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Fast Track to Java 7 Introduction

Course Overview

+ An introductory Java course that starts with basic principles

— Provides a solid foundation in the concepts and practices for
writing good object-oriented systems in Java

— Provides knowledge needed to productively use core Java
technology for programming

— Including database access with JDBC/JPA
+ Be prepared to work hard and learn a great deal!

¢ The course contains numerous hands-on labs
— They exercise all the important concepts discussed
— The lab solutions for the course are provided to you

¢ The course covers all core features of Java
— It supports all recent versions of Java

Notes:

o The Java platform has evolved rapidly
— However, many people are still using older versions

# The labs are designed to support those using Java 5 and any later versions

& Java 6 and 7 primarily introduced advanced features for running Java programs, and did not chance
the API, though it did add to it

— However, those features are mostly beyond the scope of this course

— Accordingly, this course can be used in any of these environments

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 2



Fast Track to Java 7 Introduction

Course Objectives

¢ Learn Java's architecture and uses
¢ Understand Java language basics

¢ Compile and execute Java programs with development tools
such as javac and java

¢ Learn object-oriented (OO) programming and the object
model

— Understand the differences between traditional programming and
object-oriented programming

— Understand important OO principles such as composition
inheritance and polymorphism

¢ Use Java packages to organize code

¢ Understand interfaces, their importance, and their uses

Notes:
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Fast Track to Java 7 Introduction

Course Objectives

¢ Learn (and practice!) Java naming conventions and good Java
coding style

+ Create well-structured Java programs
+ Use core Java API class libraries
+ Understand how exceptions are used for error handling

¢ Understand the basics of database access with JDBC and
JPA

+ Learn the basics of the Collections Framework
& See some of the new/advanced Java language features

+ Understand and use basic I/O streams (optional)

Notes:
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Labs

¢ The workshop has numerous hands-on lab exercises,
structured as a series of brief labs

— The detailed lab instructions are separate from the main student
manual

o Setup zip files are provided with skeleton code for the labs
— Students add code focused on the topic they're working with
— There is a solution zip with completed lab code

¢ Lab slides have an icon like in the upper right corner of this

slide
— The end of a lab is marked with a stop like this one:

Notes:
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Typographic Conventions

+ Code in the text uses a fixed-width code font, e.g.:

Javalnstructor teacher = new JavalInstructor()

—Code fragments use the same font, e.g. teacher.teach()
—We bold/color text for emphasis

—Filenames are in italics, e.g. Javalnstructor.java

—We sometimes denote more info in the notes with a star *

—Longer code examples appear in a separate code box - e.g.

package com.javatunes.teach;
pubTlic class JavaInstructor implements Teacher {
public void teach() {
System.out.println("Java is way cool");
%

}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved



Fast Track to Java 7 Introduction

Course Outline

¢ Session 1: A Simple Java + Session 8: Composition and
Program and the JDK Inheritance
¢ Session 2: Java Overview ¢ Session 9: Interfaces
+ Session 3: Class and Object + Session 10: Exceptions
Basics ¢ Session 11: Collections and
¢ Session 4: More on Classes and Generics
Objects + Session 12: Database Access
¢ Session 5: Flow of Control with JDBC and JPA
¢ Session 6: Strings and Arrays ¢ Session 13: Additional Language
¢ Session 7: Packages and Access Features
Protection & Session 14: Java I/O (optional)
+ Appendix: JDBC

Notes:
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Fast Track to Java 7 Session 1: A Simple Java Class & Program

Session Objectives

o Look at a simple Java program, and how it is compiled and
run

+ Set your computer up for Java development
— Setting paths, environment variables, etc.

¢ Use a text editor to type in a simple Java class

¢ Use the Java Development Kit to compile and run the code

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 9



Fast Track to Java 7 Session 1: A Simple Java Class & Program

A Simple Application Class

o To get started, we'll look at a very simple Java application, that
displays the string "Hello World"

— This is a simple non-graphic standalone application that runs on its own

¢ All programs in Java are just a class with a main method in it
— The HelloWorld class needs to appear in a file HelloWorld.java

+ The main method is a special method that is the starting point for
every Java application

— It must be declared as shown, and has to appear in a class
- System.out.println how you print things to the console

public class HelloWorld {
public static void main(String[] args) {
System.out.printlin("Hello World");
}

Notes:

# Java classes can be deployed into several runtime execution environments, including:
— Standalone applications that are run explicitly, like our Hello World application.
— Servlets, which are run in a Web server.
— Applets, which are downloaded from a Web server and run in a Web browser.
¢ We will concentrate on applications in this course.
+ main is the special method which is the starting point for every standalone Java application.
— Applets and servlets work a little differently
& The main method has to appear inside a class.
- main takes an argument — an array of Strings.
— This array holds arguments that are given on the command line when the application is run.

e System.out.println causes something to be printed to System.out, which is the standard
output (the console ) — more on this later.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 10
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Block

Comment

Class definition /

o We'll cover these details in more depth later

The HelloWorld Program Broken Down

Method definition

~

N

Il a simple application to display "Hello World"

™ public class HelloWorld

b {

public static void main(String[] args)

{

);/

Semicolon

/

System.out.printin("Hello World"
A/
8. / /

Method call

Method argument

Notes:

20131130
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Fast Track to Java 7 Session 1: A Simple Java Class & Program

Compiling HelloWorld

¢ To use a Java class, you have to compile the Java code

C:\StudentWork>javac HelloWorld. java

— After compiling, a file called HelloWorld.class (containing Java
bytecode) is created

+ You use the Java Virtual Machine (JVM), to run a Java program
— The JVM comes with Java as the java executable

C:\StudentWork>java HelloWorld

— This would produce the output "Hello World" printed in your
command prompt window

Notes:

& HelloWorld.class is the bytecode for the program produced by the compiler

¢ We will talk more about all these details later in the course

& For now, we're giving you enough information to just run the program

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved
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Note on Comments

+ Java has 3 kinds of comments
— Single line comment: Start with /I ...
— Multiple lines using /* ... */
— Javadoc comments (see note) using /** ... */

/ Ve
* This class prints "Hello World" to standard output
By /
class HelloWorld { // this comment starts mid-1line
public static void main(String[] args) {
System.out.printin("Hello World");
// we often comment out a 1line code this way
// System.out.printin("Bye");
}
}
/¥ Note that this class still needs a 1ot of work. We
need to add all sorts of interesting things, and show
how cool Java has become. */

Notes:

¢ Comments are text that is ignored by the Java compiler

— Comments can start anywhere on a line

# Javadoc comments are used in generating API documentation directly from the source code

— These comments precede the items that they are documenting in the code

+ A tool called javadoc reads these comments
— Along with your source code

— javadoc also understands a number of parameters that you can embed in these comments to
enhance the generated documentation

— We cover this tool in an appendix

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 13
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Lab 1.1 - HelloWorid

In this lab, we will compile and run a very simple Java
program

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved
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Session Review

1. Why must you set your path include the <java>\bin directory?
2. What is the purpose of the main method?

3. What is the signature of the main method?

4. How do you print something to standard output (the console)?
5. What tool do you use to compile Java source code?

6. What tool do you use to run compiled Java code?

Notes:
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Session 5 - Flow of Control

Branching Statements
Iteration Statements

Notes:
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Session Objectives
# Outline the comparison and boolean operators in Java

+ Discuss branching statements and the operators used with
them

-1if, if-else, switch
o Discuss iteration (looping) statements
—while, do-while, for

- break, continue

+ Use flow of control logic to perform data validation in an object

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 119



Fast Track to Java 7 Session 5: Flow of Control

LEARNINGPATTERNS

o000 @ e

Branching Statements

Branching Statements
Iteration Statements

Notes:
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Program Execution Sequence in Java

¢ Unless directed otherwise, statements in Java are executed in
sequence

+ Java has a number of statements to change the flow of control

— Branching/selection statements choose one of several flows of
control:

if, if-else, and switch

— Iteration statements specify looping
while, do-while, and for

— Jump statements transfer control unconditionally
break, continue, return

Notes:

+ All of these statements are modeled after their equivalent in the C programming language
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The Comparison Operators

¢ Selection and iteration statements are based on the results of
comparisons that return a true or false result

¢ The comparison operators compare numerical values and
produce boolean results

Operator Example
= equal 3 == 5 (== false)
1= not equal 3 I=5 (== true)
< less than 3 <5 (== true)
> greater than 3 >5 (== false)
<= lessthanorequal 5 <= 5 (== true)
>= greaterthanorequal 5 >= 5 (== true)

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 122



Fast Track to Java 7

Session 5: Flow of Control

The Logical Operators

+ The logical operators compare boolean values and produce
boolean results.

¢ In the table below, assume we have:

boolean t = true;
boolean f = false;
Operator Meaning Example
& AND f & t (== false, t evaluated)
&& conditional AND  f && t (== false, t not evaluated)
| OR t | f (== true, f evaluated)
| conditional OR t || f (== true, f not evaluated)
A exclusive OR t A t(== false)
t A forf A t (== true)

! NOT It (== false)
== equal f == f (== true)
I= not equal t I= t (== false)

Notes:

20131130
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if-else Statement

¢ The if / 1f-else statements control whether or not a
statement is executed, based on the value of an expression

— The else is optional
* It's executed only if the expression evaluates to false

1f ( Expression ) Statement else Statement

int i = 1;

if (A == 0) {

System.out.printin("i equals 0");
} else {

System.out.printin("i is not 0");
¥

Notes:

# The parentheses are required around the expression
— The expression must have a boolean type.
The statement may be a block of statements, enclosed in { }.
The expression is evaluated, and if it is true the statement is executed.
RECOMMENDATION: always use the block form to avoid potential maintenance errors.

* 6 o o

You can chain them.

int k = 0;

if (k == 0)
{
System.out.printin("k equals 0");

}
else if (k == 1)
{
System.out.printin("k equals 1");

}

else

{

System.out.printin("k is neither 0 nor 1");

}
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switch Statement

+ The switch statement extends the 1f statement, to allow testing
for more than one value

— Can only switch on byte, short, int, char, and enum
— Java 7+ allows switch on string values
- default case is optional and gets control when no case matches

+ Note: If the break statement is not present, execution continues
on to the code in the next case

int i = 1; // This would usually be initialized elsewhere
switch ( i ) { // Execute a case based on value of i
case 1:
System.out.println("i is 1");
break;
case 2:
System.out.println("i 1is 2");
break;
default:
System.out.println("i is large");
break;
}
Notes:

# The general form of the switch is:
switch ( variable ) {

case valuel:
statement(s);

break;

case value?:
statement(s);

break;

default:
statement(s);

¥
& A switch statement may execute one or more of several alternatives. When executed:
— The expression in the swi tch is evaluated and compared to the case constants.

— If one of the case constants is equal to the value of the expression, execution continues at that
statement (i.e., a jump to that point in the code occurs).

— If none of the case constants match, the statements after the default label, if present, are
executed.
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Iteration Statements

Branching Statement
Iteration Statements

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 126



Fast Track to Java 7

Session 5: Flow of Control

while Statement

o The wh11le statement creates a loop — it has the form:

while ( Expression ) Statement

int index = 10;

while (index > 0) // stop looping when index reaches 0

{

// do some work
index = index - 1;

}

ResultSet rs = ...; // This is a JDBC ResultSet object
while (rs.next()) // rs.next() eventually returns false

{
¥

// process next row in result set

Notes:

# The expression must have a boolean type.

& The expression is evaluated repeatedly, and as long as it evaluates to true, the statement is executed.

¢ When the expression is no longer true, execution stops.

& The expression is evaluated before each execution of the statement. Thus the statement may be

executed zero times.

20131130
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do-while Statement

o The do-wh1i1e statement creates a loop — it has the form:

do Statement while ( Expression );

int index = 10;

do
{

// do some work
index = index - 1;
3

while (index > 0); // stop looping when index reaches 0

¢ What is the difference between while and do-while?

— What happens if the index is initially set to 0, before the do-while
is executed?

Notes:

# The expression is evaluated after each execution of the statement.
— Thus the statement in a do-wh1i e is executed at least once.

— The statement in a while may never be executed

¢ The expression must have a boolean type.

+ The statement is executed until the expression becomes false.
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for Statement

+ The for statement creates a loop — it has the form:

for ( Initialization Expression Increment,, ) Statement

opt ’ opt ’

// Print values from 0 to 3
for (int i = 0; i <= 3; 1i++)
{

System.out.print(i + " ");

}

o Java 5 introduced another version of the for loop — called
for-each

— We'll look at this later

Notes:

+ The initialization is executed first and specifies initialization of the loop.

o If the expression is true, the statement is executed.

# The loop is exited when the expression becomes false.

¢ The increment expression is executed after each iteration, i.e., after the statement is executed.

¢ The for loop is often used to iterate through an array. We will discuss arrays later.
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break Statement

¢ It has the form:
break;

¢ The break statement transfers control to the end of the
enclosing loop (for, while, do-while) or switch statement

void findValue(int value)

{
{

if (i == value)
{
System.out.printin("got the value");
break; // stop looping, found the value
}
}

// control is here after the break

}

// this method scans values looking for a specific one

for (int i = 0; ; i++) // No terminate expression

Notes:

+ break statements can carry a label
o The form of the labeled break is:
break Tabel;

+ Here is an example

outer: // 'outer' is not a reserved word, just a label
for (int i = 0; i < 100; i++) {
for (int k = 0; k < 100; k++) {
if (/* some condition */) {
break outer; // exit outer loop

}
}

}

// control is here after the break
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continue Statement

loop (for, while, do-while)
— It continues with the next iteration

¢ It has the form:
continue;

¢ The continue statement exits the current iteration of the

// here we use continue to print out even numbers only
rfor (int i = 1; i <= 10; i++)

{

System.out.printin(i);
¥

if (% 2) '=0) // if not divisible by 2 (not even)
continue; // exit this iteration of the loop

Notes:

¢ Unlike break, continue does not exit the loop entirely; it just exits the current iteration of the

loop, and continues with the next iteration.

# continue statements can carry a label, and the form of the labeled continue is:
continue Tlabel;

outer:
— for (int i = 0; i < 100; i++) {
for (int k = 0; k < 100; k++) {
if (k == 17) {
// exit this iteration of outer loop

continue outer;

}

System.out.printin(k); // Otherwise normal looping goes on
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Lab 5.1 - Data Validation

In this lab, we will add data validation to a class

Notes:
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Session Review

1. Name the two AND operators in Java. What is the difference
between them?

2. True or false: i f and 1f-else statements require the use of
blocks

3. What data types can you use to control a switch statement?
4. What is the difference between while and do-while?
5. What is the difference between break and continue?

Notes:
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Session 9 - Interfaces

Notes:
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Session Objectives

¢ Understand the similarities between interface types and class
types

+ Use interface types the same way that class types are used

+ Explain the role that interfaces play in "programming by
contract”

¢ Define and implement an interface

Notes:
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What if All You Have to Share is an Idea

¢ |t often happens that you know what a type will do
— You know what it's behavior (methods) are
— But you don't know how that type will do it

+ Or there may be many related types that will implement some
behavior differently

— And you want to be able to treat all those varieties the same

¢ For example, you know a Timepiece needs to display the time

— But there may be many variations of Timepiece that display time
completely differently, and have no shared implementation

— A clock, a sundial
— What about a cell phone?

— One strategy is to make
Timepiece an interface

Notes:
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Interface Types

+ Java interfaces allow you to specify a type that is totally
separate from any implementation

— It is an abstract type that can specify behavior
— It embodies the idea of what a type is, but not its implementation
— Interfaces are often used to define roles played by objects

— Whereas a class can define how a type fulfills the role (via
instance data and method implementation)

+ An interface defines a type that is similar to a class
— It can have method definitions, but all methods are abstract
— Interfaces cannot be instantiated with the new keyword

— It can also have properties, but all properties are static
final constants

Notes:

& A Person can play roles such as Programmer or Instructor.
— If Programmer is an interface with code and test methods, and
- Instructor is an interface with teach and debuglLabs methods,

— then Person can play the role of Programmer if it implements the code and test methods,
and Person can also play the role of Instructor if it implements the teach and debuglLabs
methods.

— This means that you can use a Programmer or Instructor reference with this Person object,
1.e., you can treat a Person as simply a Programmer or Instructor.

# The use of interfaces is often called Programming by Contract
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Interface Definitions

+ An interface definition uses the interface keyword, in a way
similar to the class keyword

— We'll show examples of this using types for a shipping company

// definition of interface Moveable
package com.mycompany.shipping;
public interface Moveable {

/] ..
}

+ Interface methods are declared without a body
— They are implicitly abstract, and have no implementation

package com.mycompany.shipping;
public interface Moveable {

public void moveTo(String dest);
}

Notes:
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The implements Keyword

¢ Interfaces are used via the implements keyword in class
definitions

¢ When you implement an interface you must provide
implementations for every method of the interface

— If you don't, the class will not compile

import com.mycompany.shipping.Moveable;
public class PosterTube implements Moveable
{
// provides an implemented moveTo(String) method
public void moveTo(String dest)
{
// PosterTubes's implementation
3
}

Notes:
¢ NOTE: when a class implements an interface, it can include concrete implementations or abstract
implementations of the interface methods.
— If some of those methods are abstract, then the class is abstract and cannot be instantiated.

— Once a subclass provides concrete implementations of all the abstract methods it can be
instantiated.

¢ An "empty" or no-op method is an implementation.
public void moveTo(String dest)

{
}
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Session 9: Interfaces

Example of Using Interface Types

class MovingCompany {

// Moveable 1is an interface type
Moveable[] goods = null;

MovingCompany (Moveable[] goodsIn) {
goods = goodsIn;
}

void deliverAl1Goods(String location) {
for (Moveable m : goods) { // Iterate with for-each
m.moveTo(location);
}
}
}

Notes:
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Interface Types - Revisited

+ Keep in mind that an interface type is very similar to a class
type

— A instance of a class that implements an interface might only be
"viewed" by other objects as that interface type, and not by its
actual class type

— For example, a moving company might not care about what
exactly it is moving, just that the items are Moveable.

- Moveable is a type, but it is an interface types, not class type

Notes:
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Interface Types - Revisited

¢ Interface types can be used as reference variable types, but
cannot be instantiated or used as object types

Moveable m = new PosterTube();

+ Interface types can be used as parameters to methods

public void moveObject(Moveable m) { ... }

+ Interface types can be used as return types from methods

public Moveable getMovedObject()
{

return m;

}

Notes:

¢ You will often not know (or care) about what kind of type you are working with (class type or
interface type).

— You work with both of them the same way — basically, you call methods on them.
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Extending Interfaces

¢ You can declare subinterfaces that extend other interfaces,
using the extends keyword

— This is the IS-A relationship again, this time with interfaces
— Unlike class inheritance, you can extend multiple interfaces

— A class that implements a subinterface must implement all the
interfaces that the subinterface extends (IS-A)

// A generic movable
public interface Moveable {
public void moveTo(String dest);

}

// A moveable that will go onto a truck

public interface Carton extends Moveable {
public float getSize();

}

Notes:
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Implementing Extended Interfaces

// PosterTube implements Carton and thus Moveable, also
public class PosterTube implements Carton
{
// from interface Moveable
public void moveTo(String dest) {
/] ...
}

// from interface Carton
public float getSize() {
// ...
}
}

Notes:
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Example of Using Interface Types

interface Moveable { /* ... */ }
interface Carton extends Moveable {

-

/
class Car implements Moveable { /
class PosterTube 1implements Carton { /*
class ShippingBox implements Carton {/*
class WardrobeBox extends ShippingBox { /

~N N NN ~
“ e S

________________

Notes:

+ This shows the relationships between the class and interface types used in this example.

+ In the example, a PosterTube object can be referenced by variables of type:
- PosterTube.
- Object.
- Moveable.
- Carton.

— That is, a PosterTube can be treated as a PosterTube, and of course it can be treated as a
plain old Object. A PosterTube can also be treated as a Moveable or a Carton.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 234



Fast Track to Java 7 Session 9: Interfaces

Example of Using Interface Types

class MovingCompany {

// Carton and Moveable are interface types
Carton[] cartons = null;
Moveable[] goods = null;

MovingCompany(Carton[] cartonsIn, Moveable[] goodsIn) {
cartons = cartonsln;
goods = goodsIn;

}

void deliverAllGoods(String location) {

float totalSize = 0.0F;

for (int i = 0; i < cartons.length; i++) {
totalSize += cartons[i].getSize();
cartons[i] .moveTo(location);

}

for (Moveable m : goods) {

m.moveTo(location);
}

}
}

Notes:

+ Notice in the example above that all the types involved are interface types.

— That is, the MovingCompany doesn't really know (or care) what exactly it is moving, just that
the objects are Cartons and MoveabTes.

— This simplifies the point of view of the MovingCompany to just what's needed and no more.
Furthermore, the MovingCompany class is flexible, in that the exact types that it's dealing with
are not hardcoded.
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Example of Using Interface Types

class GetMoving

{

public static void main(String[] args)

{
Carton[] boxes = { new PosterTube(), new ShippingBox(),

new WardrobeBox() };
Moveable[] bigStuff = { new Car() };
MovingCompany acme = new MovingCompany(boxes, bigStuff);

acme.deliverAl1Goods("San Francisco");

}

}

Notes:
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Interfaces are Abstract

¢ Interfaces are implicitly abstract

— You can also declare this explicitly, though you generally don't
— The definition below is equivalent to one without using abstract

// 'abstract' legal, but generally not included
public abstract interface Moveable {

// ...
ks

— abstract also legal on methods but generally not used
— The definition below is equivalent to one without using abstract

public interface Moveable {
// 'abstract' legal, but generally not included
public abstract void moveTo(String dest);

}

Notes:
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Data Members in Interfaces

# Interfaces can't declare instance data
— If you need instance data, you need to use a class

o Interface data members are implicitly both static and
final, and usually are declared as such, for clarity

— ltis legal to leave out final and static, but the compiler will just
add them in for you

package com.mycompany.shipping;
public interface Moveable
{
// static and final are usually included
// note the ALL_CAPS convention for class constants

public static final String HOME_LOCATION = "HQ Office";
public void moveTo(String dest);

Notes:

& Another example is the WindowConstants interface.

— It contains constants for the possible actions that can be taken when a user requests a window be
closed.

— These constants are used with the setDefaultCLoseOperation method when designing
(GUIs) with Swing.

package javax.swing;

public interface WindowConstants

{
// static and final are usually included
// note the ALL_CAPS convention for constants
public static final int DISPOSE_ON_CLOSE = 2;
public static final int DO_NOTHING_ON_CLOSE = 0;
public static final int HIDE_ON_CLOSE = 1;
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Implementing Multiple Interfaces

# A class can implement more than one interface

public class Car implements Moveable, Serviceable
{
// from interface Moveable
public void moveTo(String dest) {
// ...
3
// from interface Serviceable
public void serviceEngine() {
// every 30,000 miles turn on "Check Engine" Tight
3
}

o This is a useful property of interfaces

— Has many of the advantages of multiple inheritance, which Java
doesn't support

— Is much less complex because the interfaces just declare a
protocol, not an implementation

Notes:

+ Interfaces are used in place of multiple inheritance. Consider the "Pegasus problem," in which we
wish to define a flying horse.

— If multiple inheritance was available, you might subclass both Bird and Horse. However, if
there were any variables or methods defined in both Bi rd and Horse, you would have a
duplicate/conflict situation and the compiler would have to resolve this somehow. Already it's
getting a bit complicated.

— If only single inheritance was available, would you extend Bird or Horse? Isn't Pegasus really a
horse that has some of the characteristics of birds? Do all birds fly?

— Using interfaces, we can define a role (a set of abstract methods) named F1yingAnimal, that
can be used with any creature that can fly -- we can use it for Pegasus too.
interface FlyingAnimal

class Pegasus
extends Horse
implements FlyingAnimal
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Lab 9.1 - Interfaces

In this lab, we will work with interfaces - both creating
and using them

Notes:
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Session Review

1. How does "programming by contract" apply to interfaces?

2. What keyword is used for a class to "sign an interface
contract?"

3. True or false: interfaces can be placed in packages.

4. Explain the difference between interfaces and abstract
classes.

5. True or false: interfaces can exhibit inheritance characteristics
similar to classes.

6. True or false: interfaces can only have a default or no-
argument constructor.

Notes:
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