have to write code to access one
– You still need to configure your persistence unit in persistence.xml, but the access of the

EntityManager (or an EntityManagerFactory) is done transparently for you by the
container

– Details are beyond the scope of this course

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 26920131130-2

Intermediate Java 7 and OO Development

Lab 9.2 - Using JPA

In this lab, we will use the JPA EntityManager

Lab 9.2: Using JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27020131130-2

Intermediate Java 7 and OO Development

JPA Updates and Queries

JDBC Overview
Introduction to JPA

Mapping a Simple Class
Persistence Unit and Entity Manager

JPA Updates and Queries

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27120131130-2

Intermediate Java 7 and OO Development

Persisting a New Entity

Very easy to insert new instances (rows) into the DB
– Just create a new (transient) instance using new, and set its values

• Generally the id is a synthetic key and not set (1)

– Save the instance to the DB via an entity manager

EntityManager.persist() persists an instance
void persist(Object entity)

The instance is inserted into the DB
– When the TX commits it is stored in the DB (and often assigned an id)

try { // Entity manager (em) initialization not shown
em.getTransaction().begin(); // Begin a transaction
Event newEvent = new Event();
newEvent.setTitle("A party");
em.persist(newEvent);
em.getTransaction().commit(); // Commit a transaction

}

(1) Generally, in modern databases, the id property is a synthetic key that is generated in the database
– It generally has no business meaning, and is used solely to uniquely identify a row in a database
– Accordingly, you do not set an id when persisting an object representing a new row
– Rather, it will be generated by the database

The semantics of the persist operation, applied to an entity X are as follows:
– If X is a new entity, it becomes managed
– The entity X will be entered into the database at or before transaction commit or as a result of the

flush operation.
– If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist

operation is cascaded to entities referenced by X, if the relationships from X to these other
entities is cascade=PERSIST or cascade=ALL (covered later)

– If X is a removed entity, it becomes managed

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27220131130-2

Intermediate Java 7 and OO Development

Updating a Persistent Instance

If you have a persistent instance (one currently associated
with a persistence context) you can just update that instance
– The changes will be persisted when the TX commits
– Remember, for a managed instance, JPA detects any changes

and synchronizes the state with the database when the TX
completes

// Assume the code fragment occurs in a transaction context and
// you have an initialized EntityManager reference (em)

Long parthEventId = new Long (5); // Assume this is the id we want
Event partyEvent = em.find(Event.class,partyEventId);

// Change will be automatically persisted
partyEvent.setTitle("A GREAT party");

// When Tx commits, the changes are persisted to database

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27320131130-2

Intermediate Java 7 and OO Development

Removing an Instance

It's also very easy to delete an instance from the database
– The instance must be in the entity managers persistence context
– You can then call remove() on the instance
– When the context is synchronized with the database, the row will

be deleted
– Note that very often rows are not deleted in production systems
– It's more common to keep old data around because it may be

needed for historical queries

// Assume a transaction, and EntityManager reference, as before

Event partyEvent = em.find(Event.class,new Long(5));

// Remove the event
em.remove(partyEvent);

// When Tx commits, the deletion is persisted to database

The in-memory object becomes a transient instance again, with no representation in the database, and
not in the scope of any persistence context

– We'll talk about the lifecycle of persistent objects more later in a future session

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27420131130-2

Intermediate Java 7 and OO Development

Java Persistence Query Language (JPQL)

Java Persistence Query Language (JPQL) is an OO query
language that is part of JPA
– Similar to SQL in syntax and structure
– Leverages knowledge about SQL
– If you don't know the identifiers of the objects you are looking for,

you need a query since you can't use find() on the id

Queries object graphs, not relational tables
– Fully object-oriented
– Understands associations between objects
– Supports inheritance and polymorphism

Structure is similar to SQL
– SELECT, FROM and WHERE clauses
– Can use lower or upper case for keywords

The JPA spec says this about JPQL
– The Java Persistence query language is a query specification language for string-based dynamic

queries and static queries expressed through metadata. It is used to define queries over the
persistent entities defined by this specification and their persistent state and relationships.

– The Java Persistence query language can be compiled to a target language, such as SQL, of a
database or other persistent store. This allows the execution of queries to be shifted to the native
language facilities provided by the database, instead of requiring queries to be executed on the
runtime representation of the entity state. As a result, query methods can be optimizable as well
as portable.

– The query language uses the abstract persistence schema of entities, including their embedded
objects and relationships, for its data model, and it defines operators and expressions based on
this data model. It uses a SQL-like syntax to select objects or values based on abstract schema
types and relationships. It is possible to parse and validate queries before entities are deployed.

– The term abstract persistence schema refers to the persistent schema abstraction (persistent
entities, their state, and their relationships) over which Java Persistence queries operate.
Queries over this persistent schema abstraction are translated into queries that are executed
over the database schema to which entities are mapped.

– Queries may be defined in metadata annotations or the XML descriptor.

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27520131130-2

Intermediate Java 7 and OO Development

JPQL Basics – SELECT Statement

Here's an example of the most basic query you can make

SELECT e FROM Event e

– This query will return all the Event instances in the database
– It is an object based query selecting from an entity, not a table
– Notice also that only the Event alias appears in the SELECT

clause, because the result type of the select is the Event entity
– The result of this query is a collection of Event entities

Path expressions navigate to a property via dot notation
– For example, the following returns a collection of the event dates:

SELECT e.date FROM Event e

Structure is similar to SQL

JPQL is similar to SQL so it can leverage the knowledge and tools that are available for SQL
The generated SQL will be something like
SELECT e.EVENT_ID, e.EVENT_DATE, e.TITLE FROM EVENTS e

The JPA spec defines a SELECT statement as a string which consists of the following clauses:
– A SELECT clause, which determines the type of the objects or values to be selected.
– A FROM clause, which provides declarations that designate the domain to which the expressions

specified in the other clauses of the query apply.
– An optional WHERE clause, which may be used to restrict the results that are returned by the

query.
– An optional GROUP BY clause, which allows query results to be aggregated in terms of groups.
– An optional HAVING clause, which allows filtering over aggregated groups.
– An optional ORDER BY clause, which may be used to order the results that are returned by the

query.

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27620131130-2

Intermediate Java 7 and OO Development

Executing a Query

JPA 2 provides the TypedQuery interface for executing
queries
– Accessed from the entity manager via this method (see notes):

<T> TypedQuery<T> createQuery(java.lang.String qlString,

java.lang.Class<T> resultClass)

– It is an OO representation of a query – including methods to:
Set query parameters, execute a query, execute an update, and
set paging parameters on a query

– When created with this method, these are called dynamic queries

Once you have a Query instance you can execute it to retrieve instances
with the following methods
– List<X> getResultList(): Return list with query results
– <X> getSingleResult() : Single, typed, result

The syntax of the generic createQuery method may look strange if you haven't used Java generics
before with methods - let's break it down

– The method signature is
<T> TypedQuery<T> createQuery(java.lang.String qlString,

java.lang.Class<T> resultClass)

– The first <T> in the return type simply indicates that this is a generic method, parameterized by
the type parameter <T>

– The TypedQuery<T> return value indicates that the return type is generic (that is, it will take
on different types based on the <T> parameter)

– The java.lang.Class<T> argument indicates that when you call the method, you pass in the
class which specifies what type <T> actually is in that call

The documentation for this method states:
– Create an instance of TypedQuery for executing a Java Persistence query language statement.

The select list of the query must contain only a single item, which must be assignable to the
type specified by the resultClass argument

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27720131130-2

Intermediate Java 7 and OO Development

Example Query Execution

The example at bottom uses Query.getResultList()
– getResultList() executes the query, retrieving all the entities into

memory at once, and returns the result as a java.util.List

There are other useful methods on TypedQuery – e.g.
– TypedQuery<X> setMaxResults(int maxResults):

• Sets maximum number of rows to retrieve
– TypedQuery<X> setFirstResult(int startPosition)

• Sets position of first row to retrieve
Many other methods - see the documentation

TypedQuery<Event> q = em.createQuery("SELECT e FROM Event e",
Event.class);

List<Event> resultList = q.getResultList();
for (Event curEvent : resultList) {
System.out.println("Event: " + curEvent.getId());

}

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27820131130-2

Intermediate Java 7 and OO Development

Where Clause

Of course, we can also provide selection criteria for a query in
a where clause
– You use path expressions that navigate to entity properties and

fairly standard expressions to create the criteria

SELECT e FROM Event e WHERE e.id > 10

– This query does what you expect it to do
– It returns all event instances with an id greater than 10

Notice that we can access properties of an entity in a query
– JPQL use a familiar dot notation to access properties
– In the query above, e.id refers to the id property of the returned

events
– We are working in terms of entities – not DB rows/columns

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 27920131130-2

Intermediate Java 7 and OO Development

JPQL Capabilities

JPQL supports the same basic operators as SQL
– Unary positive and negative: +, -
– Arithmetic (+ - …), Binary (= < > IS EMPTY …), and more
– It also supports familiar literals (e.g. 'Jane Doe'), numbers, etc

You specify query parameters as shown below, using named
parameters
SELECT e FROM Event e WHERE e.id > :id

– You then populate them using set methods as shown at bottom

// Named parameter example – find events by title
TypedQuery<Event> q = em.createQuery(

"SELECT e FROM Event e WHERE e.title = :title", Event.class);
q.setParameter("title", "Party");
List<Event> l = q.getResultList();

Support for the use of hexadecimal and octal numeric literals is not required by the JPA specification

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 28020131130-2

Intermediate Java 7 and OO Development

Data Access Objects

It's best to encapsulate JPA/database code
– There is a lot of detailed code

A DAO (Data Access Object) is one encapsulation approach
– Gathers all persistence functionality into one place
– Easier to write and manage
– Hides persistence details from external users, and insulates them

from the implementation
– Writing a DAO can still be complex because of the many details

involved

Each different use of the database may require mapping of result sets, handling of exceptions, etc.
– That's a lot of code to write and keep track of

The DAO pattern is very valuable because it insulates the rest of the application from the underlying
database access technology

– This makes the application simpler
– It also allows you to swap in different database access technologies transparently to the rest of

the application
– For example, you can start out with simple JDBC, move to Hibernate, then evolve to the Java

Persistence API without affecting the rest of your code

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 28120131130-2

Intermediate Java 7 and OO Development

Simple DAO

Below, we give a simple example of a DAO for events
– Initialized with an EntityManager upon creation
– Uses the EntityManager for persistence operations

// imports and other details not shown
public class EventDAO {
private EntityManager em;

public EventDAO(EntityManager em) { this.em = em; }

public void create(Event event) { em.persist(event); }

public Event update(Event event) { return em.merge(event); }

public Event find(Long id) {
return em.find(Event.class, id);
}

} // Other possible methods not shown

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 28220131130-2

Intermediate Java 7 and OO Development

Using the DAO

It's easy to use this simple DAO, as shown below
– You're still managing the EntityManagerFactory and
EntityManager directly in your code

– Other technologies (e.g. Spring and JEE) make this easier (1)

– In the lab, we'll use a utility class for this

// Code fragment using the DAO, and JPA directly
// Get an entity manager factory
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("events");
// Get an entity manager
EntityManager em = enf.createEntityManager();
try {
em.getTransaction().begin(); // Begin a transaction
EventDAO dao = new EventDAO(em);
Event e = dao.find(new Long(1));
em.getTransaction().commit(); // Commit a transaction

}
finally { em.close(); }

In our simple example, it is fairly straightforward to pass in the EntityManager to the DAO
– However, consider a use case where a number of complex interactions take place, all of which

need to work with persistent entities
– In that case, you would likely need to pass the EntityManager around to all the DAO objects

that are used
– This can get tedious and tiresome to code

Another issue with this is that the complex and repetitive code to create the EntityManager is
exposed in your code

(1) More robust technologies such as Java EE and Spring make it much easier to acquire the
EntityManager

– Generally, these are injected by the Spring/JEE container into the objects that need them
– Configuration and initialization of the EM are taken care of by the container based on

configuration information that you supply

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 28320131130-2

Intermediate Java 7 and OO Development

Lab 9.3 - Lab 9.4: Inserting, Querying,
Other Capabilities

In this lab, we will demonstrate some additional
features of JPA, as well as their encapsulation into a
DAO

Lab 9.3 - Lab 9.4: DAO/Insert/Query

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

Copyright © LearningPatterns Inc. All rights reserved. 28420131130-2

Intermediate Java 7 and OO Development

Session Review

What is JDBC?

What does the Java Persistence API do, and why do we need
it?

What is an entity?

How do you map an entity to the database?

What is the id property of an entity?

What does the entity manager do?

How do you persist a new instance of an entity class?

How are queries defined with Java Persistence?

Session 9: JDBC and JPA

EVALUATION COPY

Unauthorized reproduction or distribution is prohibited.

