OBJECT-ORIENTED
ANALYSIS & DESIGN
USING
THE UNIFIED MODELING
LANGUAGE

Student Workbook

tCOUFSGWG 2y

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

OBJECT-ORIENTED ANALYSIS & DESIGN USING THE UNIFIED MODELING
LANGUAGE

Lynwood Wilson

Published by ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, CO 80112
ContributingAuthors: JohnMcAlister, JamieRomero, Rick Sussenbach, and Rob Seitz.

Editor s DanielleHopkinsand JanWaleri

Editorial Assistant: DanaHowell

Special thanksto: Many instructors whose ideas and careful review have contributed to the quality
of thisworkbook, offering comments, suggestions, criticisms, and insights.

Copyright © 2011 by ITCourseware, LLC. All rightsreserved. No part of thisbook may bereproduced
or utilizedinany formor by any means, € ectronicor mechanical , i ncluding photo-copying, recording, or by
aninformationstorageretrieval system, without permissioninwritingfromthepublisher. Inquiriesshouldbe
addressedto I TCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, Colorado, 80112.
(303) 302-5280.

All brand names, product names, trademarks, and regi stered trademarksaretheproperty of their respective
OWNers.

Pageii Rev6.3.2 © 2011 ITCourseware, LLC

OBJECT-ORIENTED ANALYSIS & DESIGN UsING UML

CONTENTS

Chapter 1 - COUrSEINITOTUCTIONoouiiiiriieieeieeeeiere ettt sttt aestesbesbeese e e e neeseeseessensens 9
(@0 TN 6 T @] o] o)= ST 10
COUISE OVEIVIEIW ...ttt sttt sttt a ettt e b e be s b e ae s st e ae et et e s besbesbesre e st eneesenseseesaeenenneeneas 12
USINGThEWOIKIIOOK ..ottt nne s 13
U005 (S0l s = g 0= ST 14

Suggested References (cont'd)cooeceeeivceeecciie e, 16

Chapter 2 - Introductionto ANalySISBNADESIGNceeiiiriirierieeieeeree et 19
Why iSProgrammiNg HBIO?ooiiiieeee ettt snesrenne s 20
The Tasksof SOftWare DEVEIOPMENTcceiieieieiererieeee et se e e sae e 22
IVIOTUIES ...ttt sttt b et b e st et e e et e b e e b e e ae e st e st e e e b e seesbeebeeneeneeeenbenbens 24
17700 L= 1 PSR RSRPRN 26
1Y/ Le o 1T PR RRRSRRRN 28
S 507 o 1Y PP RSRRRN 30
L@ o] = o £ TT 32
(@07 0 = PSR 34
N TV = =" [T 0 PR RSSRN 36
0= o1 PR RRSRPRN 38

(@ gT= o0 g @ o= £ SRS 41
007z 05 1 = [PSPPSR 42
Y 0 1= o1 USRS 44
L@ o] = o £ PR RSST 46
(@SS SRR 48
REFOONTDIITIES ... ettt st b st e et ne s 50
ATIITDULES ...ttt bbbt et et e b e s b be e bt e st et e neesbesbesbesreeneeneentens 52
(00001070 LT @1 F= 55 =SSP 54
OperatioNSaNd MENOUS..........ooiiiieee et sae e 56
RS 1Y PSS 58
10107 1= oSSR 60
INNENTANCEEXAMPIE ...t b et et e e e e benreenens 62
Protected and Package ViSIDIITYooeiirieeee e 64
SOOI .. eeeuteeuee ettt ekt e e e ae ekt e bt et e ehe et e e e e e ae e eR e e b e e R e e eR e e eRe SR e SREeeRE e EeeREeeREeeReenEeeReeeReeaEeeneeneenaeenreereaneeas 66
(O SR o0 o= SRS 68
0= o1 PR RSRPRN 70

© 2011 ITCourseware, LLC Rev6.3.2 Pageiii

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

Chapter 4 - AAVanCed ODJECLSooeiiiiieeieeere ettt ae e 73
CONSLTUCIOIS & DESITUCTONScoveeeeeiieeeeieesteeee e siee st e e sie s se e s be e e sseesbeesseeeesseasseeaneensasneesneensennnens 74
LS = a0 ST @< o] o SO RPR 76
ADSITACE ClBSSES ...ttt sttt e st e s b e b b e st e st et e e e sbesbeeneeneeneeneenrens 78
[0 1070710/ S 0 PSSR 80
POlYMOIPISMEEXAIMPIE ...ttt b et eea e ae b e nneas 82
MUILIPIEINNEITTANCE ...t ettt bbbt enaesnesrenneas 84
SolvingMultipleInheritanCeProbIEmMS ... 86
10 1 ='e=-SJ RSP 88
Interfaceswith Ball and SOCKEE NOELIONcc.oiuiiiiieiriee e 90
B .19 = (=TSSP 92
0= o PP RSRPRN 9

Chapter 5- Classesand Their REIatiONSNIPS.........coviiiiiieee e 97
(@ S 1Y/ oo (= PSR 98
F S 0 0 T [0SR 100
YT 110 o YR PRSSPR 102
(@87 [1= 0 VNS o o= (0SSR 104
ROIES ettt e AR e be e ae Rt et e b e R e Re R e Re e Rt et e neeneenaens 106
F NS o oz 0] L0 = o SRS 108
(@elgplo’o s LiolgF= gTo X o Tg< o= (Lo o FO SRR 110
DS 07 010 = 0[S SRS 112
S Lo To @ = 511V oo = RSP 114
= o SRR 116

Chapter 6- SEQUENCE DIAGIAIMS.eoerieieieriese st see st st be e e e et e stestesbesbesseese e e eeessesseseenneas 119
SEOUENCEDIAGIAIMS. ...ttt sttt e b bt et e st e be s bt e se e st e e e s e sbesbeebe e st eneeeeneas 120
INEEFACHION FTAIMES ...ttt ettt st e b b st et e e e s 122
DS o [0 SRS 124
(070 o J TSP PPR PRSPPI 126
Creating and DestrOyiNG OIJECES........c.coiiriireriereriieie ettt sbe s s s e 128
11 [ST 130
SYNCHIrONOUS & ASYNCIIONOUS........eueeueeieiestesiesiereeeeseeseesaesse s e e eeseesbesbessesseeseeeessessesbesseeneeneeneeseas 132
Evaluating SE0UENCEDIBOIAIMSocuiiiiiiieeeeee ettt st st b ettt b b s 134
USING SEOUENCEDIBOIAITIS ...ttt sttt st sttt b e bbbttt et et e s besbesneene e e e e e e es 136
= o ST 138

Pageiv Rev 6.3.2 © 2011 ITCourseware, LLC

OBJECT-ORIENTED ANALYSIS & DESIGN UsING UML

Chapter 7- CommUuNICatION DISOIAIMS.........cciiirirerieiese et e et e se e eeneeneas 141
COMMUNICATONDIBOIAIMS......c.veteieieieeieie ettt st a et be st e sbesbesse et e e et e sbesbessesnenneans 142
Communication aNd ClasSDIGOIAIMS........cceiiiireeierie et e et tesbesse e e eeneanaens 144
Evauating CommUNICAIONDIBOIAIMScc.coveierierieseeieie et e e se e st sre e e e e sbesaessessesneens 146
USINg CoMMUNICEIONDIGOIAIMIScoveierieeieeieee ettt et sttt e nne e 148
= o TP 150

Chapter 8- StaAleMaChiNEDIAgIaAIMScoiiiirieiereeeeee ettt e e see e seenaeas 153
WL IS SEBLE? ...ttt sttt e et et et e s b e e bt et e e et e ntesbeeneeneeneees 154
1 = (= [0 1o PRSP 156
TraNSIONSANA GUAITSevveeeieieeieie ettt st b e b ettt e e e b e sbesbeene e e e e e eeneas 158
[0S 0 1ES (= (7= 0 Ao 1SS 160
1Yo T2 N o (o ST PR 162
L= 0= B S [(T0] SRS 164
SUPErStAtES AN SUDSIALES ..o bbb ee s renneas 166
CONCUITENT SLALESceeeeeeieeieeieeete et e ettt et ae st e b e e e e eae e be e b e eaeesaeeaseeaseeaeasseeabeenesneesneeneeenns 168
USING STAEMECIINES.......ooeeieeiieie ettt bbbt e e e e 170
Tggo L= 07 1= [TSP 172
0= SRS 174

Chapter O- ACHVILTY DISOIAIMISooveiuieieierie ettt ae bbb e e et e b et e sresse e e e e e neeneas 177
F oA 1A N[0 = (e o USSR 178
D ol ES 010 STz 010 11V [(=SSR 180
0 Y070 N o] TSRS 182
D] 11T 0 . o SRR 184
1= = 10 o SRR 186
= (110 SRS 188
1S T £SO 190
ParamMEtErSANU PINSooiieeieee ettt bttt et st be e be e st e e e e e e e ee 192
EXPANSONREGIONS ...ttt e et s b e bttt et et e besbe s b e e se et e e e e es 194
USINGACHVILY DISOIAIMS ..ottt sttt sae ettt e st e b e s b s ne st e e e e e e ee 196
= o PR R 198

Chapter 10 - Supplemental UML DIiagraimS..........coeeereerienieriesiesesesessee e seesse e ssesseseesessssseessessessessens 201
Modeling Groupsof Elements- Package DIiagrams.........c.ccoeeeeierereneneseeie e 202
ViSDility and IMPOMINGocveeeeeieieee et b e e e 204
S (0o LUz [T = 0SSR 206
CompPOoNENtSAN INTEITACES ..ottt a e b e 208

© 2011 ITCourseware, LLC Rev6.3.2 Pagev

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

[D7C o L0y = oI M=o = o o PSSR 210
COMPOSItE SIIUCTUIE DIGOIAIMS ...ttt st e e b et b nesneene e 212
TIMINGDIGOIAIMS......c.eitiiteetieiee ettt sttt et et e e e s be e b e s aeeae et e naesbesbesbeeneeneentenbenbeneenns 214
INtEraCtion OVENVIEW DIGOIAIMSccueiueriieieriesie sttt st st neessesbesaesneeneenes 216
0= o1 TP 218
(@ gT= o (= g R U S Y @7 PSSP 221
USE CaSES. ...ttt ettt sttt ettt e he e e e et e e he e b e e e e e ae e e R e e b e 2ae e eReeeRe e aEeeReeeRe e Rt e e e eReenReeneeneeereenreenneas 222
UseCaseDiagram COMPONENESc.ciererierieriesiesieseeeeseessessessessesseesesseseestessessessssssesssssessessessenns 224
O ST @S ST ="o = o O RS SR 226
ACEOr GENEIEIIZATONS ..ottt b e b b et e e b e sbesbesbe e st e e et e eees 228
1076 110 SRR 230
4 1= 0 SRS 232
IS0, o T 1= PR RSSRPR 234
(@107 VS 1= 1 15T 236
AN = (YRR 238
Templatefor USECASENEITALIVEcceeuerieeieiesiese sttt sttt eesae e 240
0 T LS ST 0= =SSR 242
= o ST 244
CREPLEL 12 - PrOCESS ... couieiiiisieriestesiee et sttt e e e besbesbe st e s be e st e st et e tesbesbesbesbesneenseeensensenneas 247
P OCESS ...t r e e Re e E e e Re e Re e aRe e e aRe e e n e e nnn e e neenreean 248
RS QLY = =6 = 101 | PSSR 250
S-S SRR 252
REVIBIVS ...ttt st bt bt s et e e b e b e s b e e b e e aeene et et e b e nR e e R e eRe et et e neenrennens 254
L = o (01 0 [S R SPR 256
[1S 0SSP 258
ThEUNIFIEBAPIOCESSceiieiieeee e bbb b et e e et 260
F 01 L=T (0705 =TSP 262
0= o RSP SS 264
Chapter 13- TREPIOJECEoeieeeeeeee et st b b se e et srenneas 267
1076 o 1T o SRR 268
P2 o0 7= (10! o 1SRRI 270
[F='oo = (o 0 1 USRS 272
CONSTUCHTON TLEFGHIONSoveveeieeieeee ettt e b e besse e e e e e seesbesbesreeneeneeneannens 274
Congtruction Iterations— The Other SIUFToo.ooieiee e 276
0= o TP 278

Page vi Rev 6.3.2 © 2011 ITCourseware, LLC

OBJECT-ORIENTED ANALYSIS & DESIGN UsING UML

Chapter 14 - DOMAINANAIYSIS. .. .couiiieieieie ettt sttt seesee s be b se e e e et e sesbessesseeneeeeneeneas 281
(@ g2 o= g N[0 USSP 282
TopView — TheDOmMaN PEISPECLIVEc.coiiiiiiirerieeeee ettt 284
D r= 1D Lot VUSRS 286
FINAINGTNEODJECLS ... ettt ee s 288
Responsibilities, Collaborators, and ALITOULEScoerieieiiereeeee e 290
(O O O 0 ST 292
(@ S 1Y/ o0 (= £ PR 294
USE CASEIMOUEIS ...ttt st b e bt e e e e et et e neenne s 296
(@107 g1/ o L= 1RSSR 298
JUdgiNgtheDOMaINIMOGEcooiiieiee et b e b e e e e 300
= o ST 302
Tria SChEAUIE SNEEL ..o e 305
(@00 1N 16 T @ r= [oo SRS 306
COUISEROSES ...ttt e et h e e bt e e e eaeeeb e e bt e ae e sae e be e b e eneesae e b e ennesneeennannis 308

Chapter 15 - RequirementSand SPECITICAHIONcoereririierierie e naeas 311
B =TT = USSR 312
UNderstandthe PrOBDIEM ...ttt 314
SPECITY ASOIULION ...t ettt et et e b bt et et et e besbe b e e ne e e e e e neeneas 316
10100117/ SRS 318
THE COMPIEX USES ...ttt ettt ettt b e bt st et et e b e b e sbeebeene e e e e e neeneas 320
(0107 g 1Y o0 (= KSR 322
Judgingthe RequIreMENtSIMOEcoeiiiieieee et 324
0= o1 PP 326

Chapter 16- DeSigN Of OBJECEScoeiiiiiesiesieeesee ettt ae b sre e 329
9= o o RSSO 330
= 00100 PRSP 332
Design Of SOftWAIrEODJECLScoeeiiieie ettt st nee e 334
FFEELUIES ...ttt b et h e et e e s ae e e R e e s st e e Re e e b e e eae e e abe e e aneenne e e neenreean 336
1Y 12700 3RS 338
(@00] 1SS o a Lol IO 1= ot =T SR TP 340
CoupliNg BEtWEEN OJECES.ccueiueeiieieiesies ettt besbesaeese e e e eanaens 342
CoupliNg@NAVISIDIHILY ..ot e et e e 344
10107 1= oSSR 346
= o TP 348

© 2011 ITCourseware, LLC Rev6.3.2 Page vii

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

(@gT=0 (= G AERS VS (< 041 BT Lo o PSSP 351
9= o o USSR 352
ATFEIWRUIES ...ttt st b ettt et et et e s b e b e e bt e ne et et e nbenbenreens 354
(@ o)1= ol O 7= 1 o] o [OOSR 356
(@ o] 1Y/ o0 (= £ USRS PR 358
Lt = oo Y BIE='s = o 0SSR 360
e (1L aTo L1 ST @7 r= (oo USSR 362
PrintingtheCatalOg 1c.ooeeieeee et ne e 364
PrintingtheCatalOg I ..ot ee e 366
(@ o= o TSRS 368
F S 0 0 T [0SR 370
= o TP 372

Chapter 18 - REFACIONNG ... e veeeuertirtee ettt r e b sn et n e n e 375
G = o (01 o [SPR 376
ClUBSANA CUEBS ...ttt sttt e et b e b e e b e st et et e e et e sbesb e e beene e e et e nteseennens 378
HOW EO REFBCLON ...ttt bbbt e et et e nbenne e 380
A Few ReFACIONNG PAEINS.......couiiiieece ettt 382

APPENAIXA = UML SYNEBXeeeeiesieeieeiieieie sttt e s st e sbesbe s st e e et e seesbasbessesneeneans 385

ApPendix B - DeSIgN DY CONMIACTcoeeiiieiese et see e sne e 393
(00011 o £ PRSP URPR 394
ENTOrCING CONMMIALES. ...ttt sttt e e bbbt et e et et et e s besresne e e e e e e es 396
INNENTtANCEANA CONMIACES.......oeiiieciecieeee ettt sttt sa et srenae s enes 398

ApPPendiX C - UNIVErSITY SUMIMEIYcoueiiiieiisie st sieseeee et seesse st saessesse s e eeessessassessessessenns 401

Appendix D - Implementations- C++, Java, and CH.........c.ooeiiriieninre e 407
REGISIENNG TON ACOUISE ...ttt e bbbttt et st e s be s b s s s e et e e e e ee 410
(@ 1070/ 007 017 (oo SRR 411
= YL La010 L= 007 017 1 OSSR 428
@z [a0T0 1= 001 017 1o PP 443

10 110 ST 459

1070 1> PSP 493

Page viii Rev6.3.2 © 2011 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

CHAPTER 1 - COURSE INTRODUCTION

© 2011 ITCourseware, LLC Rev 6.3.2 Page 9

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

COURSE OBJECTIVES
% Apply the principals and practices of Object-Oriented Programming.

% Usemodeing in analysis and design, particularly in visual modeling.

% Usethe Unified Modeling Language to create visual models of business
problems and software solutions.

% Design programs with objects.

% Create more flexible and more maintainable software systems at lower costs.

Page 10 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

© 2011 ITCourseware, LLC Rev 6.3.2 Page 11

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

COURSE OVERVIEW
% Audience: Programmers, analysts and software designers.

% Prerequisites: Some exposure to the problems of analysis and design.
Experience with structured analysis and design, as well as object-oriented
programming, would be helpful.

% Note: Thiscourseisbased on UML Version 2.0, and occasionaly mentions
features from previous versions.

Page 12 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 1

COURSE INTRODUCTION

USING THE WORKBOOK

Thisworkbook designishbased on apage-pair, consisting of aTopic page and a Support page. When you
lay theworkbook openflat, the Topic pageison theleft and the Support pageisontheright. The Topic
page containsthe pointsto be discussed in class. The Support page has code examples, diagrams, screen
shotsand additional information. Hands On sections provide opportunitiesfor practical application of key
concepts. Try I't and Investigate sectionshelp direct individua discovery.

In addition, thereisan index for quick look-up. Printed |ab solutionsarein the back of the book aswell as

onlineif youneedalittlehelp.

The Topic page provides
the main topics for
classroom discussion.

The Support page has
additional information,
examples and suggestions.

JAVA SERVLETS

THE SERVLET LIFE CYCLE

The servlet container controls the life cycle of the servlet.

> ‘When the first request is received, the container loads the servlet class

Topics are organized into
first (3%), second (>») and
third (=) level points.

bntainer uses a separate thread to call

he container calls the destroy ()

As with Java’s finalize () method, don’t count on this being
called.

Override one of the init () methods for one-time initializations, instead of
using a constructor.

» The simplest form takes no parameters.
public void init() {...}

> If you need to know container-specific configuration information, use
the other version.

public void init (ServletConfig config) {...

‘Whenever you use the ServletConfig approach, always call the
superclass method, which performs additional initializations.

super.init (config) ;

CHAPTER 2 SERVLET BAsICs

Code examples arein a
Hands o fixed font and shaded. The
Addan init () method to your Zodzyservlet that initial on-line file name is listed
along with the current date: above the Shaded area

Today.java

public class Today extends GenericServlet {
private Date bornOn;
public void service (ServletRequest request,
ServletResponse response) throws ServletException, IOException

{

Callout boxes point out \viat was born on * + bornon.testring();

b " + today.toString());

important parts of the

example code. [e metads

called when the servlet is
loaded into the container.

2N hitp /Mo alhosl BUBIY examplos/senviel/ T oday - Meciosall Inbarmel it Eaplones

Fie Edt Viw Fovoides Joos Hel =
. A R A | 5 B- & =

Back. Stop ehresh Home Seawch Favorbes Ml Seo
L P p————y . =] @6o |[Leks®
- |

This servier vas born on Fri May 17 13:43:56 MDT 2002
It is now Fri May 17 13:43:56 HDT 2002

2] (The Local ntuanet J
“™ | Screen shots show P
Page 16 Rev2.0.0 ©2002 ITCourseware, LLC ©2002ITCoursew ex ampl es Of Wh at y ou Page 17
Pages are numbered should see in class.
sequentially throughout .
the book, making lookup
easy.
© 2011 ITCourseware, LLC Rev 6.3.2 Page 13

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

SUGGESTED REFERENCES

Ambler, Scott W. 2002. Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. John Wiley & Sons, New York, NY. ISBN 0471202827.

Beck, Kent and CynthiaAndres. 2004. Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading, MA. ISBN 0321278658.

Bellin, David and Susan Simone. 1997. The CRC Card Book. Addison-Wed ey, Reading, MA.
ISBN 0201895358.

Bentley, Jon. 1999. Programming Pearls. Addison-Wesley, Reading, MA. ISBN 0201657880.

Booch, Grady, James Rumbaugh and Ivar Jacobson. 2005. The Unified Modeling Language User
Guide, Second Edition. Addison-Wesley, Reading, MA. ISBN 0321267974.

Buschmann, Frank, et a. 1996. Pattern-Oriented Software Architecture, Volume 1. A System of
Patterns. Jonn Wiley & Sons, New York, NY. ISBN 0471958697.

Coad, Peter and Edward Yourdon. 1990. Object-Oriented Analysis, Second Edition. Yourdon Press/
PrenticeHall, Englewood Cliffs, NJ. ISBN 0136299814.

Coad, Peter and Edward Yourdon. 1991. Object-Oriented Design. Yourdon Press/Prentice Hall,
Englewood Cliffs, NJ. ISBN 0136300707

Cockburn, Alistair. 2001. Agile Softwar e Development. Addison-Wesley, Reading, MA.
ISBN 0201699699.

Cockburn, Alistair. 2000. Writing Effective Use Cases. Addison-Wesley, Reading, MA.
ISBN 0201702258.

Demarco, Tom and P. J. Plauger. 1979. Structured Analysis and System Specification. Prentice Hall,
Englewood Cliffs, NJ. ISBN 0138543801.

Fowler, Martin, et a. 1999. Refactoring: I mproving the Design of Existing Code. Addison-Wesley,
Reading, MA. ISBN 0201485672.

Fowler, Martin. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling Language,
Third Edition. Addison-Wesley, Reading, MA. ISBN 0321193687.

Freedman, Daniel P. and Gerald M. Weinberg. 1990. Handbook of Walkthroughs, | nspections, and
Technical Reviews. Evaluating Programs, Projects, and Products. Dorset House Publishing
Company, New York, NY. ISBN 0932633196.

Page 14 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

Gamma, Erich, et al. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA. ISBN 0201633612.

Highsmith I11, JamesA. 1999. Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House, New York, NY. ISBN 0932633404.

Hunt, Andrew and David Thomas. 1999. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, Reading, MA. ISBN 020161622X.

Jacobson, Ivar, Grady Booch and James Rumbaugh. 1999. The Unified Software Devel opment
Process. Addison-Wesley, Reading, MA. ISBN 0201571692.

Jones, T. Capers. 1994. Assessment and Control of Software Risks. Prentice Hall PTR, Englewood
Cliffs, NJ. ISBN 0137414064.

Kernighan, Brian W. and Rob Pike. 1999. The Practice of Programming. Addison-Wesley, Reading,
MA. ISBN 020161586X.

Kruchten, Philippe. 2003. The Rational Unified Process. An Introduction, Third Edition. Addison-
Wesley, Reading, MA. ISBN 0321197704.

Larman, Craig. 2004. Applying UML and Patterns : An Introduction to Object-Oriented Analysis
and Design and I terative Development, Third Edition. Prentice-Hall, Englewood Cliffs, NJ.
ISBN 0131489062.

McConnell, Steve. 2004. Code Complete: A Practical Handbook of Software Construction, Second
Edition. Microsoft Press, Redmond, WA. ISBN 0735619670.

McConnéll, Steve. 1997. Software Project Survival Guide. Microsoft Press, Redmond, WA.
ISBN 1572316217.

McLaughlin, Brett D., Gary Pollice and David West. 2006. Head First Object Oriented Analysisand
Design. O'Reilly Media. Sebastopol, CA. 1SBN 0596008678.

Meyer, Bertrand. 2000. Object-Oriented Software Construction, Second Edition. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0136291554.

Miles, Russell and Kim Hamilton. 2006. Learning UML 2.0. O'Rellly Media, Sebastopoal, CA.
ISBN 0596009828.

Page-Jones, Mellir. 1988. The Practical Guide to Structured System Design, Second Edition.
PrenticeHall PTR, Englewood Cliffs, NJ. ISBN 0136907695.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 15

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

SUGGESTED REFERENCES (CONT'D)

Page-Jones, Meilir. 1999. Fundamentals of Object-Oriented Design in UML. Addison-Wesley,
Reading, MA. ISBN 020169946X .

Pilone, Dan and Neil Pitman. 2005. UML 2.0in aNutshell. O'Reilly Media, Sebastopol, CA.
ISBN 0596007957.

Rumbaugh, James, Ivar Jacobson and Grady Booch. 2004. The Unified Modeling Language
Reference Manual, Second Edition. Addison-Wesley, Reading, MA. ISBN 0321245628.

Shlaer, Sally and Stephen J. Mellor. 1991. Object Lifecycles: Modeling the World in States. Yourdon
Press/Prentice Hall, Englewood Cliffs, NJ. ISBN 0136299407.

Shlaer, Sally and Stephen J. Méllor. 1988. Object-Oriented Systems Analysis. Modeling theWorld in
Data. Yourdon Press/Prentice Hall, Englewood Cliffs, NJ. ISBN 013629023X.

Wirfs-Brock, Rebecca, Brian Wilkerson and Lauren Wiener. 1990. Designing Object-Oriented
Software. Prentice Hall, Englewood Cliffs, NJ. ISBN 0136298257.

http://alistair.cockburn.us/index.php/Resources for_writing_use cases
http://www.agilealliance.org

http://mmww.junit.org

http://www.rational.com

Page 16 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

© 2011 ITCourseware, LLC Rev 6.3.2 Page 17

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

Page 18 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

CHAPTER 2 - INTRODUCTION TO ANALYSIS AND
DESIGN

s B
OBJECTIVES

% ldentify essentia problems and tasks of
software development.

% Describe basic concepts of modularity and
abstraction.

% Ouitline the concepts of Objects and Object-
Oriented Programming.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 19

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

WHY IS PROGRAMMING HARD?
% It's complicated.

> Computer programs are among the most complex things people build.
> Most people can only think of 7 £ 2 things at atime.
% It gets more complicated as the system gets bigger.

» Why isthe curve of effort vs. size exponential ?

. More communication links among programmers, designers,
analysts, clients, etc.
. M ore communication links among modulesin the system.

» Themost efficient software project is a single programmer working on a
program no one else will use. There's no communication.

|

effort
to
complete

size of system ——p

% Modularity helpsto flatten this curve.

» With good design and abstraction you can work on a module — a part of
the program — as though it were a single small program, and thus stay
toward the left end of the above graph.

» Thisworkseven whenit'sahigh-level module that uses several low-level
modules, if you properly define and constrain the interfaces.

Page 20 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

Miller, G A., "Themagica number seven, plusor minustwo: Somelimitson our capacity for processing
information.” Psychological Review, Vol. 63, March 1956, pp. 81 - 97. Miller'sresearch showed that
most people can only hold seven plusor minustwo thingsinworking memory at atime. Think about it when
you are designing menus. M ost of our model sand drawings should contain no morethan ninedifferent top-
leve artifacts.

Blaise Pascal, they say, once closed aletter by saying, "'I'm sorry thisletterissolong. | didn't havetimeto
makeit shorter.” Most of what we create will benefit fromtaking thetimeto makeit shorter. Text, models,
and code alike are clearer and communicate better if wetakethetimeto makethem concise, precise, and
elegant. Takethetime.

You haveaclient evenif you aren't aconsultant or acontractor. Your client isthe person who managesthe
group that needsthe system you areworking on. Often the client isthe person who asked for thework, or
the personwho paysfor it or whosedivision paysfor it. Usually the client isthe person who knows best
what thetop-level requirementsare. The usersareimportant, and your system must satisfy them, but they
often do not know all the needs of the business.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 21

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

THE TASKS OF SOFTWARE DEVELOPMENT
% Figure out what problem to solve or what system to build.

» Andyss
% Build the system to solve the problem.
> Design
> Implementation / Programming
% Anayssisharder.
> Most of the problem is communication: communication with the computer
and communication with people. The computer is easier, in spite of (or

perhaps because of) being so literal and requiring perfection in each detail.

% What tools do we use to manage complexity and help with communication?
(Not just in software, but everywhere.)

> Modules — Break ajob into ssimpler components such that if we complete
the components the job will be done.

> Models — Represent the problem, the solution, and their component parts
in such away as to enable us to work with the important aspects (for a
particular task) and ignore the rest.

> Formal Process — Organize the work so that we do everything important
with aminimum of non-productive effort.

Page 22 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

Wedividetheanayssintotwo parts: DomainAnayss, and Requirementsor SpecificationAnayss.

Domain Analysisisfinding out about the businessand its processes. Building acommon vocabulary with
thedomain people, users, clients. Understanding the context withinwhich our proposed system must
operate. And if thereisan existing system that oursisto replace, we should understand that aswell.

Requirements or Specification Analysis describes the system that will solve the client's problems,
characterizing it in such away and to such adepth that if we meet the specification we satisfy theclient.

It'snot possibleto perform either of these perfectly or completely. Thisisonereason we must deal with

changethroughout the process, aswe discover missing, incomplete, incons stent, or erroneous
Specifications.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 23

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

MODULES
% A moduleisapart of aprogram or model that can be considered as an entity
separate from the rest.

» A module has a purpose.

» A module has a specified interface through which it interacts with the rest
of the system.

» A moduleisabstract. It hidesits implementation, the details of its
operation, from the rest of the system.

% A module should have high cohesion.

> It should do one thing, have asingle responsibility, at itslevel of
abstraction.

% A module should have low coupling.

> It should be a black box. The modules that use it need not understand its
internal operation.

> Its external interface should be simple, narrow, and elegant.
% Thekind of module we will be most interested in during this course is the object.
» Wewill also see higher-level modulesthat contain multiple objects.

> Objects contain attributes (data) and methods (functions), and these are
modules, too.

Page 24 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

© 2011 ITCourseware, LLC Rev 6.3.2 Page 25

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

MODELS

*

The kind of model we will talk about most is an abstraction made up of modules
and rel ationships between them.

A\

Abstraction is ignoring those aspects of something that do not contribute
to your task in order to focus on those aspects that do.

A model displays afew aspects and hides all the others.

We try to use between nine and five important modules in each model.
These modules are all at about the same level of abstraction.

The parts we choose contribute to some particular understanding of the
thing model ed.

VVVYVYY

For example, the mathematics operations in our programs are abstractions.
When we add two simple integers in a program we don't know (or care) what's
going on at the level of the memory and the CPU registers. Instead, we are free
to concentrate on the logic of the program and on the way this addition will
contribute to some resullt.

> If we had to deal with addition at the byte level every time we added two
integers it would add considerable complexity to our task and divert our
attention fromthehigher-level logic.

This abstraction allows us to focus on just afew things at atime, and also
allows usto work at a constant level.

> People seem to perform better if they can work at afairly constant level of
abstraction. This seems particularly valuable in communication.
» And don't forget the magic number 7 + 2.

One of the most important attributes of a model, regardless of its perspective,
level, or purpose, isthat it is clear, and can be easily read and understood.

» Thisisasimportant as accuracy. If you cannot understand it you will
never know if it is accurate.

> Part of thisisthe artistic quality that we call "elegance.” Spend alittle
extra effort to make it clear and clean and pretty and simple. Elegant.

Page 26

Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

When Ford proposesto build anew car, they first build modelsof it. Inthe old daysthey'd build awooden
frame, cover it with clay, and carveit into the shape of the proposed body. Firstin miniature, later full size.
They'd probably modd severd variations. Findly they would paint thefina version and photograph it with
pretty people standing around it. Wasthisacar? Of course not. What wasit?An abstract representation of
asingleaspect of acar: the appearance. In other words, amodel. Today most of thisisdonewith
computers, but theideasarethe same.

Thisisn't theonly model of anew car, athoughit often seemslikethe most important one. (Aswith
computer programsthevisua impressioniscrucial.) Ford will aso build acomputer model of the
suspensionwith dl its partsand characteritics. Thiswill beaworking mode (athough today it'sacomputer
simulation with variablesfor spring ratesand pivot locations). Thenthey can exerciseit by subjectingitto
various s mulated bumpsat various s mulated speeds. They can calculatetheforces on the partsto seeif
they are strong enough, and theforces on therest of the car to seeif the passengerswill likeit. Perhaps
therewill aso bewind tunnel models, and coupled with the mathematical modelsof the proposed engine
they can calculate the performance and fuel mileage. ThusFord can find out alot about their design and can
make certainkindsof decisionsfairly cheaply, before making acommitment to meta and tooling.

Notethat each of these modelshas apurpose and each isan abstraction, each represents only one part of
thecar.

Some model sbecome central to your project and will be maintained and used forever. Otherswill bebuilt
only to solve animmediate problem and subsequently discarded. Maintainingamode canbemore
expensvethan buildingit (likeaprogram). Don't maintainit unlessyou makeaprofit ontheeffort. If you
choosenot tomaintainit, get rid of it immediately. The modd isoften |essvaluable than the thought and
planning that goesintoit.

Theultimate mode of softwareisthecode. In the beginning we design and model with diagramsand text.
Thenwewrite code. Wefind problemsand shortcuts, test and debug, find better waysto do things, and do
alot of low-level design aswego. Theresult doesnot exactly follow our models. Whether we update our
models, they arenever exactly likethe code. Thecoderules.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 27

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

MODELING

% Our choice of modelsto build is driven by our perception of the problem as
much asit drives our understanding of the problem.

> One of our many challenges will be to understand what the models are
telling us and change our ideas as we go forward.

» We have to start somewhere, guided by our best guesses based on our
experience, but then we must leave them behind and follow our models.

» Aswelearn, wefind it easier to decide what we need to model, which of
our existing models may no longer be relevant, and what we need to do
next.

% Determine the purpose of the model before building it.

> Not the purpose of the thing modeled, but the purpose of this particular
model in the development process.

> Put in the model only that which contributes to the purpose of the model.

> Don't try to tell everything you know in asingle model.

> Don't try to model everything.

* For each modd we must choose the level of abstraction.

» Thistoo will drive our understanding and be driven by it.
» Thistoo will become easier, more apparent, as we proceed.

% It'suseful for our modelsto be well grounded in redlity.

> Models derived from the domain communicate better with our clients,
users, and domain experts.

> Modules derived from the real world are more likely to be reusable.

> Models and modules derived from the domain have a characteristic kind
of unity and integrity and reality that is hard to create from scratch. They
model something that exists and works rather than something we imagine
might work if we could build it.

% TheUML isnot complete. Explore other kinds of models: Data Flow Diagrams,
Entity Relationship Diagrams, etc.

Page 28 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

What Makesa Modd: Text and Graphics

In our world there are many kinds of models, although we hardly ever build wooden formsand cover them
with clay. Most of our modelsaretext or graphic representations. Sometimeswe build asoftware model of
an agorithm or aprocessto test its speed or storage requirements. Sometimeswe model auser interfaceto
get the user'sopinion. But mostly we stick to text and graphics. Some prefer one, somethe other. Most
learn best with both: text with plenty of illustrations.

Saticvs. Dynamic

Some of thethingswemodel will be static and othersdynamic. A static model can represent astatic thing.
It can a so represent adynamic thing, but incompletely. A static model of adynamicthing isasnapshot,
changefrozen at aparticular moment, aparticular state. A dynamic model can represent adynamicthing
morecompletely.

Analysisvs. Synthesis

Analysisis describing something that exists and synthesis (design) is predicting something in the
process of creation. See Herbert Simon's Sciences of the Artificial for afascinating discussion of the
difference between synthesis and analysis, the difference between understanding something natural and
creating something artificial.

Iteration

Thefirst model you build may be perfect. It may not. Don't just build amodel and go on. Test your models,
consder other possiblewaysto do things, try modeling the subject in another form, seeif someoneese
thinksof itinadifferent way. Asyour experience with the problem grows, the chance of aninsight that
yieldsabetter model growstoo. However, beware of anaysisparalyss.

Feedback

Get asmuch feedback asyou can, soon and often. Usually thiswill befrom theusersand theclient. If you
areworking without it you are kidding somebody. The classic mistake hereisto build what we think they
need. That trick never works.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 29

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

PERSPECTIVE

% Insoftware engineering we view our work and build our models from three
different perspectives.

% Domain perspective (also called Conceptual or Essential perspective) is
concerned with the domain, the context of the problem.

» Theexisting business, its organization and operation.
» Anexisting system that our proposed system is to replace (if any).

% oecification or Requirements perspective is about what the proposed system
should do.

» The proposed system as seen from outside, by the users and the client.
» Therequirements.

% Design or Implementation perspective describes the internal organization and
operation of the system we propose to build.

» Themodulesthat will make up our proposed system and the way they will
work together to accomplish the tasks.

% Record the perspective of your diagrams and models.

> It may be obvious to you now, but not to someone else later (and you
may be that someone else on alater project).

Page 30 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

© 2011 ITCourseware, LLC Rev 6.3.2 Page 31

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

OBJECTS

*

*

Objects are better modules.
Objects give us more abstraction, better modularity, more flexibility.
> Now it's modularity of both function and data.

» We can encapsulate more in amodule and enforce the encapsulation in
ways that we could not before.

» Themodules are even further from the machine, closer to human thinking.

» The modules can represent artifacts from the problem and the problem
domain, from the world of the people rather than the world of the
compulter.

Before OOP we thought first of the operation: What's it do?

» After weworked that part out, sometimes along time later, we thought
about the data: What's it do it to?

> In OOP the data gets at least equal attention.
Each of these advances in abstraction, modeling, and modularity gave us the
power to build larger systems with less effort by managing communication

problems.

Objects help us to program the way we actually work in the real world instead of
the way we worked in school.

Page 32

Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

Much of thisjargon comesfrom the Smalltalk world, oncethe center of OO. A Smalltalk programmer says
"Object A sends message foo to object C" when aC++ programmer would say "Object A callsfunction foo
onobject C". They both mean the samething. What a Smalltalk programmer would call amethod aC++
programmer callsamember function. Physically they arefunctions, so physically some codein oneobject
callsafunctionthat belongsto another object, no matter how you say it.

Anthropomorphismin designing OO model sand programsisencouraged. Infact, it'sone of the advantages
of objects. Weall know that our programsdon't havetiny peopleins de doing thework, but it's often useful
tothink of modulesashaving desires, responsibilities, mental state smilar to that of ahuman.

Up until now we'vetalked mostly about software objects. It turnsout that objectsarea so quite useful as
modulesin modelsfor al the samereasons. Oneimportant difference, however, isthat in software objects
weenforcerulesabout information hiding and abstraction, whereasin objects used in model s of businesses
and suchwedon't try so hard to enforcetheserules. It'sthe difference between analysisand synthesis. In
software design wewant to build something good. In analysiswewant to model something that exists, beit
good or bad. Sometimesthisresultsin objectsyou wouldn't want to usein aprogram, but they arejust right
for modeling abusiness.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 33

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

CHANGE

%

Specifications change.

>
>

>
>
>

effort

make
change

This can cause poor communication between us and them.

They don't know what they need until we give them what they say they
want.

Specifications change as we (and they) learn more.

Specifications change as the business domain changes.

The later we change, the more it costs.

to

analysis design coding maintenance

The solid line above isthe classical curve of effort to change the system vs. the
point in the development cycle at which we begin. (The same graph describes
the cost of fixing abug vs. the length of time it went undiscovered.)

>
>

The solid graph is based on data from before OOP.

If we design and build good objects and maintain the structure of the
system every time we touch it we can flatten this curve into something
more like the dashed line.

It will always cost more to make a change as time passes, but we can keep
the curve from getting so steep.

OOP and OOD help usto do a better job in the real world, working with change
instead of fighting it or pretending we can contral it.

Page 34

Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

We haveto handle vague and changing requirements. We cannot force our clientsto work or think theway
wewant themto. Andif we couldit till wouldn't betheright thing for their businessesor ours. Theworldis
vague and constantly changing, and therate of changeisincreasing.

OO helps. If youdo agood job at the object level, it'smuch easier to changethe program later when you
know more. Wewant to flatten that curve.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 35

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

NEW PARADIGMS

*

Adopting new technology such as OOP is difficult, confusing, expensive, and
can frustrate both managers and programmers. Ignoring new technology is even
more expensive.

Training — More projects have foundered from too little training than from too

much.

Mentoring

> Some shops that have a training organization often send a teacher out as
mentor to ateam about to begin working with objects.

> Smaller organizations may find one or two devel opers who have the
experience, the knowledge, and the teaching ability to season ateam just
getting started. Be very good to them — you don't want to lose them.

> If there's no one availablein your organization who can take the mentor
role, you might consider bringing in aconsultant from outside: full time, if
the project is big enough, or part time to sit in on reviews and offer ideas.

» A good mentor can make the difference between success and failure.

There are insights that seem to come only from experience. And it'stime
well spent to look for just the right person: someone with both the
knowledge and the ability to communicateit.

L earn something new with each project, even if thereisacost. (Theresawaysa

cost.)

>
>

>

It should pay off later.

Sometimes what you learn is that a particular thing won't pay off later, and
that isvaluable too.

Sometimes you are better off to let someone else make that discovery and
tell you about it, but it's hard to see that ahead of time.

Read the literature, the books and the magazines and the websites. You are
crippled if you don't keep up.

Page 36

Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

© 2011 ITCourseware, LLC Rev 6.3.2 Page 37

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

LABS
(1) Haveyou ever participatedinasoftwareproject that failed?What causedit?

(2] Somegurusandtheir booksconsider model sand requirementsdocumentstobedeliverable
productsof thedevel opment process. What doyouthink?

Page 38 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 2 INTRODUCTION TO ANALYSIS AND DESIGN

© 2011 ITCourseware, LLC Rev 6.3.2 Page 39

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

Page 40 Rev 6.3.2

© 2011 ITCourseware, LLC

CHAPTER 9

AcCTIVITY DIAGRAMS

CHAPTER 9 - ACTIVITY DIAGRAMS

g OBJECTIVES
% Modd activities, such as complicated
algorithms and multi-branched user interfaces.
% Modd paraleism.
N
© 2011 ITCourseware, LLC Rev6.3.2 Page 177

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

ACTIVITY NOTATION
% Activity diagramsare similar to flow charts.

% Thenotation of activity diagramsis much the same asthat of state diagrams.
> The main difference is that most of the nodes in a state model are states

(although some may represent activities) while most of the nodesin an
activity model represent activities (although some of them may represent

states).
write a
_ (program @

% You can add details for the activity inside a rounded rectangle.

4)

write a
program

[many
bugs]

[few
bugs] (" debug the

/Kpro gram

- J

% Partly because most nodes are activities, most transitions are triggerless. When
the activity of the node is finished, the transition occurs.

% There can be guard conditions like those in state charts.

% Activity diagrams, like state charts, usually flow from left-to-right or from top-
to-bottom.

Page 178 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

The guard conditions should not alow ambiguity about what will happen in any situation.

A guard condition else will be trueif all other guards for transitions from the activity are false.
Transitions may have actions on them (/action) like transitionsin state diagrams, but it is unusual.
An activity takes up time; atransition (even if it has an action) is atomic and takes no time.

Activities have no internal transitions, or entry or exit actions.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 179

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

DECISIONS AND MERGES
% You can express testing of a program using a decision diamond.

[many
bugs]

[few
bugs] (debug the

rogram
[no bugs] /@
U

% If you believe the program needs to be checked again after debugging (whatever
are you thinking?) you can run the path back around through another diamond,

called amerge.

[many [few

bugs] bugs] | debug the
[no bugs]\]_ \ program)

> If it's got one in and more than one out, it's adecision and it'll have guard

conditions on the transitions from it.
> If it's got one out and more than onein, it'samerge and it won't have

guard conditions on the transition from it.

Page 180 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

© 2011 ITCourseware, LLC Rev 6.3.2 Page 181

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

FORKS AND JOINS

*

One of the strengths of activity diagramsistheir ability to model parallel
processes.

When a single transition encounters afork (heavy vertical or horizonta line) it
continues along the paths on the other side in parallel and asynchronously.

» Thisused to be called a synchronization bar.

> Parallel paths may be traversed any way at all.

> In the example on the facing page, you can first reach for a cup with your
right hand and then start pouring coffee into thefilter with your left while
you set the cup on the counter and reach for the water. Or you can
compl ete the paths one at atime from left-to-right. Or right-to-left.

» Three of you can work on it at the same time.

» Theonly restriction (in the first parallel section) isthat you'd better put the
coffeein thefilter before you put the filter in the machine.

A join (multiplein, single out) meansthat all the incoming transitions must
arrive before the outgoing transition may leave. It synchronizes the process.

> Don't turn on the machine before putting both the coffee filter (with
coffee) and the water init.

A join and fork can be combined and have multiple arrows arriving on one side,
and multiple arrowsleaving on the other. All the incoming transitions must arrive
before any of the outgoing transitions may leave.

Page 182

Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

N
look for | _
coffee RN [no coffee] /" \[no cola]

[cola]

[coffee]

rh

put water in

put coffee)
reservoir

in filter

get cups

put filter in
machine

get cans

of cola

turn on
machine

/coffeePot.on

brew coffee

pour coffee drink ()

Notethe action associated with onetransition. Thisdiagram was adapted from the UML standard, V1.4,
sec. 3.84.3.

© 2011 ITCourseware, LLC Rev 6.3.2 Page 183

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

DRILLING DOWN

%

The activity model on the previous page is on the complicated side of our magic
number rule, but activity diagrams are usually easier to understand than, say,
communication diagrams with the same number of nodes.

If we want to add detail to a section of this model we would probably do it on

another diagram, both to avoid making this one more complicated, and to avoid
adding material at adifferent level of abstraction. Thisis caled drilling down.

4 I N
(o) ()

[can
< unopened] find can
opener
[else]

open can

put coffee
in filter

We expanded the put coffee in filter node to create this new model with more
detail and mark it with arake.

» We could expand any of these nodes if we needed to. Finding the can
opener, for example, could turn into an adventure.

We probably should make notes on both of these diagrams that tie them
together. The CASE tools can help organize them for us.

Page 184

Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

Herethe elseis quite useful, as the alternative to an unopened can could be an open can, an open bag,
aclosedjar withalid, or aheap of coffeelying out onthe counter. Theelse coversall of these possibilities
and anythingwedidn't think of .

Thismode fitsin placeof the previousput coffeein filter node. Theentry and exit of that node
correspond to the start and endpoints of thismodel that expandsand explainsit.

A lot of businessand software processes could be much more parallel than they are. Often thisisbecause
we couldn't represent the parallelism, and thingsthat were represented sequentially became sequentid.
Now that we can represent it, we should be on thelookout for placesto go parallel. Many user interfaces,
for example, forcethe user to do thingsin aparticular order, no matter that another might bemore
convenient. Activity diagramsarevery good for modeling the back and forth of auser interface.

Investigate:
Why did we need the merge here? Couldn't we go down from open can to thejoin?

© 2011 ITCourseware, LLC Rev 6.3.2 Page 185

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

ITERATION
% We can model iteration on an activity diagram as we do on other dynamic
models.

> Note that the decisions and branches of control are clearer than they were
in sequence and communication models.

% Inthediagram on the facing page, the activity add item to order is done for
each item.

% UML 2.0 provides anotation for modeling looping in activity diagrams.

» Atypica loop hasthree parts. the setup, the body, and the test.
Test
Condition
Setup ‘ Body @
[true] (

> You can remodel the previous diagram using activity partitionsin asingle

node.

Setup

Body

Test
Condition

®

Page 186 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

Get First
Item

Add Item
\ to Order

Get Next

Item

‘ [more items]

[no more items]

Payment
Authorization| ~ - _

[no]

Put Items
In Box

[yes]
Cancel Process
Order Payment

Ship Order

© 2011 ITCourseware, LLC Rev 6.3.2 Page 187

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

PARTITIONS

% Thisactivity mode illustrates partitions (also known as swimlanes). The labeled
vertical bands show who is responsible for each of the activities.

> Use partitions when you need the activity model to show complicated
flow of control and who does what.

Page 188 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

orderClerk finance warehouse shipping

Get First
Item
Add Item
to Order

Get Next
Item

[no more]

Payment
Authorization| ~

[no]

Put Items
In Box

Cancel Process
Order Payment

I
I
I
[yes] |
I
I
I
I

Ship Order

© 2011 ITCourseware, LLC Rev 6.3.2 Page 189

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

SIGNALS

#* A gmpleactivity diagram has clearly-defined starting and ending points that
determine that program's runtime. Some applications need to respond to signals
generated externally from the application.

% UML 2.0 providesfor three types of signals: time signals, input signals, and
output signals.

» Timesignals specify an interval of time before asignal is produced.

> Input signals come from an outside source or process.

> Output signals are signals sent from your system to some outside system.
% Thefollowing diagram depicts a system that sends asignal to authorize a

payment and then waits 30 minutes for areply. If areply is not received, then the
authorization will assume to be declined.

Process

Authorization
>
> Confirmed Payment

Create Send
Authorization Authorization X

Wait
30 minutes

Reverse
Purchase

Page 190 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

© 2011 ITCourseware, LLC Rev 6.3.2 Page 191

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

PARAMETERS AND PINS

% You can specify input into an activity and output from an activity using
parameter nodes.

> Parameter nodes are rectangular boxes on the edges of an activity.
» Theinput parameter node must have an edge to the first action and the
output parameter node must have an edge from the final action.

Order Total Item Calculate Calculate Total
Cost Tax Shipping Cost

% Pinsareanotation in activity diagrams to depict input and output parameters.

% Inthefollowing diagram, the activity Ship Order requiresan order object from
Create Order.

Create order order Ship
Order Order
% If the output of an activity is an exception, then flag that pin with a small arrow

near the pin.
Order
Order o Cancellation

Problem
Exception

A
Create Ship
Order Order
order order

Page 192 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

UML 2.0 providesan aternate notation for exception handlesusinga'zig-zag" or "lightning bolt" instead of
markingapinwithatriangle:

Cancel

Order
Create Ship
Order Order

order order

© 2011 ITCourseware, LLC Rev 6.3.2 Page 193

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

EXPANSION REGIONS

% You can use expansion regions to show that an action or series of actions occur

on acollection of items.

% Thefollowing diagram depicts an activity that produces a collection of courses

that need to be processed.

Register
Courses 2 in Course M

Create
Course
Schedule

% Sometimes when processing a collection of items, one of the items may not be
able to be processed. In the previous example, one of the courses chosen may
have been closed. Just because some of the courses are closed does not mean

the student should not be registered for the rest.

% Flowfinalsindicate that one of the itemsin the collection may terminate, but the

rest should be processed.

Choose
Courses

Get
Course

/
.
-
.
||

[open] Student

\ to Roster

[closed]

Create

o — — — — ——

~ e e e e e e e e e e e = = — =

Course
Schedule

Page 194 Rev 6.3.2

© 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

© 2011 ITCourseware, LLC Rev 6.3.2 Page 195

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

USING ACTIVITY DIAGRAMS

% Activity diagrams are mostly about the flow of control. The activity model is
particularly good at showing complicated branching and parallelismin control,
but there isn't much information moving here.

% Activity diagrams are good for modeling the operation of an existing paper
system that you intend to replace, if it is more about control than information.

> If the information flow and manipulation isthe main thing, try dataflow
diagrams.

% Activity models are useful for modeling user interfaces.

% Activity models are often used to illustrate branching in the operation of use
cases.

% You can model complex algorithms you are going to use in the code for your
methods.

% Activity modelsare at homein all three perspectives. domain, requirements, and
design.

Page 196 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

© 2011 ITCourseware, LLC Rev 6.3.2 Page 197

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

LABS

(1) Create an activity diagram for the user interface to asimple Automatic Teller Machine
performingthewithdrawal operation. Includeasmuchparallelismaspossible.

Page 198 Rev 6.3.2 © 2011 ITCourseware, LLC

CHAPTER 9 ACTIVITY DIAGRAMS

© 2011 ITCourseware, LLC Rev 6.3.2 Page 199

OBJECT-ORIENTED ANALYSIS & DESIGN USING UML

Page 200 Rev 6.3.2 © 2011 ITCourseware, LLC

