N .
AF Learr“ng Patterns ™ educate. collaborate. accelerate.

Table of Contents — Fast Track to Java 7

Fast Track to Java 7 and OO Development
Course Overview

1

2

Course Objectives 3
Labs 5
6

7

8

Typographic Conventions
Course Outline

Session 1 - A Simple Java Class and Running a Java Program

Session Objectives 9

A Simple Application Class 10
The Hel1oWorTd Program Broken Down 11
Compiling HeTToWor1d 12
Note on Comments 13
Lab 1.1 - HelloWorld 14
Session Review 15
Session 2 - Java Overview 16
Session Objectives 17
Language and Platform Features 18
What is Java? 19
Java is Modern and Object-Oriented 20
Java is Portable and Safe 21
Java has Multiple Platforms 22
Program Life Cycle 23
Java Source and Java Bytecode 24
Life Cycle of a Java Program 25
Java Programs Insulated From Environment 26
Java is Dynamic - The Runtime Process 27
The Java SE Development Kit (JDK) 28
Java Development Kit (JDK) 29
The Java API 30
Downloading and Installing the JDK 31
Lab 2.1 — The Development Environment 32
Session Review 33
Session 3 — Class and Object Basics 34
Session Objectives 35
Object-Oriented Programming Overview 36
What is Object-Oriented Programming? 37
What is an Object? 38
Important Characteristics of Objects 39
About Object-Oriented Programming (OOP) 40
What's a Type? 41
Types, Instances, and Property Values 42
Classes and Objects 43
Lab 3.1 - Exploring Types 44
Identity and Object References 45
Lab 3.2 - Identity and Object References 46
Classes, References, and Instantiation 47
The Class in Java 48

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved i

N .
AF Learr“ng Patterns ™ educate. collaborate. accelerate.

Class Definition 49
A Class Definition is a Blueprint 50
Creating and Referencing Objects 51
More About Identifiers 52
Methods and Data in a Class 53
Behavior and Methods 54
Invoking Methods 55
Storing Data in Objects 56
About Instance Variables 57
Data Access and Return Values in Methods 58
Accessing Data (Another Way) 60
Pretty Pictures 61
More About Variables 62
About Java Primitive Data Types 63
Numeric Literals 64
Non-Numeric Literals 65
Strings 66
Primitive Types are Value Types 67
Arithmetic Operations 68
Primitive Type Conversion and Casting 69
Lab 3.3 - Writing a Class Definition 70
Session Review 71
Session 4 — More on Classes and Objects 72
Session Objectives 73
Working With Methods and Data 74
Working Within Methods 75
Calling Methods 76
Local Variables 77
The this Variable and Instance Data 78
Pretty Pictures 79
Overloading Methods 80
Calling Overloaded Methods 81
The toString() Method 82
Encapsulation and Access Control 83
Encapsulation: Black Boxes 84
Key Advantages of Encapsulation 87
Program Correctness 88
Access Control 89
Access for Data Members and Methods 90
Private Access 91
Public Access 92
Lab 4.1 - Encapsulation 93
Constructors 94
Constructors 95
Using Constructors 96
Explicit Constructor Call 97
Lab 4.2 - Adding Constructors to a Class 98
static or Class Members 99
Static Data Members and Methods 100
Declaring Static Members 101
Accessing Static Members 102
Accessing Data in Static Methods 103

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved ii

N .
AF Learr“ng Patterns ™ educate. collaborate. accelerate.

final Variables 104
Lab 4.3 - Using static Members (OPTIONAL LAB) 105
Odds and Ends 106
Scopes and Blocks 107
Scope Example 108
Assignment 109
Comparison 110
Null Objects 111
Wrapper Classes 112
Reference Types as Method Parameters 113
final Method Parameters 115
Lab 4.4 - Debugging 116
Session Review 117
Session 5 - Flow of Control 118
Session Objectives 119
Branching Statements 120
Program Execution Sequence in Java 121
The Comparison Operators 122
The Logical Operators 123
if-else Statement 124
switch Statement 125
Iteration Statements 126
whiTe Statement 127
do-while Statement 128
for Statement 129
break Statement 130
continue Statement 131
Lab 5.1 - Data Validation 132
Session Review 133
Session 6 - Strings and Arrays 134
Session Objectives 135
String and StringBuffer/StringBuilder 136
Using Strings 137
Changing Strings 138
Classes StringBuffer and StringBuilder 139
StringBuffer and StringBuilder 140
Regular Expressions 141
Arrays 142
Arrays 143
Creating Arrays and Accessing Elements 145
Arrays of Object References 146
Array of Strings 147
args Array 148
Iterating Over Arrays 149
varargs 150
Lab 6.1 - Arrays 151
Session Review 152
Session 7 - Packages 153
Session Objectives 154

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved iii

A :
N7 LearningPatterns

educate. collaborate. accelerate.

Packages Overview 155
Dealing with Complexity 156
Packages 157
package Statement 158
The Default (or Unnamed) Package 159

import Statement 160
The import Statement 161
Importing a Complete Package 162
Importing a Single Package Member 163
Using the Fully Qualified Name 164
Standard Imports 165
Resolving Naming Conflicts 166

Creating Packages 167
Creating a Package 168
Access Control for Class Members 169
Access Control for Classes 170
Summary - Using Packages 171

Finding Classes 172
Tools Must Locate Class Definitions 173
Organizing Files and Packages 174
Class Path 175
Classpath Example 176
What is a JAR? 178
Classpath Example 179

Lab 7.1 - Packages 180
Session Review 181
Session 8 - Composition and Inheritance 182
Session Objectives 183

Composition 184
Dealing With Complexity and Composition 185
Composition 186
Delegation 187
Benefits of Composition 188
Issues with Composition 189
About Object Relationships 190
Other Kinds of Relationships 191

Lab 8.1 - Composition (Optional) 192

Inheritance 193
Inheritance and Dealing With Complexity 194
Inheritance Hierarchy 195
The extends Keyword 196
Inheriting from the Superclass 197
Inheritance and Superclass Data Members 198
A Subclass IS-A Superclass 199
Accessing Superclass Members 200
Constructors and Inheritance 201
Final Classes 202

Lab 8.2 - Inheritance 203

Overriding and Polymorphism 204
Changing Behavior with Method Overriding 205
OO Concepts - Polymorphism 206

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved iv

A :
N7 LearningPatterns

educate. collaborate. accelerate.

Polymorphism 207
Importance of Polymorphism 208
The super Keyword 209
Access Control - protected Access 210
@Override 212
Lab 8.3 - Polymorphism 213
class Object 214
Class Object 215
Methods of Class Object 216
Automatic Storage Management 217
Abstract Classes 218
Abstract Classes 219
Using Abstract Classes 221
Session Review 222
Session 9 - Interfaces 223
Session Objectives 224
What if All You Have to Share is an Idea 225
Interface Types 226
Interface Definitions 227
The implements Keyword 228
Example of Using Interface Types 229
Interface Types - Revisited 230
Extending Interfaces 232
Implementing Extended Interfaces 233
Example of Using Interface Types 234
Interfaces are Abstract 237
Data Members in Interfaces 238
Implementing Multiple Interfaces 239
Lab 9.1 - Interfaces 240
Session Review 241
Session 10 - Exceptions 242
Session Objectives 243
Exception Hierarchy 244
Overview of Exceptions 245
Exception Hierarchy 246
Exception, Error, RuntimeException 248
Handling Exceptions try and catch 249
Handling Exceptions with try and catch 250
Exceptions and Program Flow 251
Variable Scope 252
The throws Clause 253
Throwing Exceptions with throw 254
User-Defined Exceptions 255
Multiple catch Blocks 257
finally Block 259
Runtime Exceptions 260
Multicatch (Java 7) 261
Using try-with-resources (Java 7) 262
Lab 10.1 - Using Exceptions 263
Session Review 264
Session 11 - Collections and Generics 265

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved \%

N .
AF Learr“ng Patterns ™ educate. collaborate. accelerate.

Session Objectives 266
Overview 267
Java Collections Framework Overview 268
java.util Collection Interfaces 269
Collection Interface 270
Generics and Type-Safe Collections 271
List and ArrayList 272
Li st Interface 273
ArraylList 274
Using ArrayList - Example 275
The for-each Construct 276
Autoboxing and Collections of Object 277
Autoboxing 278
Using Autoboxing/Unboxing - Example 279
Summarizing Collection Features 280
Collections of Object 281
Issues with Collection of Object 282
Lab 11.1 - Using Collections 283
Other Collection Types 284
Set Interface 285
Using Sets 286
Map Interface 287
HashMap 288
Generic HashMaps 289
Creating and Using HashMap 290
Iterating Through a HashMap 291
Lab 11.2 - Using Sets 292
Iterator 293
Processing Items with an Iterator 294
Iterator Interface 295
Using Iterator - Example 296
[Optional] More About Generics 297
What Are Generics 298
Declaring a Generic Class 299
Summary - Basic Generics Usage 300
Using Generics - Example 301
Inheritance with Generic Types 302
Inheritance with Generic Types 303
Assignment with Generic Types 304
Wildcard Parameter Types 305
Generic Methods 306
[Optional] The Collections Class 307
Collections Class 308
Unmodifiable Wrappers 309
Unmodifiable Example 310
Checked Interface Example 311
Algorithms 312
Sort Example 313
Session Review 314
Session 12 - Database Access with JDBC and JPA 315

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved vi

N .
AF Learr“ng Patterns ™ educate. collaborate. accelerate.

Session Objectives 316
JDBC Overview 317
What is JDBC? 318
JDBC Architecture 319
The Fundamental JDBC API 320
Common JDBC Types 321
Naming Databases with URLs 322
The Item Database Table 323
Database Connection - Example 324
Using Statement - Example 325
Using PreparedStatement - Example 326
Summary 327
JPA Overview 328
Java Persistence API (JPA) Overview 329
JPA Architecture — High Level View 330
JPA Architecture — Programming View 331
Working with JPA 332
Entity Classes 333
Musicltem Entity Class 334
Annotation Overview 335
Additional Musicltem Annotations 336
Lab 12.1 - Mapping an Entity Class 337
The Persistence Unit 338
persistence.xml Structure 339
The EntityManager 340
JPA EM and EMF Example 341
Working with Transactions 342
Complete JPA Example 343
Summary 344
Lab 12.2 - Using JPA 345
Persisting a New Entity 346
Updating a Persistent Instance 347
Removing an Instance 348
Executing a Query 349
Lab 12.3 - Insert/Query Demo 350
Session Review 351
Session 13 - Additional Language Features 352
Session Objectives 353
Assertions 354
Assertions Defined 355
Assertion Uses 356
Assertion Non-Uses 357
Assertion Syntax 358
Using Assertions to Check State - Example 359
Using Assertions to Check Flow of Control 360
Enabling/Disabling Assertions at Runtime 361
Enabling/Disabling Assertions - Examples 362
What They Look Like at Runtime 363
Type-Safe Enums 364
Enumerated Types Defined 365
Problems with int Enumerated Types 366
The enum Keyword 367

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved vii

N .
AF Learr“ng Patterns ™ educate. collaborate. accelerate.

More enum Examples 368
switch on enum 369
for-each with enum 370
Advanced enum Features 371
Annotations 372
The Issue 373
Annotations - The Solution 374
Example Applications 375
Other Java Features 376
XML and Web Service Support 377
Java DB 378
Scripting Language Integration 379
Monitoring and Management Tools (Java 6+) 380
Other Features (Java 6+) 381
Session Review 382
Session 14 - I/O Streams (Optional) 383
Session Objectives 384
Readers and Writers 385
Overview of 1/O Streams 386
Character Streams 387
Class Reader 388
ClassWriter 389
Common Reader Subclasses 390
Common Wr1iter Subclasses 391
Using Readers and Writers 392
Path Separators 394
Filter Streams 395
High-Level and Low-Level Streams 396
Using Filter Streams - Example 397
Converting between Streams and Readers/Mriters 398
Byte Stream Classes 399
Common Stream Subclasses 400
Converting Between Byte & Character Streams 401
Character Stream & Byte Stream Equivalents 403
Formatted Output 404
Formatted Output 405
Integer Format Specifiers 406
Format Specifier Modifiers 407
Other Format Specifiers 409
Summary 410
New 1/0 (NIO) APIs 411
New /O (NIO) 412
NIO Features 413
[Optional] Lab 14.1 - Formatted Output 415
Session Review 416
Recap 417
What We've Learned 418
Resources 419
Appendix - JDBC Java Database Connectivity 420

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved viii

Fast Track to Java 7 Introduction

LEARNINGPATTERNS

o000 @ ea

Fast Track to Java 7 and
OO Development

The Java Developer Education Series

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 1

Fast Track to Java 7 Introduction

Course Overview

+ An introductory Java course that starts with basic principles

— Provides a solid foundation in the concepts and practices for
writing good object-oriented systems in Java

— Provides knowledge needed to productively use core Java
technology for programming

— Including database access with JDBC/JPA
+ Be prepared to work hard and learn a great deal!

¢ The course contains numerous hands-on labs
— They exercise all the important concepts discussed
— The lab solutions for the course are provided to you

¢ The course covers all core features of Java
— It supports all recent versions of Java

Notes:

o The Java platform has evolved rapidly
— However, many people are still using older versions

The labs are designed to support those using Java 5 and any later versions

& Java 6 and 7 primarily introduced advanced features for running Java programs, and did not chance
the API, though it did add to it

— However, those features are mostly beyond the scope of this course

— Accordingly, this course can be used in any of these environments

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 2

Fast Track to Java 7 Introduction

Course Objectives

¢ Learn Java's architecture and uses
¢ Understand Java language basics

¢ Compile and execute Java programs with development tools
such as javac and java

¢ Learn object-oriented (OO) programming and the object
model

— Understand the differences between traditional programming and
object-oriented programming

— Understand important OO principles such as composition
inheritance and polymorphism

¢ Use Java packages to organize code

¢ Understand interfaces, their importance, and their uses

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 3

Fast Track to Java 7 Introduction

Course Objectives

¢ Learn (and practice!) Java naming conventions and good Java
coding style

+ Create well-structured Java programs
+ Use core Java API class libraries
+ Understand how exceptions are used for error handling

¢ Understand the basics of database access with JDBC and
JPA

+ Learn the basics of the Collections Framework
& See some of the new/advanced Java language features

+ Understand and use basic I/O streams (optional)

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 4

Fast Track to Java 7 Introduction

Labs

¢ The workshop has numerous hands-on lab exercises,
structured as a series of brief labs

— The detailed lab instructions are separate from the main student
manual

o Setup zip files are provided with skeleton code for the labs
— Students add code focused on the topic they're working with
— There is a solution zip with completed lab code

¢ Lab slides have an icon like in the upper right corner of this

slide
— The end of a lab is marked with a stop like this one:

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 5

Fast Track to Java 7 Introduction

Typographic Conventions

+ Code in the text uses a fixed-width code font, e.g.:

Javalnstructor teacher = new JavalInstructor()

—Code fragments use the same font, e.g. teacher.teach()
—We bold/color text for emphasis

—Filenames are in italics, e.g. Javalnstructor.java

—We sometimes denote more info in the notes with a star *

—Longer code examples appear in a separate code box - e.g.

package com.javatunes.teach;
pubTlic class JavaInstructor implements Teacher {
public void teach() {
System.out.println("Java is way cool");
%

}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved

Fast Track to Java 7 Introduction

Course Outline

¢ Session 1: A Simple Java + Session 8: Composition and
Program and the JDK Inheritance
¢ Session 2: Java Overview ¢ Session 9: Interfaces
+ Session 3: Class and Object + Session 10: Exceptions
Basics ¢ Session 11: Collections and
¢ Session 4: More on Classes and Generics
Objects + Session 12: Database Access
¢ Session 5: Flow of Control with JDBC and JPA
¢ Session 6: Strings and Arrays ¢ Session 13: Additional Language
¢ Session 7: Packages and Access Features
Protection & Session 14: Java I/O (optional)
+ Appendix: JDBC

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 7

Fast Track to Java 7 Session 1: A Simple Java Class & Program

LEARNINGPATTERNS

o000 @ L X

Session 1 - A Simple Java Class and
Running a Java Program

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 8

Fast Track to Java 7 Session 1: A Simple Java Class & Program

Session Objectives

o Look at a simple Java program, and how it is compiled and
run

+ Set your computer up for Java development
— Setting paths, environment variables, etc.

¢ Use a text editor to type in a simple Java class

¢ Use the Java Development Kit to compile and run the code

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 9

Fast Track to Java 7 Session 1: A Simple Java Class & Program

A Simple Application Class

o To get started, we'll look at a very simple Java application, that
displays the string "Hello World"

— This is a simple non-graphic standalone application that runs on its own

¢ All programs in Java are just a class with a main method in it
— The HelloWorld class needs to appear in a file HelloWorld.java

+ The main method is a special method that is the starting point for
every Java application

— It must be declared as shown, and has to appear in a class
- System.out.println how you print things to the console

public class HelloWorld {
public static void main(String[] args) {
System.out.printlin("Hello World");
}

Notes:

Java classes can be deployed into several runtime execution environments, including:
— Standalone applications that are run explicitly, like our Hello World application.
— Servlets, which are run in a Web server.
— Applets, which are downloaded from a Web server and run in a Web browser.
¢ We will concentrate on applications in this course.
+ main is the special method which is the starting point for every standalone Java application.
— Applets and servlets work a little differently
& The main method has to appear inside a class.
- main takes an argument — an array of Strings.
— This array holds arguments that are given on the command line when the application is run.

e System.out.println causes something to be printed to System.out, which is the standard
output (the console) — more on this later.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 10

Fast Track to Java 7

Session 1: A Simple Java Class & Program

Block

Comment

Class definition /

o We'll cover these details in more depth later

The HelloWorld Program Broken Down

Method definition

~

N

Il a simple application to display "Hello World"

™ public class HelloWorld

b {

public static void main(String[] args)

{

);/

Semicolon

/

System.out.printin("Hello World"
A/
8. / /

Method call

Method argument

Notes:

20131130

Copyright © 2004-13 LearningPatterns Inc. All rights reserved

11

Fast Track to Java 7 Session 1: A Simple Java Class & Program

Compiling HelloWorld

¢ To use a Java class, you have to compile the Java code

C:\StudentWork>javac HelloWorld. java

— After compiling, a file called HelloWorld.class (containing Java
bytecode) is created

+ You use the Java Virtual Machine (JVM), to run a Java program
— The JVM comes with Java as the java executable

C:\StudentWork>java HelloWorld

— This would produce the output "Hello World" printed in your
command prompt window

Notes:

& HelloWorld.class is the bytecode for the program produced by the compiler

¢ We will talk more about all these details later in the course

& For now, we're giving you enough information to just run the program

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved

12

Fast Track to Java 7 Session 1: A Simple Java Class & Program

Note on Comments

+ Java has 3 kinds of comments
— Single line comment: Start with /I ...
— Multiple lines using /* ... */
— Javadoc comments (see note) using /** ... */

/ Ve
* This class prints "Hello World" to standard output
By /
class HelloWorld { // this comment starts mid-1line
public static void main(String[] args) {
System.out.printin("Hello World");
// we often comment out a 1line code this way
// System.out.printin("Bye");
}
}
/¥ Note that this class still needs a 1ot of work. We
need to add all sorts of interesting things, and show
how cool Java has become. */

Notes:

¢ Comments are text that is ignored by the Java compiler

— Comments can start anywhere on a line

Javadoc comments are used in generating API documentation directly from the source code

— These comments precede the items that they are documenting in the code

+ A tool called javadoc reads these comments
— Along with your source code

— javadoc also understands a number of parameters that you can embed in these comments to
enhance the generated documentation

— We cover this tool in an appendix

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 13

Fast Track to Java 7 Lab 1.1: HelloWorld

LEARNINGPATTERNS

o000 @ e

Lab 1.1 - HelloWorid

In this lab, we will compile and run a very simple Java
program

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved

14

Fast Track to Java 7 Session 1: A Simple Java Class & Program

Session Review

1. Why must you set your path include the <java>\bin directory?
2. What is the purpose of the main method?

3. What is the signature of the main method?

4. How do you print something to standard output (the console)?
5. What tool do you use to compile Java source code?

6. What tool do you use to run compiled Java code?

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 15

Fast Track to Java 7 Session 5: Flow of Control

LEARNINGPATTERNS

o000 @ e

Session 5 - Flow of Control

Branching Statements
Iteration Statements

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 118

Fast Track to Java 7 Session 5: Flow of Control

Session Objectives
Outline the comparison and boolean operators in Java

+ Discuss branching statements and the operators used with
them

-1if, if-else, switch
o Discuss iteration (looping) statements
—while, do-while, for

- break, continue

+ Use flow of control logic to perform data validation in an object

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 119

Fast Track to Java 7 Session 5: Flow of Control

LEARNINGPATTERNS

o000 @ e

Branching Statements

Branching Statements
Iteration Statements

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 120

Fast Track to Java 7 Session 5: Flow of Control

Program Execution Sequence in Java

¢ Unless directed otherwise, statements in Java are executed in
sequence

+ Java has a number of statements to change the flow of control

— Branching/selection statements choose one of several flows of
control:

if, if-else, and switch

— Iteration statements specify looping
while, do-while, and for

— Jump statements transfer control unconditionally
break, continue, return

Notes:

+ All of these statements are modeled after their equivalent in the C programming language

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 121

Fast Track to Java 7 Session 5: Flow of Control

The Comparison Operators

¢ Selection and iteration statements are based on the results of
comparisons that return a true or false result

¢ The comparison operators compare numerical values and
produce boolean results

Operator Example
= equal 3 == 5 (== false)
1= not equal 3 I=5 (== true)
< less than 3 <5 (== true)
> greater than 3 >5 (== false)
<= lessthanorequal 5 <= 5 (== true)
>= greaterthanorequal 5 >= 5 (== true)

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 122

Fast Track to Java 7

Session 5: Flow of Control

The Logical Operators

+ The logical operators compare boolean values and produce
boolean results.

¢ In the table below, assume we have:

boolean t = true;
boolean f = false;
Operator Meaning Example
& AND f & t (== false, t evaluated)
&& conditional AND f && t (== false, t not evaluated)
| OR t | f (== true, f evaluated)
| conditional OR t || f (== true, f not evaluated)
A exclusive OR t A t(== false)
t A forf A t (== true)

! NOT It (== false)
== equal f == f (== true)
I= not equal t I= t (== false)

Notes:

20131130

Copyright © 2004-13 LearningPatterns Inc. All rights reserved

123

Fast Track to Java 7 Session 5: Flow of Control

if-else Statement

¢ The if / 1f-else statements control whether or not a
statement is executed, based on the value of an expression

— The else is optional
* It's executed only if the expression evaluates to false

1f (Expression) Statement else Statement

int i = 1;

if (A == 0) {

System.out.printin("i equals 0");
} else {

System.out.printin("i is not 0");
¥

Notes:

The parentheses are required around the expression
— The expression must have a boolean type.
The statement may be a block of statements, enclosed in { }.
The expression is evaluated, and if it is true the statement is executed.
RECOMMENDATION: always use the block form to avoid potential maintenance errors.

* 6 o o

You can chain them.

int k = 0;

if (k == 0)
{
System.out.printin("k equals 0");

}
else if (k == 1)
{
System.out.printin("k equals 1");

}

else

{

System.out.printin("k is neither 0 nor 1");

}

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 124

Fast Track to Java 7 Session 5: Flow of Control

switch Statement

+ The switch statement extends the 1f statement, to allow testing
for more than one value

— Can only switch on byte, short, int, char, and enum
— Java 7+ allows switch on string values
- default case is optional and gets control when no case matches

+ Note: If the break statement is not present, execution continues
on to the code in the next case

int i = 1; // This would usually be initialized elsewhere
switch (i) { // Execute a case based on value of i
case 1:
System.out.println("i is 1");
break;
case 2:
System.out.println("i 1is 2");
break;
default:
System.out.println("i is large");
break;
}
Notes:

The general form of the switch is:
switch (variable) {

case valuel:
statement(s);

break;

case value?:
statement(s);

break;

default:
statement(s);

¥
& A switch statement may execute one or more of several alternatives. When executed:
— The expression in the swi tch is evaluated and compared to the case constants.

— If one of the case constants is equal to the value of the expression, execution continues at that
statement (i.e., a jump to that point in the code occurs).

— If none of the case constants match, the statements after the default label, if present, are
executed.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 125

Fast Track to Java 7 Session 5: Flow of Control

LEARNINGPATTERNS

o000 @ e

Iteration Statements

Branching Statement
Iteration Statements

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 126

Fast Track to Java 7

Session 5: Flow of Control

while Statement

o The wh11le statement creates a loop — it has the form:

while (Expression) Statement

int index = 10;

while (index > 0) // stop looping when index reaches 0

{

// do some work
index = index - 1;

}

ResultSet rs = ...; // This is a JDBC ResultSet object
while (rs.next()) // rs.next() eventually returns false

{
¥

// process next row in result set

Notes:

The expression must have a boolean type.

& The expression is evaluated repeatedly, and as long as it evaluates to true, the statement is executed.

¢ When the expression is no longer true, execution stops.

& The expression is evaluated before each execution of the statement. Thus the statement may be

executed zero times.

20131130

Copyright © 2004-13 LearningPatterns Inc. All rights reserved

127

Fast Track to Java 7 Session 5: Flow of Control

do-while Statement

o The do-wh1i1e statement creates a loop — it has the form:

do Statement while (Expression);

int index = 10;

do
{

// do some work
index = index - 1;
3

while (index > 0); // stop looping when index reaches 0

¢ What is the difference between while and do-while?

— What happens if the index is initially set to 0, before the do-while
is executed?

Notes:

The expression is evaluated after each execution of the statement.
— Thus the statement in a do-wh1i e is executed at least once.

— The statement in a while may never be executed

¢ The expression must have a boolean type.

+ The statement is executed until the expression becomes false.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 128

Fast Track to Java 7 Session 5: Flow of Control

for Statement

+ The for statement creates a loop — it has the form:

for (Initialization Expression Increment,,) Statement

opt ’ opt ’

// Print values from 0 to 3
for (int i = 0; i <= 3; 1i++)
{

System.out.print(i + " ");

}

o Java 5 introduced another version of the for loop — called
for-each

— We'll look at this later

Notes:

+ The initialization is executed first and specifies initialization of the loop.

o If the expression is true, the statement is executed.

The loop is exited when the expression becomes false.

¢ The increment expression is executed after each iteration, i.e., after the statement is executed.

¢ The for loop is often used to iterate through an array. We will discuss arrays later.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 129

Fast Track to Java 7

Session 5: Flow of Control

break Statement

¢ It has the form:
break;

¢ The break statement transfers control to the end of the
enclosing loop (for, while, do-while) or switch statement

void findValue(int value)

{
{

if (i == value)
{
System.out.printin("got the value");
break; // stop looping, found the value
}
}

// control is here after the break

}

// this method scans values looking for a specific one

for (int i = 0; ; i++) // No terminate expression

Notes:

+ break statements can carry a label
o The form of the labeled break is:
break Tabel;

+ Here is an example

outer: // 'outer' is not a reserved word, just a label
for (int i = 0; i < 100; i++) {
for (int k = 0; k < 100; k++) {
if (/* some condition */) {
break outer; // exit outer loop

}
}

}

// control is here after the break

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved

130

Fast Track to Java 7 Session 5: Flow of Control

continue Statement

loop (for, while, do-while)
— It continues with the next iteration

¢ It has the form:
continue;

¢ The continue statement exits the current iteration of the

// here we use continue to print out even numbers only
rfor (int i = 1; i <= 10; i++)

{

System.out.printin(i);
¥

if (% 2) '=0) // if not divisible by 2 (not even)
continue; // exit this iteration of the loop

Notes:

¢ Unlike break, continue does not exit the loop entirely; it just exits the current iteration of the

loop, and continues with the next iteration.

continue statements can carry a label, and the form of the labeled continue is:
continue Tlabel;

outer:
— for (int i = 0; i < 100; i++) {
for (int k = 0; k < 100; k++) {
if (k == 17) {
// exit this iteration of outer loop

continue outer;

}

System.out.printin(k); // Otherwise normal looping goes on

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved

131

Fast Track to Java 7 Lab 5.1: Data Validation

LEARNINGPATTERNS

o000 @ e

Lab 5.1 - Data Validation

In this lab, we will add data validation to a class

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 132

Fast Track to Java 7 Session 5: Flow of Control

Session Review

1. Name the two AND operators in Java. What is the difference
between them?

2. True or false: i f and 1f-else statements require the use of
blocks

3. What data types can you use to control a switch statement?
4. What is the difference between while and do-while?
5. What is the difference between break and continue?

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 133

Fast Track to Java 7 Session 9: Interfaces

LEARNINGPATTERNS

0000 © 00

Session 9 - Interfaces

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 223

Fast Track to Java 7 Session 9: Interfaces

Session Objectives

¢ Understand the similarities between interface types and class
types

+ Use interface types the same way that class types are used

+ Explain the role that interfaces play in "programming by
contract”

¢ Define and implement an interface

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 224

Fast Track to Java 7 Session 9: Interfaces

What if All You Have to Share is an Idea

¢ |t often happens that you know what a type will do
— You know what it's behavior (methods) are
— But you don't know how that type will do it

+ Or there may be many related types that will implement some
behavior differently

— And you want to be able to treat all those varieties the same

¢ For example, you know a Timepiece needs to display the time

— But there may be many variations of Timepiece that display time
completely differently, and have no shared implementation

— A clock, a sundial
— What about a cell phone?

— One strategy is to make
Timepiece an interface

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 225

Fast Track to Java 7 Session 9: Interfaces

Interface Types

+ Java interfaces allow you to specify a type that is totally
separate from any implementation

— It is an abstract type that can specify behavior
— It embodies the idea of what a type is, but not its implementation
— Interfaces are often used to define roles played by objects

— Whereas a class can define how a type fulfills the role (via
instance data and method implementation)

+ An interface defines a type that is similar to a class
— It can have method definitions, but all methods are abstract
— Interfaces cannot be instantiated with the new keyword

— It can also have properties, but all properties are static
final constants

Notes:

& A Person can play roles such as Programmer or Instructor.
— If Programmer is an interface with code and test methods, and
- Instructor is an interface with teach and debuglLabs methods,

— then Person can play the role of Programmer if it implements the code and test methods,
and Person can also play the role of Instructor if it implements the teach and debuglLabs
methods.

— This means that you can use a Programmer or Instructor reference with this Person object,
1.e., you can treat a Person as simply a Programmer or Instructor.

The use of interfaces is often called Programming by Contract

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 226

Fast Track to Java 7 Session 9: Interfaces

Interface Definitions

+ An interface definition uses the interface keyword, in a way
similar to the class keyword

— We'll show examples of this using types for a shipping company

// definition of interface Moveable
package com.mycompany.shipping;
public interface Moveable {

/] ..
}

+ Interface methods are declared without a body
— They are implicitly abstract, and have no implementation

package com.mycompany.shipping;
public interface Moveable {

public void moveTo(String dest);
}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 227

Fast Track to Java 7 Session 9: Interfaces

The implements Keyword

¢ Interfaces are used via the implements keyword in class
definitions

¢ When you implement an interface you must provide
implementations for every method of the interface

— If you don't, the class will not compile

import com.mycompany.shipping.Moveable;
public class PosterTube implements Moveable
{
// provides an implemented moveTo(String) method
public void moveTo(String dest)
{
// PosterTubes's implementation
3
}

Notes:
¢ NOTE: when a class implements an interface, it can include concrete implementations or abstract
implementations of the interface methods.
— If some of those methods are abstract, then the class is abstract and cannot be instantiated.

— Once a subclass provides concrete implementations of all the abstract methods it can be
instantiated.

¢ An "empty" or no-op method is an implementation.
public void moveTo(String dest)

{
}

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 228

Fast Track to Java 7

Session 9: Interfaces

Example of Using Interface Types

class MovingCompany {

// Moveable 1is an interface type
Moveable[] goods = null;

MovingCompany (Moveable[] goodsIn) {
goods = goodsIn;
}

void deliverAl1Goods(String location) {
for (Moveable m : goods) { // Iterate with for-each
m.moveTo(location);
}
}
}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved

229

Fast Track to Java 7 Session 9: Interfaces

Interface Types - Revisited

+ Keep in mind that an interface type is very similar to a class
type

— A instance of a class that implements an interface might only be
"viewed" by other objects as that interface type, and not by its
actual class type

— For example, a moving company might not care about what
exactly it is moving, just that the items are Moveable.

- Moveable is a type, but it is an interface types, not class type

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 230

Fast Track to Java 7 Session 9: Interfaces

Interface Types - Revisited

¢ Interface types can be used as reference variable types, but
cannot be instantiated or used as object types

Moveable m = new PosterTube();

+ Interface types can be used as parameters to methods

public void moveObject(Moveable m) { ... }

+ Interface types can be used as return types from methods

public Moveable getMovedObject()
{

return m;

}

Notes:

¢ You will often not know (or care) about what kind of type you are working with (class type or
interface type).

— You work with both of them the same way — basically, you call methods on them.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 231

Fast Track to Java 7 Session 9: Interfaces

Extending Interfaces

¢ You can declare subinterfaces that extend other interfaces,
using the extends keyword

— This is the IS-A relationship again, this time with interfaces
— Unlike class inheritance, you can extend multiple interfaces

— A class that implements a subinterface must implement all the
interfaces that the subinterface extends (IS-A)

// A generic movable
public interface Moveable {
public void moveTo(String dest);

}

// A moveable that will go onto a truck

public interface Carton extends Moveable {
public float getSize();

}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 232

Fast Track to Java 7 Session 9: Interfaces

Implementing Extended Interfaces

// PosterTube implements Carton and thus Moveable, also
public class PosterTube implements Carton
{
// from interface Moveable
public void moveTo(String dest) {
/] ...
}

// from interface Carton
public float getSize() {
// ...
}
}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 233

Fast Track to Java 7 Session 9: Interfaces

Example of Using Interface Types

interface Moveable { /* ... */ }
interface Carton extends Moveable {

-

/
class Car implements Moveable { /
class PosterTube 1implements Carton { /*
class ShippingBox implements Carton {/*
class WardrobeBox extends ShippingBox { /

~N N NN ~
“ e S

Notes:

+ This shows the relationships between the class and interface types used in this example.

+ In the example, a PosterTube object can be referenced by variables of type:
- PosterTube.
- Object.
- Moveable.
- Carton.

— That is, a PosterTube can be treated as a PosterTube, and of course it can be treated as a
plain old Object. A PosterTube can also be treated as a Moveable or a Carton.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 234

Fast Track to Java 7 Session 9: Interfaces

Example of Using Interface Types

class MovingCompany {

// Carton and Moveable are interface types
Carton[] cartons = null;
Moveable[] goods = null;

MovingCompany(Carton[] cartonsIn, Moveable[] goodsIn) {
cartons = cartonsln;
goods = goodsIn;

}

void deliverAllGoods(String location) {

float totalSize = 0.0F;

for (int i = 0; i < cartons.length; i++) {
totalSize += cartons[i].getSize();
cartons[i] .moveTo(location);

}

for (Moveable m : goods) {

m.moveTo(location);
}

}
}

Notes:

+ Notice in the example above that all the types involved are interface types.

— That is, the MovingCompany doesn't really know (or care) what exactly it is moving, just that
the objects are Cartons and MoveabTes.

— This simplifies the point of view of the MovingCompany to just what's needed and no more.
Furthermore, the MovingCompany class is flexible, in that the exact types that it's dealing with
are not hardcoded.

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 235

Fast Track to Java 7 Session 9: Interfaces

Example of Using Interface Types

class GetMoving

{

public static void main(String[] args)

{
Carton[] boxes = { new PosterTube(), new ShippingBox(),

new WardrobeBox() };
Moveable[] bigStuff = { new Car() };
MovingCompany acme = new MovingCompany(boxes, bigStuff);

acme.deliverAl1Goods("San Francisco");

}

}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 236

Fast Track to Java 7 Session 9: Interfaces

Interfaces are Abstract

¢ Interfaces are implicitly abstract

— You can also declare this explicitly, though you generally don't
— The definition below is equivalent to one without using abstract

// 'abstract' legal, but generally not included
public abstract interface Moveable {

// ...
ks

— abstract also legal on methods but generally not used
— The definition below is equivalent to one without using abstract

public interface Moveable {
// 'abstract' legal, but generally not included
public abstract void moveTo(String dest);

}

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 237

Fast Track to Java 7 Session 9: Interfaces

Data Members in Interfaces

Interfaces can't declare instance data
— If you need instance data, you need to use a class

o Interface data members are implicitly both static and
final, and usually are declared as such, for clarity

— ltis legal to leave out final and static, but the compiler will just
add them in for you

package com.mycompany.shipping;
public interface Moveable
{
// static and final are usually included
// note the ALL_CAPS convention for class constants

public static final String HOME_LOCATION = "HQ Office";
public void moveTo(String dest);

Notes:

& Another example is the WindowConstants interface.

— It contains constants for the possible actions that can be taken when a user requests a window be
closed.

— These constants are used with the setDefaultCLoseOperation method when designing
(GUIs) with Swing.

package javax.swing;

public interface WindowConstants

{
// static and final are usually included
// note the ALL_CAPS convention for constants
public static final int DISPOSE_ON_CLOSE = 2;
public static final int DO_NOTHING_ON_CLOSE = 0;
public static final int HIDE_ON_CLOSE = 1;

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 238

Fast Track to Java 7 Session 9: Interfaces

Implementing Multiple Interfaces

A class can implement more than one interface

public class Car implements Moveable, Serviceable
{
// from interface Moveable
public void moveTo(String dest) {
// ...
3
// from interface Serviceable
public void serviceEngine() {
// every 30,000 miles turn on "Check Engine" Tight
3
}

o This is a useful property of interfaces

— Has many of the advantages of multiple inheritance, which Java
doesn't support

— Is much less complex because the interfaces just declare a
protocol, not an implementation

Notes:

+ Interfaces are used in place of multiple inheritance. Consider the "Pegasus problem," in which we
wish to define a flying horse.

— If multiple inheritance was available, you might subclass both Bird and Horse. However, if
there were any variables or methods defined in both Bi rd and Horse, you would have a
duplicate/conflict situation and the compiler would have to resolve this somehow. Already it's
getting a bit complicated.

— If only single inheritance was available, would you extend Bird or Horse? Isn't Pegasus really a
horse that has some of the characteristics of birds? Do all birds fly?

— Using interfaces, we can define a role (a set of abstract methods) named F1yingAnimal, that
can be used with any creature that can fly -- we can use it for Pegasus too.
interface FlyingAnimal

class Pegasus
extends Horse
implements FlyingAnimal

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 239

Fast Track to Java 7 Lab 9.1: Interfaces

LEARNINGPATTERNS

o000 @ e

Lab 9.1 - Interfaces

In this lab, we will work with interfaces - both creating
and using them

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 240

Fast Track to Java 7 Session 9: Interfaces

Session Review

1. How does "programming by contract" apply to interfaces?

2. What keyword is used for a class to "sign an interface
contract?"

3. True or false: interfaces can be placed in packages.

4. Explain the difference between interfaces and abstract
classes.

5. True or false: interfaces can exhibit inheritance characteristics
similar to classes.

6. True or false: interfaces can only have a default or no-
argument constructor.

Notes:

20131130 Copyright © 2004-13 LearningPatterns Inc. All rights reserved 241

