
Object-Oriented
Analysis & Design

Using
The Unified Modeling

Language

Student Workbook

Page ii Rev 6.3.2 © 2011 ITCourseware, LLC

Object-Oriented Analysis & Design Using UML

Object-Oriented Analysis & Design Using the Unified Modeling
Language

Lynwood Wilson

Published by ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, CO 80112

Contributing Authors: John McAlister, Jamie Romero, Rick Sussenbach, and Rob Seitz.

Editors: Danielle Hopkins and Jan Waleri

Editorial Assistant: Dana Howell

Special thanks to: Many instructors whose ideas and careful review have contributed to the quality
of this workbook, offering comments, suggestions, criticisms, and insights.

Copyright © 2011 by ITCourseware, LLC. All rights reserved. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photo-copying, recording, or by
an information storage retrieval system, without permission in writing from the publisher. Inquiries should be
addressed to ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, Colorado, 80112.
(303) 302-5280.

All brand names, product names, trademarks, and registered trademarks are the property of their respective
owners.

© 2011 ITCourseware, LLC Rev 6.3.2 Page iii

Object-Oriented Analysis & Design Using UML

Contents

Chapter 1 - Course Introduction ... 9

Course Objectives .. 10
Course Overview .. 12
Using the Workbook ... 13
Suggested References ... 14

Suggested References (cont'd) .. 16

Chapter 2 - Introduction to Analysis and Design .. 19

Why is Programming Hard? .. 20
The Tasks of Software Development ... 22
Modules .. 24
Models ... 26
Modeling... 28
Perspective ... 30
Objects ... 32
Change ... 34
New Paradigms .. 36
Labs ... 38

Chapter 3 - Objects .. 41

Encapsulation .. 42
Abstraction ... 44
Objects ... 46
Classes ... 48
Responsibilities .. 50
Attributes .. 52
Composite Classes .. 54
Operations and Methods ... 56
Visibility .. 58
Inheritance .. 60
Inheritance Example .. 62
Protected and Package Visibility ... 64
Scope ... 66
Class Scope .. 68
Labs ... 70

Page iv Rev 6.3.2 © 2011 ITCourseware, LLC

Object-Oriented Analysis & Design Using UML

Chapter 4 - Advanced Objects ... 73

Constructors & Destructors .. 74
Instance Creation .. 76
Abstract Classes ... 78
Polymorphism ... 80
Polymorphism Example ... 82
Multiple Inheritance ... 84
Solving Multiple Inheritance Problems ... 86
Interfaces .. 88
Interfaces with Ball and Socket Notation ... 90
Templates.. 92
Labs ... 94

Chapter 5 - Classes and Their Relationships .. 97

Class Models .. 98
Associations .. 100
Multiplicity .. 102
Qualified Associations ... 104
Roles .. 106
Association Classes... 108
Composition and Aggregation.. 110
Dependencies ... 112
Using Class Models .. 114
Labs ... 116

Chapter 6 - Sequence Diagrams.. 119

Sequence Diagrams... 120
Interaction Frames .. 122
Decisions .. 124
Loops ... 126
Creating and Destroying Objects ... 128
Activation.. 130
Synchronous & Asynchronous... 132
Evaluating Sequence Diagrams .. 134
Using Sequence Diagrams ... 136
Labs ... 138

© 2011 ITCourseware, LLC Rev 6.3.2 Page v

Object-Oriented Analysis & Design Using UML

Chapter 7 - Communication Diagrams ... 141

Communication Diagrams .. 142
Communication and Class Diagrams .. 144
Evaluating Communication Diagrams ... 146
Using Communication Diagrams .. 148
Labs ... 150

Chapter 8 - State Machine Diagrams .. 153

What is State? ... 154
State Notation ... 156
Transitions and Guards .. 158
Registers and Actions .. 160
More Actions .. 162
Internal Transitions .. 164
Superstates and Substates ... 166
Concurrent States ... 168
Using State Machines .. 170
Implementation .. 172
Labs ... 174

Chapter 9 - Activity Diagrams ... 177

Activity Notation ... 178
Decisions and Merges ... 180
Forks and Joins ... 182
Drilling Down .. 184
Iteration .. 186
Partitions ... 188
Signals .. 190
Parameters and Pins .. 192
Expansion Regions .. 194
Using Activity Diagrams .. 196
Labs ... 198

Chapter 10 - Supplemental UML Diagrams... 201

Modeling Groups of Elements - Package Diagrams ... 202
Visibility and Importing .. 204
Structural Diagrams ... 206
Components and Interfaces ... 208

Page vi Rev 6.3.2 © 2011 ITCourseware, LLC

Object-Oriented Analysis & Design Using UML

Deployment Diagram... 210
Composite Structure Diagrams .. 212
Timing Diagrams .. 214
Interaction Overview Diagrams ... 216
Labs ... 218

Chapter 11 - Use Cases .. 221

Use Cases... 222
Use Case Diagram Components ... 224
Use Case Diagram .. 226
Actor Generalizations .. 228
Include .. 230
Extend .. 232
Specialize .. 234
Other Systems .. 236
Narrative... 238
Template for Use Case Narrative .. 240
Using Use Cases ... 242
Labs ... 244

Chapter 12 - Process .. 247

Process ... 248
Risk Management ... 250
Test ... 252
Reviews .. 254
Refactoring.. 256
History .. 258
The Unified Process .. 260
Agile Processes ... 262
Labs ... 264

Chapter 13 - The Project .. 267

Inception ... 268
Elaboration.. 270
Elaboration II .. 272
Construction Iterations .. 274
Construction Iterations — The Other Stuff .. 276
Labs ... 278

© 2011 ITCourseware, LLC Rev 6.3.2 Page vii

Object-Oriented Analysis & Design Using UML

Chapter 14 - Domain Analysis ... 281

Chapter Note .. 282
Top View — The Domain Perspective .. 284
Data Dictionary ... 286
Finding the Objects ... 288
Responsibilities, Collaborators, and Attributes ... 290
CRC Cards .. 292
Class Models .. 294
Use Case Models ... 296
Other Models ... 298
Judging the Domain Model .. 300
Labs ... 302
Trial Schedule Sheet .. 305
Course Catalog ... 306
Course Roster ... 308

Chapter 15 - Requirements and Specification .. 311

The Goals ... 312
Understand the Problem .. 314
Specify a Solution ... 316
Prototyping ... 318
The Complex User .. 320
Other Models .. 322
Judging the Requirements Model ... 324
Labs ... 326

Chapter 16 - Design of Objects .. 329

Design ... 330
Factoring... 332
Design of Software Objects .. 334
Features .. 336
Methods ... 338
Cohesion of Objects ... 340
Coupling Between Objects .. 342
Coupling and Visibility ... 344
Inheritance .. 346
Labs ... 348

Page viii Rev 6.3.2 © 2011 ITCourseware, LLC

Object-Oriented Analysis & Design Using UML

Chapter 17 - System Design ... 351

Design ... 352
A Few Rules ... 354
Object Creation .. 356
Class Models .. 358
Interaction Diagrams ... 360
Printing the Catalog ... 362
Printing the Catalog II ... 364
Printing the Catalog III .. 366
Object Links ... 368
Associations .. 370
Labs ... 372

Chapter 18 - Refactoring... 375

Refactoring.. 376
Clues and Cues ... 378
How to Refactor ... 380
A Few Refactoring Patterns ... 382

Appendix A - UML Syntax ... 385

Appendix B - Design by Contract ... 393

Contracts .. 394
Enforcing Contracts ... 396
Inheritance and Contracts .. 398

Appendix C - University Summary .. 401

Appendix D - Implementations - C++, Java, and C#... 407

Registering for a Course .. 410
C++ Implementation ... 411
Java Implementation .. 428
C# Implementation .. 443

Solutions ... 459

Index... 493

Course Introduction

© 2011 ITCourseware, LLC Rev 6.3.2 Page 9

Chapter 1

Chapter 1 - Course Introduction

Object-Oriented Analysis & Design Using UML

Page 10 Rev 6.3.2 © 2011 ITCourseware, LLC

Apply the principals and practices of Object-Oriented Programming.

Use modeling in analysis and design, particularly in visual modeling.

Use the Unified Modeling Language to create visual models of business
problems and software solutions.

Design programs with objects.

Create more flexible and more maintainable software systems at lower costs.

Course Objectives

Course Introduction

© 2011 ITCourseware, LLC Rev 6.3.2 Page 11

Chapter 1

Object-Oriented Analysis & Design Using UML

Page 12 Rev 6.3.2 © 2011 ITCourseware, LLC

Audience: Programmers, analysts and software designers.

Prerequisites: Some exposure to the problems of analysis and design.
Experience with structured analysis and design, as well as object-oriented
programming, would be helpful.

Note: This course is based on UML Version 2.0, and occasionally mentions
features from previous versions.

Course Overview

Course Introduction

© 2011 ITCourseware, LLC Rev 6.3.2 Page 13

Chapter 1

Using the Workbook

Chapter 2 Servlet Basics

© 2002 ITCourseware, LLC Rev 2.0.0 Page 17

Add an init() method to your Today servlet that initializes a bornOn date, then print the bornOn date

along with the current date:

Today.java

...

public class Today extends GenericServlet {

private Date bornOn;

public void service(ServletRequest request,

ServletResponse response) throws ServletException, IOException

{

...

// Write the document

out.println("This servlet was born on " + bornOn.toString());

out.println("It is now " + today.toString());

}

public void init() {

bornOn = new Date();

}

}

Hands On:

The init() method is

called when the servlet is

loaded into the container.

This workbook design is based on a page-pair, consisting of a Topic page and a Support page. When you
lay the workbook open flat, the Topic page is on the left and the Support page is on the right. The Topic
page contains the points to be discussed in class. The Support page has code examples, diagrams, screen
shots and additional information. Hands On sections provide opportunities for practical application of key
concepts. Try It and Investigate sections help direct individual discovery.

In addition, there is an index for quick look-up. Printed lab solutions are in the back of the book as well as
online if you need a little help.

Java Servlets

Page 16 Rev 2.0.0 © 2002 ITCourseware, LLC

� The servlet container controls the life cycle of the servlet.

� When the first request is received, the container loads the servlet class

and calls the init() method.

� For every request, the container uses a separate thread to call

the service() method.

� When the servlet is unloaded, the container calls the destroy()

method.

� As with Java’s finalize() method, don’t count on this being

called.

� Override one of the init() methods for one-time initializations, instead of

using a constructor.

� The simplest form takes no parameters.

public void init() {...}

� If you need to know container-specific configuration information, use

the other version.

public void init(ServletConfig config) {...

� Whenever you use the ServletConfig approach, always call the

superclass method, which performs additional initializations.

super.init(config);

The Servlet Life Cycle

The Topic page provides
the main topics for

classroom discussion.

The Support page has
additional information,

examples and suggestions.

Code examples are in a
fixed font and shaded. The
on-line file name is listed
above the shaded area.

Screen shots show
examples of what you
should see in class.

Topics are organized into
first (), second () and

third () level points.

Pages are numbered
sequentially throughout

the book, making lookup
easy.

Callout boxes point out
important parts of the

example code.

Object-Oriented Analysis & Design Using UML

Page 14 Rev 6.3.2 © 2011 ITCourseware, LLC

Ambler, Scott W. 2002. Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. John Wiley & Sons, New York, NY. ISBN 0471202827.

Beck, Kent and Cynthia Andres. 2004. Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading, MA. ISBN 0321278658.

Bellin, David and Susan Simone. 1997. The CRC Card Book. Addison-Wesley, Reading, MA.
ISBN 0201895358.

Bentley, Jon. 1999. Programming Pearls. Addison-Wesley, Reading, MA. ISBN 0201657880.

Booch, Grady, James Rumbaugh and Ivar Jacobson. 2005. The Unified Modeling Language User
Guide, Second Edition. Addison-Wesley, Reading, MA. ISBN 0321267974.

Buschmann, Frank, et al. 1996. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. John Wiley & Sons, New York, NY. ISBN 0471958697.

Coad, Peter and Edward Yourdon. 1990. Object-Oriented Analysis, Second Edition. Yourdon Press/
Prentice Hall, Englewood Cliffs, NJ. ISBN 0136299814.

Coad, Peter and Edward Yourdon. 1991. Object-Oriented Design. Yourdon Press/Prentice Hall,
Englewood Cliffs, NJ. ISBN 0136300707.

Cockburn, Alistair. 2001. Agile Software Development. Addison-Wesley, Reading, MA.
ISBN 0201699699.

Cockburn, Alistair. 2000. Writing Effective Use Cases. Addison-Wesley, Reading, MA.
 ISBN 0201702258.

Demarco, Tom and P. J. Plauger. 1979. Structured Analysis and System Specification. Prentice Hall,
Englewood Cliffs, NJ. ISBN 0138543801.

Fowler, Martin, et al. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading, MA. ISBN 0201485672.

Fowler, Martin. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling Language,
Third Edition. Addison-Wesley, Reading, MA. ISBN 0321193687.

Freedman, Daniel P. and Gerald M. Weinberg. 1990. Handbook of Walkthroughs, Inspections, and
Technical Reviews: Evaluating Programs, Projects, and Products. Dorset House Publishing
Company, New York, NY. ISBN 0932633196.

Suggested References

Course Introduction

© 2011 ITCourseware, LLC Rev 6.3.2 Page 15

Chapter 1

Gamma, Erich, et al. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA. ISBN 0201633612.

Highsmith III, James A. 1999. Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House, New York, NY. ISBN 0932633404.

Hunt, Andrew and David Thomas. 1999. The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, Reading, MA. ISBN 020161622X.

Jacobson, Ivar, Grady Booch and James Rumbaugh. 1999. The Unified Software Development
Process. Addison-Wesley, Reading, MA. ISBN 0201571692.

Jones, T. Capers. 1994. Assessment and Control of Software Risks. Prentice Hall PTR, Englewood
Cliffs, NJ. ISBN 0137414064.

Kernighan, Brian W. and Rob Pike. 1999. The Practice of Programming. Addison-Wesley, Reading,
MA. ISBN 020161586X.

Kruchten, Philippe. 2003. The Rational Unified Process: An Introduction, Third Edition. Addison-
Wesley, Reading, MA. ISBN 0321197704.

Larman, Craig. 2004. Applying UML and Patterns : An Introduction to Object-Oriented Analysis
and Design and Iterative Development, Third Edition. Prentice-Hall, Englewood Cliffs, NJ.
ISBN 0131489062.

McConnell, Steve. 2004. Code Complete: A Practical Handbook of Software Construction, Second
Edition. Microsoft Press, Redmond, WA. ISBN 0735619670.

McConnell, Steve. 1997. Software Project Survival Guide. Microsoft Press, Redmond, WA.
 ISBN 1572316217.

McLaughlin, Brett D., Gary Pollice and David West. 2006. Head First Object Oriented Analysis and
Design. O'Reilly Media. Sebastopol, CA. ISBN 0596008678.

Meyer, Bertrand. 2000. Object-Oriented Software Construction, Second Edition. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0136291554.

Miles, Russell and Kim Hamilton. 2006. Learning UML 2.0. O'Reilly Media, Sebastopol, CA.
ISBN 0596009828.

Page-Jones, Meilir. 1988. The Practical Guide to Structured System Design, Second Edition.
Prentice Hall PTR, Englewood Cliffs, NJ. ISBN 0136907695.

Object-Oriented Analysis & Design Using UML

Page 16 Rev 6.3.2 © 2011 ITCourseware, LLC

Page-Jones, Meilir. 1999. Fundamentals of Object-Oriented Design in UML. Addison-Wesley,
Reading, MA. ISBN 020169946X.

Pilone, Dan and Neil Pitman. 2005. UML 2.0 in a Nutshell. O'Reilly Media, Sebastopol, CA.
ISBN 0596007957.

Rumbaugh, James, Ivar Jacobson and Grady Booch. 2004. The Unified Modeling Language
Reference Manual, Second Edition. Addison-Wesley, Reading, MA. ISBN 0321245628.

Shlaer, Sally and Stephen J. Mellor. 1991. Object Lifecycles: Modeling the World in States. Yourdon
Press/Prentice Hall, Englewood Cliffs, NJ. ISBN 0136299407.

Shlaer, Sally and Stephen J. Mellor. 1988. Object-Oriented Systems Analysis: Modeling the World in
Data. Yourdon Press/Prentice Hall, Englewood Cliffs, NJ. ISBN 013629023X.

Wirfs-Brock, Rebecca, Brian Wilkerson and Lauren Wiener. 1990. Designing Object-Oriented
Software. Prentice Hall, Englewood Cliffs, NJ. ISBN 0136298257.

http://alistair.cockburn.us/index.php/Resources_for_writing_use_cases
http://www.agilealliance.org
http://www.junit.org
http://www.rational.com

Suggested References (cont'd)

Course Introduction

© 2011 ITCourseware, LLC Rev 6.3.2 Page 17

Chapter 1

Object-Oriented Analysis & Design Using UML

Page 18 Rev 6.3.2 © 2011 ITCourseware, LLC

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 19

Chapter 2 - Introduction to Analysis and
Design

Objectives

Identify essential problems and tasks of
software development.

Describe basic concepts of modularity and
abstraction.

Outline the concepts of Objects and Object-
Oriented Programming.

Object-Oriented Analysis & Design Using UML

Page 20 Rev 6.3.2 © 2011 ITCourseware, LLC

It's complicated.

Computer programs are among the most complex things people build.

Most people can only think of 7 ± 2 things at a time.

It gets more complicated as the system gets bigger.

Why is the curve of effort vs. size exponential?

More communication links among programmers, designers,
analysts, clients, etc.
More communication links among modules in the system.

The most efficient software project is a single programmer working on a
program no one else will use. There's no communication.

Modularity helps to flatten this curve.

With good design and abstraction you can work on a module — a part of
the program — as though it were a single small program, and thus stay
toward the left end of the above graph.

This works even when it's a high-level module that uses several low-level
modules, if you properly define and constrain the interfaces.

Why is Programming Hard?

size of system

effort

to

complete

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 21

Miller, G. A., "The magical number seven, plus or minus two: Some limits on our capacity for processing
information." Psychological Review, Vol. 63, March 1956, pp. 81 - 97. Miller's research showed that
most people can only hold seven plus or minus two things in working memory at a time. Think about it when
you are designing menus. Most of our models and drawings should contain no more than nine different top-
level artifacts.

Blaise Pascal, they say, once closed a letter by saying, "I'm sorry this letter is so long. I didn't have time to
make it shorter." Most of what we create will benefit from taking the time to make it shorter. Text, models,
and code alike are clearer and communicate better if we take the time to make them concise, precise, and
elegant. Take the time.

You have a client even if you aren't a consultant or a contractor. Your client is the person who manages the
group that needs the system you are working on. Often the client is the person who asked for the work, or
the person who pays for it or whose division pays for it. Usually the client is the person who knows best
what the top-level requirements are. The users are important, and your system must satisfy them, but they
often do not know all the needs of the business.

Object-Oriented Analysis & Design Using UML

Page 22 Rev 6.3.2 © 2011 ITCourseware, LLC

Figure out what problem to solve or what system to build.

Analysis

Build the system to solve the problem.

Design

Implementation / Programming

Analysis is harder.

Most of the problem is communication: communication with the computer
and communication with people. The computer is easier, in spite of (or
perhaps because of) being so literal and requiring perfection in each detail.

What tools do we use to manage complexity and help with communication?
(Not just in software, but everywhere.)

Modules — Break a job into simpler components such that if we complete
the components the job will be done.

Models — Represent the problem, the solution, and their component parts
in such a way as to enable us to work with the important aspects (for a
particular task) and ignore the rest.

Formal Process — Organize the work so that we do everything important
with a minimum of non-productive effort.

The Tasks of Software Development

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 23

We divide the analysis into two parts: Domain Analysis, and Requirements or Specification Analysis.

Domain Analysis is finding out about the business and its processes. Building a common vocabulary with
the domain people, users, clients. Understanding the context within which our proposed system must
operate. And if there is an existing system that ours is to replace, we should understand that as well.

Requirements or Specification Analysis describes the system that will solve the client's problems,
characterizing it in such a way and to such a depth that if we meet the specification we satisfy the client.

It's not possible to perform either of these perfectly or completely. This is one reason we must deal with
change throughout the process, as we discover missing, incomplete, inconsistent, or erroneous
specifications.

Object-Oriented Analysis & Design Using UML

Page 24 Rev 6.3.2 © 2011 ITCourseware, LLC

Modules
A module is a part of a program or model that can be considered as an entity
separate from the rest.

A module has a purpose.

A module has a specified interface through which it interacts with the rest
of the system.

A module is abstract. It hides its implementation, the details of its
operation, from the rest of the system.

A module should have high cohesion.

It should do one thing, have a single responsibility, at its level of
abstraction.

A module should have low coupling.

It should be a black box. The modules that use it need not understand its
internal operation.

Its external interface should be simple, narrow, and elegant.

The kind of module we will be most interested in during this course is the object.

We will also see higher-level modules that contain multiple objects.

Objects contain attributes (data) and methods (functions), and these are
modules, too.

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 25

Object-Oriented Analysis & Design Using UML

Page 26 Rev 6.3.2 © 2011 ITCourseware, LLC

Models
The kind of model we will talk about most is an abstraction made up of modules
and relationships between them.

Abstraction is ignoring those aspects of something that do not contribute
to your task in order to focus on those aspects that do.
A model displays a few aspects and hides all the others.
We try to use between nine and five important modules in each model.
These modules are all at about the same level of abstraction.
The parts we choose contribute to some particular understanding of the
thing modeled.

For example, the mathematics operations in our programs are abstractions.
When we add two simple integers in a program we don't know (or care) what's
going on at the level of the memory and the CPU registers. Instead, we are free
to concentrate on the logic of the program and on the way this addition will
contribute to some result.

If we had to deal with addition at the byte level every time we added two
integers it would add considerable complexity to our task and divert our
attention from the higher-level logic.

This abstraction allows us to focus on just a few things at a time, and also
allows us to work at a constant level.

People seem to perform better if they can work at a fairly constant level of
abstraction. This seems particularly valuable in communication.
And don't forget the magic number 7 ± 2.

One of the most important attributes of a model, regardless of its perspective,
level, or purpose, is that it is clear, and can be easily read and understood.

This is as important as accuracy. If you cannot understand it you will
never know if it is accurate.
Part of this is the artistic quality that we call "elegance." Spend a little
extra effort to make it clear and clean and pretty and simple. Elegant.

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 27

When Ford proposes to build a new car, they first build models of it. In the old days they'd build a wooden
frame, cover it with clay, and carve it into the shape of the proposed body. First in miniature, later full size.
They'd probably model several variations. Finally they would paint the final version and photograph it with
pretty people standing around it. Was this a car? Of course not. What was it? An abstract representation of
a single aspect of a car: the appearance. In other words, a model. Today most of this is done with
computers, but the ideas are the same.

This isn't the only model of a new car, although it often seems like the most important one. (As with
computer programs the visual impression is crucial.) Ford will also build a computer model of the
suspension with all its parts and characteristics. This will be a working model (although today it's a computer
simulation with variables for spring rates and pivot locations). Then they can exercise it by subjecting it to
various simulated bumps at various simulated speeds. They can calculate the forces on the parts to see if
they are strong enough, and the forces on the rest of the car to see if the passengers will like it. Perhaps
there will also be wind tunnel models, and coupled with the mathematical models of the proposed engine
they can calculate the performance and fuel mileage. Thus Ford can find out a lot about their design and can
make certain kinds of decisions fairly cheaply, before making a commitment to metal and tooling.

Note that each of these models has a purpose and each is an abstraction, each represents only one part of
the car.

Some models become central to your project and will be maintained and used forever. Others will be built
only to solve an immediate problem and subsequently discarded. Maintaining a model can be more
expensive than building it (like a program). Don't maintain it unless you make a profit on the effort. If you
choose not to maintain it, get rid of it immediately. The model is often less valuable than the thought and
planning that goes into it.

The ultimate model of software is the code. In the beginning we design and model with diagrams and text.
Then we write code. We find problems and shortcuts, test and debug, find better ways to do things, and do
a lot of low-level design as we go. The result does not exactly follow our models. Whether we update our
models, they are never exactly like the code. The code rules.

Object-Oriented Analysis & Design Using UML

Page 28 Rev 6.3.2 © 2011 ITCourseware, LLC

Modeling
Our choice of models to build is driven by our perception of the problem as
much as it drives our understanding of the problem.

One of our many challenges will be to understand what the models are
telling us and change our ideas as we go forward.
We have to start somewhere, guided by our best guesses based on our
experience, but then we must leave them behind and follow our models.
As we learn, we find it easier to decide what we need to model, which of
our existing models may no longer be relevant, and what we need to do
next.

Determine the purpose of the model before building it.

Not the purpose of the thing modeled, but the purpose of this particular
model in the development process.
Put in the model only that which contributes to the purpose of the model.
Don't try to tell everything you know in a single model.
Don't try to model everything.

For each model we must choose the level of abstraction.

This too will drive our understanding and be driven by it.
This too will become easier, more apparent, as we proceed.

It's useful for our models to be well grounded in reality.

Models derived from the domain communicate better with our clients,
users, and domain experts.
Modules derived from the real world are more likely to be reusable.
Models and modules derived from the domain have a characteristic kind
of unity and integrity and reality that is hard to create from scratch. They
model something that exists and works rather than something we imagine
might work if we could build it.

The UML is not complete. Explore other kinds of models: Data Flow Diagrams,
Entity Relationship Diagrams, etc.

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 29

What Makes a Model: Text and Graphics
In our world there are many kinds of models, although we hardly ever build wooden forms and cover them
with clay. Most of our models are text or graphic representations. Sometimes we build a software model of
an algorithm or a process to test its speed or storage requirements. Sometimes we model a user interface to
get the user's opinion. But mostly we stick to text and graphics. Some prefer one, some the other. Most
learn best with both: text with plenty of illustrations.

Static vs. Dynamic
Some of the things we model will be static and others dynamic. A static model can represent a static thing.
It can also represent a dynamic thing, but incompletely. A static model of a dynamic thing is a snapshot,
change frozen at a particular moment, a particular state. A dynamic model can represent a dynamic thing
more completely.

Analysis vs. Synthesis
Analysis is describing something that exists and synthesis (design) is predicting something in the
process of creation. See Herbert Simon's Sciences of the Artificial for a fascinating discussion of the
difference between synthesis and analysis, the difference between understanding something natural and
creating something artificial.

Iteration
The first model you build may be perfect. It may not. Don't just build a model and go on. Test your models,
consider other possible ways to do things, try modeling the subject in another form, see if someone else
thinks of it in a different way. As your experience with the problem grows, the chance of an insight that
yields a better model grows too. However, beware of analysis paralysis.

Feedback
Get as much feedback as you can, soon and often. Usually this will be from the users and the client. If you
are working without it you are kidding somebody. The classic mistake here is to build what we think they
need. That trick never works.

Object-Oriented Analysis & Design Using UML

Page 30 Rev 6.3.2 © 2011 ITCourseware, LLC

Perspective
In software engineering we view our work and build our models from three
different perspectives.

Domain perspective (also called Conceptual or Essential perspective) is
concerned with the domain, the context of the problem.

The existing business, its organization and operation.

An existing system that our proposed system is to replace (if any).

Specification or Requirements perspective is about what the proposed system
should do.

The proposed system as seen from outside, by the users and the client.

The requirements.

Design or Implementation perspective describes the internal organization and
operation of the system we propose to build.

The modules that will make up our proposed system and the way they will
work together to accomplish the tasks.

Record the perspective of your diagrams and models.

It may be obvious to you now, but not to someone else later (and you
may be that someone else on a later project).

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 31

Object-Oriented Analysis & Design Using UML

Page 32 Rev 6.3.2 © 2011 ITCourseware, LLC

Objects
Objects are better modules.

Objects give us more abstraction, better modularity, more flexibility.

Now it's modularity of both function and data.

We can encapsulate more in a module and enforce the encapsulation in
ways that we could not before.

The modules are even further from the machine, closer to human thinking.

The modules can represent artifacts from the problem and the problem
domain, from the world of the people rather than the world of the
computer.

Before OOP we thought first of the operation: What's it do?

After we worked that part out, sometimes a long time later, we thought
about the data: What's it do it to?

In OOP the data gets at least equal attention.

Each of these advances in abstraction, modeling, and modularity gave us the
power to build larger systems with less effort by managing communication
problems.

Objects help us to program the way we actually work in the real world instead of
the way we worked in school.

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 33

Much of this jargon comes from the Smalltalk world, once the center of OO. A Smalltalk programmer says
"Object A sends message foo to object C" when a C++ programmer would say "Object A calls function foo
on object C". They both mean the same thing. What a Smalltalk programmer would call a method a C++
programmer calls a member function. Physically they are functions, so physically some code in one object
calls a function that belongs to another object, no matter how you say it.

Anthropomorphism in designing OO models and programs is encouraged. In fact, it's one of the advantages
of objects. We all know that our programs don't have tiny people inside doing the work, but it's often useful
to think of modules as having desires, responsibilities, mental state similar to that of a human.

Up until now we've talked mostly about software objects. It turns out that objects are also quite useful as
modules in models for all the same reasons. One important difference, however, is that in software objects
we enforce rules about information hiding and abstraction, whereas in objects used in models of businesses
and such we don't try so hard to enforce these rules. It's the difference between analysis and synthesis. In
software design we want to build something good. In analysis we want to model something that exists, be it
good or bad. Sometimes this results in objects you wouldn't want to use in a program, but they are just right
for modeling a business.

Object-Oriented Analysis & Design Using UML

Page 34 Rev 6.3.2 © 2011 ITCourseware, LLC

Specifications change.

This can cause poor communication between us and them.
They don't know what they need until we give them what they say they
want.
Specifications change as we (and they) learn more.
Specifications change as the business domain changes.
The later we change, the more it costs.

The solid line above is the classical curve of effort to change the system vs. the
point in the development cycle at which we begin. (The same graph describes
the cost of fixing a bug vs. the length of time it went undiscovered.)

The solid graph is based on data from before OOP.
If we design and build good objects and maintain the structure of the
system every time we touch it we can flatten this curve into something
more like the dashed line.
It will always cost more to make a change as time passes, but we can keep
the curve from getting so steep.

OOP and OOD help us to do a better job in the real world, working with change
instead of fighting it or pretending we can control it.

Change

analysis

effort

to

make

change

design coding maintenance

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 35

We have to handle vague and changing requirements. We cannot force our clients to work or think the way
we want them to. And if we could it still wouldn't be the right thing for their businesses or ours. The world is
vague and constantly changing, and the rate of change is increasing.

OO helps. If you do a good job at the object level, it's much easier to change the program later when you
know more. We want to flatten that curve.

Object-Oriented Analysis & Design Using UML

Page 36 Rev 6.3.2 © 2011 ITCourseware, LLC

New Paradigms
Adopting new technology such as OOP is difficult, confusing, expensive, and
can frustrate both managers and programmers. Ignoring new technology is even
more expensive.

Training — More projects have foundered from too little training than from too
much.

Mentoring

Some shops that have a training organization often send a teacher out as
mentor to a team about to begin working with objects.
Smaller organizations may find one or two developers who have the
experience, the knowledge, and the teaching ability to season a team just
getting started. Be very good to them — you don't want to lose them.
If there's no one available in your organization who can take the mentor
role, you might consider bringing in a consultant from outside: full time, if
the project is big enough, or part time to sit in on reviews and offer ideas.
A good mentor can make the difference between success and failure.
There are insights that seem to come only from experience. And it's time
well spent to look for just the right person: someone with both the
knowledge and the ability to communicate it.

Learn something new with each project, even if there is a cost. (There's always a
cost.)

It should pay off later.
Sometimes what you learn is that a particular thing won't pay off later, and
that is valuable too.
Sometimes you are better off to let someone else make that discovery and
tell you about it, but it's hard to see that ahead of time.
Read the literature, the books and the magazines and the websites. You are
crippled if you don't keep up.

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 37

Object-Oriented Analysis & Design Using UML

Page 38 Rev 6.3.2 © 2011 ITCourseware, LLC

Have you ever participated in a software project that failed? What caused it?

Some gurus and their books consider models and requirements documents to be deliverable
products of the development process. What do you think?

Labs

Chapter 2 Introduction to Analysis and Design

© 2011 ITCourseware, LLC Rev 6.3.2 Page 39

Object-Oriented Analysis & Design Using UML

Page 40 Rev 6.3.2 © 2011 ITCourseware, LLC

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 177

Chapter 9 - Activity Diagrams

Objectives

Model activities, such as complicated
algorithms and multi-branched user interfaces.

Model parallelism.

Object-Oriented Analysis & Design Using UML

Page 178 Rev 6.3.2 © 2011 ITCourseware, LLC

Activity Notation
Activity diagrams are similar to flow charts.

The notation of activity diagrams is much the same as that of state diagrams.

The main difference is that most of the nodes in a state model are states
(although some may represent activities) while most of the nodes in an
activity model represent activities (although some of them may represent
states).

You can add details for the activity inside a rounded rectangle.

Partly because most nodes are activities, most transitions are triggerless. When
the activity of the node is finished, the transition occurs.

There can be guard conditions like those in state charts.

Activity diagrams, like state charts, usually flow from left-to-right or from top-
to-bottom.

write a

program

[no bugs]

debug the

program

[few

bugs]

[many

bugs]

write
code

write a

program

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 179

The guard conditions should not allow ambiguity about what will happen in any situation.

A guard condition else will be true if all other guards for transitions from the activity are false.

Transitions may have actions on them (/action) like transitions in state diagrams, but it is unusual.

An activity takes up time; a transition (even if it has an action) is atomic and takes no time.

Activities have no internal transitions, or entry or exit actions.

Object-Oriented Analysis & Design Using UML

Page 180 Rev 6.3.2 © 2011 ITCourseware, LLC

Decisions and Merges

If you believe the program needs to be checked again after debugging (whatever
are you thinking?) you can run the path back around through another diamond,
called a merge.

If it's got one in and more than one out, it's a decision and it'll have guard
conditions on the transitions from it.
If it's got one out and more than one in, it's a merge and it won't have
guard conditions on the transition from it.

[no bugs]

debug the

program

[few

bugs]

[many

bugs]

write
code

[many

bugs]
[few

bugs]

[no bugs]

write

code

debug the

program

test

You can express testing of a program using a decision diamond.

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 181

Object-Oriented Analysis & Design Using UML

Page 182 Rev 6.3.2 © 2011 ITCourseware, LLC

Forks and Joins
One of the strengths of activity diagrams is their ability to model parallel
processes.

When a single transition encounters a fork (heavy vertical or horizontal line) it
continues along the paths on the other side in parallel and asynchronously.

This used to be called a synchronization bar.

Parallel paths may be traversed any way at all.

In the example on the facing page, you can first reach for a cup with your
right hand and then start pouring coffee into the filter with your left while
you set the cup on the counter and reach for the water. Or you can
complete the paths one at a time from left-to-right. Or right-to-left.

Three of you can work on it at the same time.

The only restriction (in the first parallel section) is that you'd better put the
coffee in the filter before you put the filter in the machine.

A join (multiple in, single out) means that all the incoming transitions must
arrive before the outgoing transition may leave. It synchronizes the process.

Don't turn on the machine before putting both the coffee filter (with
coffee) and the water in it.

A join and fork can be combined and have multiple arrows arriving on one side,
and multiple arrows leaving on the other. All the incoming transitions must arrive
before any of the outgoing transitions may leave.

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 183

Note the action associated with one transition. This diagram was adapted from the UML standard, V1.4,
sec. 3.84.3.

[no coffee]

[coffee]

put water in

reservoir
get cups

put filter in

machine

turn on

machine

brew coffee

/coffeePot.on

pour coffee drink

get cans

of cola

[no cola]

[cola]

look for

coffee

put coffee

in filter

Object-Oriented Analysis & Design Using UML

Page 184 Rev 6.3.2 © 2011 ITCourseware, LLC

Drilling Down
The activity model on the previous page is on the complicated side of our magic
number rule, but activity diagrams are usually easier to understand than, say,
communication diagrams with the same number of nodes.

If we want to add detail to a section of this model we would probably do it on
another diagram, both to avoid making this one more complicated, and to avoid
adding material at a different level of abstraction. This is called drilling down.

We expanded the put coffee in filter node to create this new model with more
detail and mark it with a rake.

We could expand any of these nodes if we needed to. Finding the can
opener, for example, could turn into an adventure.

We probably should make notes on both of these diagrams that tie them
together. The CASE tools can help organize them for us.

[else]

[can
unopened]

find
filter

get
coffee

put coffee
in filter

find can
opener

open can

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 185

Here the else is quite useful, as the alternative to an unopened can could be an open can, an open bag,
a closed jar with a lid, or a heap of coffee lying out on the counter. The else covers all of these possibilities
and anything we didn't think of.

This model fits in place of the previous put coffee in filter node. The entry and exit of that node
correspond to the start and endpoints of this model that expands and explains it.

A lot of business and software processes could be much more parallel than they are. Often this is because
we couldn't represent the parallelism, and things that were represented sequentially became sequential.
Now that we can represent it, we should be on the lookout for places to go parallel. Many user interfaces,
for example, force the user to do things in a particular order, no matter that another might be more
convenient. Activity diagrams are very good for modeling the back and forth of a user interface.

Investigate:
Why did we need the merge here? Couldn't we go down from open can to the join?

Object-Oriented Analysis & Design Using UML

Page 186 Rev 6.3.2 © 2011 ITCourseware, LLC

Iteration
We can model iteration on an activity diagram as we do on other dynamic
models.

Note that the decisions and branches of control are clearer than they were
in sequence and communication models.

In the diagram on the facing page, the activity add item to order is done for
each item.

UML 2.0 provides a notation for modeling looping in activity diagrams.

A typical loop has three parts: the setup, the body, and the test.

You can remodel the previous diagram using activity partitions in a single
node.

Setup

Body

Test
Condition

Setup Body
[false]

[true]

Test

Condition

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 187

Get First
Item

Add Item

to Order

Get Next

Item

[more items]

[no more items]

Process

Payment

Put Items

In Box
[yes]

[no]

Cancel

Order

Ship Order

Payment

Authorization

Object-Oriented Analysis & Design Using UML

Page 188 Rev 6.3.2 © 2011 ITCourseware, LLC

Partitions
This activity model illustrates partitions (also known as swimlanes). The labeled
vertical bands show who is responsible for each of the activities.

Use partitions when you need the activity model to show complicated
flow of control and who does what.

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 189

Process

Payment

Put Items

In Box
[yes]

[no]

Cancel

Order

Ship Order

Get First

Item

Add Item

to Order

Get Next

Item

orderClerk finance warehouse shipping

Payment

Authorization

[no more]

[more]

Object-Oriented Analysis & Design Using UML

Page 190 Rev 6.3.2 © 2011 ITCourseware, LLC

Signals
A simple activity diagram has clearly-defined starting and ending points that
determine that program's runtime. Some applications need to respond to signals
generated externally from the application.

UML 2.0 provides for three types of signals: time signals, input signals, and
output signals.

Time signals specify an interval of time before a signal is produced.

Input signals come from an outside source or process.

Output signals are signals sent from your system to some outside system.

The following diagram depicts a system that sends a signal to authorize a
payment and then waits 30 minutes for a reply. If a reply is not received, then the
authorization will assume to be declined.

Create

Authorization

Process

Payment

Wait

30 minutes

Reverse

Purchase

Send

Authorization

Authorization

Confirmed

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 191

Object-Oriented Analysis & Design Using UML

Page 192 Rev 6.3.2 © 2011 ITCourseware, LLC

Parameters and Pins
You can specify input into an activity and output from an activity using
parameter nodes.

Parameter nodes are rectangular boxes on the edges of an activity.
The input parameter node must have an edge to the first action and the
output parameter node must have an edge from the final action.

Pins are a notation in activity diagrams to depict input and output parameters.

In the following diagram, the activity Ship Order requires an order object from
Create Order.

If the output of an activity is an exception, then flag that pin with a small arrow
near the pin.

Create

Order
Ship

Order

order order

Create

Order

Ship

Order
order order

Order

CancellationOrder
Problem

Exception

Total Item

Cost

Calculate

Tax

Calculate

Shipping
Order Total

Cost

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 193

UML 2.0 provides an alternate notation for exception handles using a "zig-zag" or "lightning bolt" instead of
marking a pin with a triangle:

Create
Order

Ship
Order

order order

Cancel
Order

Object-Oriented Analysis & Design Using UML

Page 194 Rev 6.3.2 © 2011 ITCourseware, LLC

Expansion Regions
You can use expansion regions to show that an action or series of actions occur
on a collection of items.

The following diagram depicts an activity that produces a collection of courses
that need to be processed.

Sometimes when processing a collection of items, one of the items may not be
able to be processed. In the previous example, one of the courses chosen may
have been closed. Just because some of the courses are closed does not mean
the student should not be registered for the rest.

Flow finals indicate that one of the items in the collection may terminate, but the
rest should be processed.

Choose
Courses

Add
Student

to Roster

Create
Course

Schedule

Get
Course

[open]

[closed]

Choose
Courses

Register
Student

in Course

Create
Course

Schedule

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 195

Object-Oriented Analysis & Design Using UML

Page 196 Rev 6.3.2 © 2011 ITCourseware, LLC

Using Activity Diagrams
Activity diagrams are mostly about the flow of control. The activity model is
particularly good at showing complicated branching and parallelism in control,
but there isn't much information moving here.

Activity diagrams are good for modeling the operation of an existing paper
system that you intend to replace, if it is more about control than information.

If the information flow and manipulation is the main thing, try data flow
diagrams.

Activity models are useful for modeling user interfaces.

Activity models are often used to illustrate branching in the operation of use
cases.

You can model complex algorithms you are going to use in the code for your
methods.

Activity models are at home in all three perspectives: domain, requirements, and
design.

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 197

Object-Oriented Analysis & Design Using UML

Page 198 Rev 6.3.2 © 2011 ITCourseware, LLC

Create an activity diagram for the user interface to a simple Automatic Teller Machine
performing the withdrawal operation. Include as much parallelism as possible.

Labs

Chapter 9 Activity Diagrams

© 2011 ITCourseware, LLC Rev 6.3.2 Page 199

Object-Oriented Analysis & Design Using UML

Page 200 Rev 6.3.2 © 2011 ITCourseware, LLC

