
Oracle10g
Advanced

SQL Programming

Student Workbook

Page ii Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle10g Advanced SQL Programming

Oracle10g Advanced SQL Programming

Brian Peasland, Robert Roselius, and Robert Seitz

Published by ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, CO 80112

Editor: Jan Waleri

Editorial Assistant: Dana Howell

Special thanks to: Many instructors whose ideas and careful review have contributed to the quality
of this workbook and the many students who have offered comments, suggestions, criticisms, and
insights.

Copyright © 2011 by ITCourseware, LLC. All rights reserved. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photo-copying, recording, or by
an information storage retrieval system, without permission in writing from the publisher. Inquiries should be
addressed to ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, Colorado, 80112.
(303) 302-5280.

All brand names, product names, trademarks, and registered trademarks are the property of their respective
owners.

© 2011 ITCourseware, LLC Rev 1.1.2 Page iii

Oracle10g Advanced SQL Programming

Contents

Chapter 1 - Course Introduction ... 7

Course Objectives .. 8
Course Overview .. 10
Using the Workbook ... 11
Suggested References ... 12

Chapter 2 - Database Design Concepts .. 15

Relational Databases ... 16
The Relational Model .. 18
Relational Operations .. 20
The Database Design Process ... 22
Normalization .. 24
Second and Third Normal Forms .. 26
Other Normal Forms... 28
Applications for Relational Databases .. 30
Labs ... 32

Chapter 3 - SQL Subqueries ... 35

Overview Of Subqueries ... 36
Inline Views .. 38
Correlated Subqueries .. 40
EXISTS Clause vs. IN Clause .. 42
Group Comparisons: ANY and ALL ... 44
Scalar Subquery Expression .. 46
Subqueries and DML Statements .. 48
Subquery Factoring: The WITH Clause... 50
Top-N and Bottom-N analysis .. 52
CREATE TABLE and Subqueries ... 54
Labs ... 56

Chapter 4 - Hierarchical Queries ... 59

Hierarchical Data .. 60
Hierarchical Terminology ... 62

Page iv Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle10g Advanced SQL Programming

Hierarchical Query .. 64
Hierarchical Pseudocolumns .. 66
SYS_CONNECT_BY_PATH.. 68
Processing Hierarchical Queries .. 70
Labs ... 72

Chapter 5 - Object Types ... 75

Object-Oriented Programming .. 76
Oracle's Object Relational Model ... 78
Creating Object Types .. 80
Querying Object Types ... 82
DML with Object Types ... 84
Object Methods .. 86
Object Views .. 88
VARRAYs .. 90
Nested Tables ... 92
Labs ... 94

Chapter 6 - Times, Dates, and Strings ... 97

Datetime Fields ... 98
Dates and Timestamps .. 100
Intervals .. 102
Date and Interval Literals .. 104
Date Arithmetic ... 106
Date Functions .. 108
Character Types .. 110
Session and Database Parameters ... 112
REGEXP Functions... 114
Regular Expressions Supported by REGEXP .. 116
Applying REGEXP Functions .. 118
Labs ... 120

Chapter 7 - Temporary Tables .. 123

Undo and Redo .. 124
Temporary Tables Defined .. 126
Data Lifetime — Transaction vs. Session ... 128
Creating Temporary Tables ... 130
Managing Temporary Tables ... 132
Storage of Temporary Tables .. 134

© 2011 ITCourseware, LLC Rev 1.1.2 Page v

Oracle10g Advanced SQL Programming

Effects of DML and TRUNCATE ... 136
Labs ... 138

Chapter 8 - SQL Tuning Tools .. 141

Automated Statistics Gathering .. 142
The DBMS_STATS Package.. 144
SQL Tuning Advisor .. 146
SQL Tuning Sets ... 148
SQL Access Advisor ... 150
Retrieving Execution Plans ... 152
EXPLAIN PLAN ... 154
Using DBMS_XPLAN ... 156
Interpreting Explain Plan Results .. 158
SQL Trace .. 160
TKPROF.. 162
Labs ... 164

Chapter 9 - SQL Tuning .. 169

Tuning Goals ... 170
The Optimizer ... 172
Optimizer Statistics .. 174
Identifying SQL to Tune .. 176
Optimizer Hints ... 178
Optimizer Goal Hints ... 180
Access Path Hints ... 182
Join Hints .. 184
Additional Hints .. 186
Plan Stability ... 188
Creating Stored Outlines ... 190
Labs ... 192

Chapter 10 - Indexes .. 195

Indexes ... 196
B-tree and Composite Indexes .. 198
Reverse Key and Unique Indexes ... 200
Function-Based Indexes .. 202
Bitmap Indexes ... 204
Index-Organized Tables .. 206
Managing Indexes ... 208
Labs ... 210

Page vi Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle10g Advanced SQL Programming

Chapter 11 - Oracle Analytic Functions ... 213

Analytic Functions ... 214
OVER, PARTITION BY, and ORDER BY .. 216
Windowing .. 218
ROLLUP .. 220
CUBE... 222
Grouping Sets ... 224
RANK.. 226
Modeling... 228
Model Clauses .. 230
Labs ... 232

Chapter 12 - Data Warehouse Features .. 235

Partitioned Tables .. 236
Partitioning Methods ... 238
Partition Pruning and Partition-wise Joins... 240
Bitmap Indexes ... 242
Materialized Views .. 244
Creating Materialized Views .. 246
Refreshing Materialized Views ... 248
The MERGE Statement .. 250
Multi-table INSERT Statements .. 252
Parallel Statements .. 254
Labs ... 256

Chapter 13 - Formatting Reports with SQL*Plus .. 259

Page Formatting .. 260
Computations .. 262
SQL*Plus Options for Formatting ... 264
Saving the Output .. 266
Data Extraction with SQL*Plus ... 268

Solutions ... 271

Index... 301

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 7

Chapter 1

Chapter 1 - Course Introduction

Oracle10g Advanced SQL Programming

Page 8 Rev 1.1.2 © 2011 ITCourseware, LLC

Apply the basic theory behind relational database design.

Contribute to all phases of database design and development.

Use all aspects of subqueries.

Apply Oracle's features for querying hierarchical data models.

Use Oracle's Object-Relational Model.

Create object types.

Use Oracle's collection types in SQL.

Select appropriate date-related datatypes for your applications.

Use Oracle's regular expression SQL functions to perform pattern matching
and string manipulation.

Create and manage temporary tables.

Establish goals in SQL tuning to improve performance.

Use Oracle Database 10g's tuning tools.

Describe how indexes are used in RDBMSs, and use them effectively.

Use the various analytic functions provided by Oracle to perform
sophisticated analysis.

Use SQL*Plus to format reports and extract data.

Course Objectives

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 9

Chapter 1

Oracle10g Advanced SQL Programming

Page 10 Rev 1.1.2 © 2011 ITCourseware, LLC

Audience: Application developers, database administrators, system
administrators, and users who write applications and procedures that access
an Oracle10g database.

Prerequisites: Oracle10g SQL Programming

Classroom Environment:

A workstation per student.

Oracle Database 10g, with Oracle's Sample Schemas installed.

Course Overview

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 11

Chapter 1

Using the Workbook

Chapter 2 Servlet Basics

© 2002 ITCourseware, LLC Rev 2.0.0 Page 17

Add an init() method to your Today servlet that initializes a bornOn date, then print the bornOn date

along with the current date:

Today.java

...

public class Today extends GenericServlet {

private Date bornOn;

public void service(ServletRequest request,

ServletResponse response) throws ServletException, IOException

{

...

// Write the document

out.println("This servlet was born on " + bornOn.toString());

out.println("It is now " + today.toString());

}

public void init() {

bornOn = new Date();

}

}

Hands On:

The init() method is

called when the servlet is

loaded into the container.

This workbook design is based on a page-pair, consisting of a Topic page and a Support page. When you
lay the workbook open flat, the Topic page is on the left and the Support page is on the right. The Topic
page contains the points to be discussed in class. The Support page has code examples, diagrams, screen
shots and additional information. Hands On sections provide opportunities for practical application of key
concepts. Try It and Investigate sections help direct individual discovery.

In addition, there is an index for quick look-up. Printed lab solutions are in the back of the book as well as
on-line if you need a little help.

Java Servlets

Page 16 Rev 2.0.0 © 2002 ITCourseware, LLC

� The servlet container controls the life cycle of the servlet.

� When the first request is received, the container loads the servlet class

and calls the init() method.

� For every request, the container uses a separate thread to call

the service() method.

� When the servlet is unloaded, the container calls the destroy()

method.

� As with Java’s finalize() method, don’t count on this being

called.

� Override one of the init() methods for one-time initializations, instead of

using a constructor.

� The simplest form takes no parameters.

public void init() {...}

� If you need to know container-specific configuration information, use

the other version.

public void init(ServletConfig config) {...

� Whenever you use the ServletConfig approach, always call the

superclass method, which performs additional initializations.

super.init(config);

The Servlet Life Cycle

The Topic page provides
the main topics for

classroom discussion.

The Support page has
additional information,

examples and suggestions.

Code examples are in a
fixed font and shaded. The
on-line file name is listed
above the shaded area.

Screen shots show
examples of what you
should see in class.

Topics are organized into
first (), second () and

third () level points.

Pages are numbered
sequentially throughout

the book, making lookup
easy.

Callout boxes point out
important parts of the

example code.

Oracle10g Advanced SQL Programming

Page 12 Rev 1.1.2 © 2011 ITCourseware, LLC

Celko, Joe. 1999. Joe Celko's SQL for Smarties: Advanced SQL Programming, Second Edition.
Academic Press/ Morgan Kaufman, San Francisco, CA. ISBN 1558605762

Celko, Joe. 1997. Joe Celko's SQL Puzzles and Answers. Morgan Kaufmann, San Francisco,CA.
ISBN 1558604537.

Date, C.J. and Hugh Darwen. 1996. A Guide to The SQL Standard, Fourth Edition. Addison-
Wesley, Reading, MA. ISBN 0201964260.

Freeman, Robert G. 2004. Oracle Database 10g New Features. McGraw-Hill Osborne Media,
Emeryville, CA. ISBN 0072229470.

Gennick, Jonathan. 2004. Oracle Sql*Plus Pocket Reference, Third Edition. O'Reilly &
Associates, Sebastopol, CA. ISBN 0596008856.

Gennick, Jonathan. 2004. Oracle SQL*Plus : The Definitive Guide, Second Edition. O'Reilly &
Associates, Sebastopol, CA. ISBN 0596007469.

Gruber, Martin. 2000. SQL Instant Reference, Second Edition. SYBEX, Alameda, CA.
ISBN 0782125395.

Kline, Kevin. 2004. SQL in a Nutshell, Second Edition. O'Reilly & Associates, Sebastopol, CA.
ISBN 0596004818.

Kreines, David. 2003. Oracle Data Dictionary Pocket Reference. O'Reilly & Associates,
Sebastopol, CA. ISBN 0596005172.

Loney, Kevin. 2004. Oracle Database 10g: The Complete Reference. McGraw-Hill/Osborne Media,
Emeryville, CA. ISBN 0072253517.

Mishra, Sanjay. 2004. Mastering Oracle SQL, Second Edition. O'Reilly & Associates, Sebastopol,
CA. ISBN 0596006322.

www.dbasupport.com
www.hot-oracle.com
www.oracle.com
www.quest-pipelines.com
www.searchdatabase.com
http://tahiti.oracle.com/

Suggested References

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 13

Chapter 1

Your single most important reference is the SQL Reference book, which is part of the Oracle Database
Online Documentation. You may have received this on CD-ROM with your Oracle distribution. If not,
you can access it online at Oracle's website. This is the official, complete description of Oracle's
implementation of SQL. It includes many examples and discussions.

An easy way to find it is to go to:

http://tahiti.oracle.com/

Find the documentation for your version of Oracle. Locate the SQL Reference and open the HTML table
of contents.

If you have web access in the classroom, open a browser now and find the SQL Reference. Set a
browser bookmark and have the SQL Reference at hand throughout this class.

Oracle10g Advanced SQL Programming

Page 14 Rev 1.1.2 © 2011 ITCourseware, LLC

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 15

Chapter 2 - Database Design Concepts

Objectives

Apply the basic theory behind relational database
design.

Determine the data model's entities and their
attributes.

Normalize tables in a relational database design.

Categorize the operations a database system
performs on data.

Contribute to all phases of database design and
development.

Oracle10g Advanced SQL Programming

Page 16 Rev 1.1.2 © 2011 ITCourseware, LLC

A Relational Database accepts and presents data according to rules based on the
Relational Model.

A Relational Database Management System (RDBMS) is the software that
implements this capability.

The Relational Model describes a particular way of representing data and
constructing expressions to operate upon it.

Alternative models include the Hierarchical and Network models.

The Relational Model, first published by Dr. E. F. Codd in 1970, bases
itself on set theory and has several goals:

Description of data independent of machine representation.
Independence of applications and users from data representation.
Provision of a high-level data language, based on predicate
calculus.
Ability to interact with data independent of ordering, indexing, and
access paths.

In 1985, Dr. Codd published what are now known as Codd's Twelve Rules,
describing the minimum requirements for a system to qualify as an RDBMS.

The Relational Model remains the predominant model for large databases.

Very few RDBMS products faithfully implement all aspects of the
Relational Model.

Oracle, like most RDBMS products, provides for a practical subset of
Codd's Rules and formal relational algebra.

Relational Databases

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 17

Codd's Twelve (really, thirteen) Rules:

1. All information is represented as column values in rows of tables.

2. Each item of information is accessible by identifying a table, a column in that table, and the
primary key of the row that contains the item.

3. The intersection of a specific row and column might have missing or inapplicable information (a
"null value").

4. The entire definition of the database is available in a set of tables, which are a database in their
own right (a System Catalog or Data Dictionary).

5. The system provides a single, comprehensive language for defining the structure of the database
(Data Definition Language (DDL)) and manipulating and querying the data in it (Data Manipulation
Language (DML)).

6. A view (virtual table) that is theoretically updatable must be actually updatable.

7. Users can identify a set of rows for insertion, updating, or deletion, as well as for retrieval.

8. Users and applications are not affected by changes in the underlying physical storage format of the
language.

9. Users and applications are not affected by changes in the underlying logical storage of the data that
do not actually remove information.

10. Integrity constraints are enforced by the system, not by users or applications.

11. Users and applications are not affected by changes in the physical distribution of storage of the
data.

12. The system provides no means of subverting the rules and constraints of the system.

And Rule 0:
0. The system maintains itself through its relational abilities.

Oracle10g Advanced SQL Programming

Page 18 Rev 1.1.2 © 2011 ITCourseware, LLC

The Relational Model

The Relational Model applies specific mathematical techniques (relational
algebra) and logic (predicate calculus) to the problem of shared access to large
amounts of computer data.

The Relational Model is the source of much of the terminology underlying SQL
and SQL databases.

The fundamental element is the domain — a datatype (NUMBER: the
domain consisting of all possible number values representable as an
Oracle NUMBER).

An attribute consists of an attribute name and its type (its domain).

An attribute value consists of an attribute and a value of that
attribute's type.

A tuple is a set of attribute values.

A relation consists of:

Its heading — a set of attributes (their names and types).
Its body — a specific set of tuples, each consisting of attribute
values.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 19

Relations, written in mathematical form:

Company(Warehouse)
Warehouse(WarehouseID, Name, Description, LocationID)
Customer(CustomerID, Name, Street, City, State, Country, PostalCode, Email)
PhoneNumber(CustomerID, PhoneType, Number)

To get an idea of how the mathematical aspects of the Relational Model ... er, relate ... to SQL
databases, we can observe a loose correspondence between components of each:

Note:
This is NOT intended to be a rigorous comparison of the Relational Model with SQL databases!

ledoMlanoitaleR esabataDLQS

niamoD epytataD

etubirttA noitinifednmulocA

noitaleR testluserroelbatA

elpuT testluserroelbataniworA

noitaleryranU eht,.ge(nmulocenohtiwtestluserroelbaT LAUD)elbat

noitaleryraniB snmulocowthtiwtestluserroelbaT

noitaleryranreT snmuloceerhthtiwtestluserroelbaT

ytirA testluserroelbatnisnmulocforebmuN

ytilanidraC testluserroelbatanisworforebmuN

noitceleS ...EREHW...

noitcejorP ...TCNITSIDTCELES

tcudorpnaisetraC ;b,aMORF...TCELES

noinuteS ...TCELESNOINU...TCELES

ecnereffidteS ...TCELESSUNIM...TCELES

yeketadidnaC elbatafosyekeuqinuroyramirpehtfoynA

Oracle10g Advanced SQL Programming

Page 20 Rev 1.1.2 © 2011 ITCourseware, LLC

Relational Operations

Relational Algebra defines a few basic operations for a relation, as well as
several operations built on the basic ones.

Selection — The set of tuples in a relation, for which a logical proposition
is true.

Projection — The set of tuples consisting of the values for some of the
attributes in a relation.

Cartesian Product — The set of all combinations of tuples from two
relations.

Set Union — All tuples belonging to either, or both, of two relations.

Set Difference — All tuples belonging to one relation, which are not also
in the second of two relations.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 21

The degree to which an RDBMS supports true relational algebra can be debated. All would agree that
Oracle, like nearly every other RDBMS, does not fully support the Relational Model. The same is
true for SQL itself. This does not necessarily detract from the practicality and power of the RDBMS or of
SQL. However, we often refer to RDBMSs as "SQL databases" rather than "relational databases" as a
reminder of their differences.

Some differences between the formal Relational Model (RM) and real-world RDBMSs include:

The RM does not allow NULL values.
Tuples are unordered; in SQL, column order is often significant (SELECT *, INSERT, etc.)
Duplicate tuples are not allowed in a relation; duplicates can occur in SQL (in non-DISTINCT result
sets, in tables with no unique or primary key, in a UNION ALL, etc.)
In the RM, every attribute must be named; SQL allows unnamed attributes (SELECT 2+2, ...)

There are others, but you get the idea. It is not necessary to study relational algebra and set theory in
order to advance your SQL and database design skills. However, some familiarity with the theoretical
underpinnings of the system and language we work with can provide helpful insights.

It is natural to suppose that the term "Relational Database" refers to the relationships (foriegn keys,
joins) between the tables in the database. Actually, the term refers to the relational model, in which
the "relation" is the set of attributes — a table.

Oracle10g Advanced SQL Programming

Page 22 Rev 1.1.2 © 2011 ITCourseware, LLC

The Database Design Process

One of the earliest phases of database design is development of the Conceptual
Model.

End users, customers, functional and process experts, managers, and
subject-matter experts (both in the subject business, and in any existing
legacy systems) are among those who can help the database designer
during this process.

During this phase, the database designer helps identify entities, their
attributes, and dependencies and associations between them.

The cardinality (one-to-one, one-to-many, many-to-many) of
associations also become apparent.

Entity-Relationship diagrams help document this phase.

Development of the Logical Model from the Conceptual Model provides
concrete mapping of conceptual elements into specific database structures
(tables, columns, constraints, etc.)

Normalization of tables typically occurs during this phase.

Finally, a Physical Model specifies how the database will be stored on a
computer.

Tablespaces, and their datafiles and storage parameters.

Physical requirements of the database host system.

Indexes, instance parameters, access methods, etc.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 23

There are many variations on the process of database design, of varying degrees of formality, detail,
and discipline. It's not uncommon for an experienced developer to design and develop the conceptual,
logical, and physical model on the fly for a modest application database (say, a simple web
application or the like). An organization investing in a large-scale system will (or should) employ a
well-defined process, facilitated by database design experts, perhaps in concert with other analysis and
design processes (such as Object-Oriented Analysis and Design (OOAD)).

One simple exercise for beginning the Conceptual Design is to start with a textual description of the
application or database domain. In the text, start by picking out the nouns — these are potential entities and
attributes. The verbs can indicate relationships. For example:

The company maintains warehouses in several locations to fulfill customer
needs. Each warehouse has a warehouse identification number, name, facility
description, and location identification number.

Each customer has an identification number. Customer records include customer
name, street name, city or state, country, phone numbers (up to five phone
numbers for each customer), and postal code. Some customers place orders
through the Internet, so e-mail addresses are also recorded.

"Has-a" and "is-a-part-of" constructs can indicate entity attributes. Action verbs ("...customers place
orders...") can indicate relationships between entities.

Oracle10g Advanced SQL Programming

Page 24 Rev 1.1.2 © 2011 ITCourseware, LLC

Normalization

Normalization defines a set of incremental tests to assure a database design will
be free of redundancy and associated data anomalies.

A database (or subset of its tables) for which a certain level of
normalization is true is said to be in that normal form.

Most database designers try to achieve at least third normal form (3NF)
with their designs, and perhaps higher (or lower) levels for certain tables.

To be in first normal form (1NF), several things must be true of a table:

Each row is unique.

For each row, each column contains at most one atomic value.

An atomic value cannot be decomposed into smaller values — for
example, a fullname attribute is non-atomic, since it can be
decomposed into firstname and lastname attributes.

For each row, each column value is non-repeating.

For example, a single Customer record cannot contain the list of
that customer's Orders.

Redefine a repeating attribute as a separate entity.

A table in 1NF has a defined primary key.

Like all other attributes, a primary key column is non-decomposable.

A table may have a composite primary key — in which the combination
of values of the primary key columns uniquely identifies each row.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 25

Normalization is a process of decomposing a table into one or more tables. There are multiple levels
of normalization that can be applied. Each higher level of normalization adds more constraints onto
the previous. Each normal form is defined by a set of rules that prohibit data redundancy. This
prevents data inconsistencies on data updates, resulting in a more stable database.

The higher you go in normal forms, the more tables you will have to navigate to find your information
resulting in slower performance. Though there are multiple levels of normalization a database can
undergo, be careful not to compromise your performance needs by over-normalization.

ssn

name

department

major

mailing_street

mailing_city

mailing_state

mailing_zip

perm_street

perm_city

perm_state

perm_zip

courses

grades

semesters

advisor_ssn

advisor_name

student

transcript

ssn

course_id

course_name

semester

year

grade

ssn

lastname

firstname

department

major

mailing_street

mailing_city

mailing_state

mailing_zip

perm_street

perm_city

perm_state

perm_zip

advisor_ssn

advisor_name

student

non-1NF

The name, courses, grades, and semesters attributes are not
atomic. The student table is put into 1NF by splitting name and
creating an additional table: transcript.

Oracle10g Advanced SQL Programming

Page 26 Rev 1.1.2 © 2011 ITCourseware, LLC

Second and Third Normal Forms

A table is in second normal form (2NF) if:

The table is in 1NF.

Each attribute depends on the entire primary key.

A 1NF table that does not have a composite primary key is already
in 2NF.

A table is in third normal form (3NF) if:

The table is in 2NF.

Each non-key attribute depends only on the primary key.

A 3NF table is a 2NF table with no non-key attribute dependent on
another non-key column.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 27

The transcript table has a composite primary key consisting of the following attributes:
ssn, course_id, semester, year.

The grade is functionally dependent on the entire primary key. The course_name attribute depends only
on the course_id. To meet 2NF, move course_name to a separate entity.

transcript

ssn

course_id

course_name

semester

year

grade

ssn

name

department

major

mailing_street

mailing_city

mailing_state

mailing_zip

perm_street

perm_city

perm_state

perm_zip

advisor_ssn

advisor_name

student

transcript

ssn

course_id

semester

year

grade

ssn

name

department

major

mailing_street

mailing_city

mailing_state

mailing_zip

perm_street

perm_city

perm_state

perm_zip

advisor_ssn

advisor_name

student course

id

name

description

Oracle10g Advanced SQL Programming

Page 28 Rev 1.1.2 © 2011 ITCourseware, LLC

Other Normal Forms

Additional normal forms, each building on the previous one, have been defined
by relational database theorists.

Boyce-Codd Normal Form (BCNF).
Fourth Normal Form (4NF).
Fifth Normal Form (5NF).
Domain-Key Normal Form (DKNF).
Sixth Normal Form (6NF).

It is not necessarily desirable to apply these to every database.

Some are limited only to very particular types of tables.

Some are not always achievable.

Normalization results in a proliferation of tables and elimination of redundant
columns.

Sometimes this can lead to inconvenient complexity and poor
performance.

Denormalization is the deliberate and judicious violation of normalization rules,
usually to provide convenient access and higher performance.

Denormalization results in redundant storage of an attribute in multiple
tables.

This often occurs, for example, in data warehouses.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 29

The advisor_name attribute in the student table is dependent on the non-key advisor_ssn attribute.

Place the student table in 3NF by moving the advisor_name attribute to another entity.

transcript

ssn

course_id

semester

year

grade

ssn

name

department

major

mailing_street

mailing_city

mailing_state

mailing_zip

perm_street

perm_city

perm_state

perm_zip

advisor_ssn

advisor_name

student course

id

name

description

transcript

ssn

course_id

course_name

semester

year

grade

ssn

name

department

major

mailing_street

mailing_city

mailing_state

mailing_zip

perm_street

perm_city

perm_state

perm_zip

advisor_ssn

student

course

id

name

description

advisor

ssn

last_name

first_name

department_id

Oracle10g Advanced SQL Programming

Page 30 Rev 1.1.2 © 2011 ITCourseware, LLC

Applications for Relational Databases

Perhaps the most familiar category of RDB is the on-line transaction processing
(OLTP) database.

An OLTP database supports large volumes of concurrent data
manipulation language (DML) access during normal operation.

Order processing, human resources, and web commerce systems are some
typical OLTP applications.

OLTP databases are usually fully normalized, in order to maintain the
"ACID" properties of transactions:

Atomicity Consistency
Isolation Durability

A data warehouse is designed and optimized for queries and analysis rather than
data manipulation.

Data warehouses frequently make use of denormalization and redundant
copies of attribute values.

Data warehouse tables are often read-only, to prevent any possibility of
update anomalies.

The data warehouse comprises the long-term historical record of database
activity, usually derived from OLTP systems.

Part of a data warehouse design includes the procedures for
extraction, transformation, and loading (ETL) of production data.

The data warehouse supports on-line analytical processing
(OLAP).

Other special-purpose applications include spatial and temporal databases.

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 31

Normalization prevents insert, update, and deletion anomalies in an OLTP database. Normally, a data
warehouse is non-volatile — that is, non-updatable, once the data is loaded. This allows the data
warehouse designer to violate a number of classic database design rules in order to improve performance or
facilitate particular kinds of analysis.

For example, Materialized Views (formerly known as snapshot tables) physically replicate data that's
present in existing fact tables in order to provide more convenient query capabilities.

The transformation portion of a data warehouse's ETL solution may include aggregation and derivation
of values. For example, to facilitate weekly sales reporting, individual sale attributes may be aggregated
together to weekly granularity, and stored. Or, counts of inventory items may be pre-calculated and stored.
In an OLTP database, such storage of values which are readily derivable from other values (which may
change over time) can result in inconsistencies and faulty analysis. In read-only data warehouse tables, this
is not a problem.

Because data warehouses accumulated ever-growing amounts of historical data, and because they
frequently store multiple copies of data values, they tend to have very high storage, memory, and
analytical processing requirements.

Oracle10g Advanced SQL Programming

Page 32 Rev 1.1.2 © 2011 ITCourseware, LLC

Labs

For this lab, we will describe requirements for two database applications: a Human Resources (HR) and an
Order Entry (OE) system. For each, based on the description, we need to:

1. Identify the core entities and their important attributes.
2. Determine the cardinality (one-to-one, one-to-many, many-to-many) of the associations

between entities.
3. Develop a logical model for the database:

a. Determine table and column names.
b. Determine primary key columns.
c. Normalize, to 3NF, where possible.
d. Identify foreign key references between tables.

Where possible, you can do this exercise in groups with other students. It is not necessary to produce a
complete logical or physical model for both systems — just analyze and design the core tables.

(Solution: There is no single "correct" outcome for this exercise. After you are satisfied with your logical
schema (or you run out of time), locate the Sample Schemas book in the Oracle Database online
Documentation Library. Review the rationale, diagrams, and schema scripts for the Sample Schemas that
Oracle provides. Compare them to your own design for further ideas on database analysis and design.)

Chapter 2 Database Design Concepts

© 2011 ITCourseware, LLC Rev 1.1.2 Page 33

HR:
Each employee is assigned an ID number. We need to record their name, email , job code, salary (some
employees also earn commission), and manager ID.

Positions in the company are predefined, with a job code, job title, and a minimum and maximum salary
range for the each. As employees advance (or otherwise change positions), we want to record the
employment duration on that job, the job identification number, and the department.

The company has presence in several regions, and has several locations in which warehouses are located.
There are many departments (Administration, Marketing, Purchasing, Human Resources, Shipping, etc.).
Each employee is assigned to a department, and each department has a unique department ID. Each
department is associated with one location, which has a full address that includes the street name, postal
code, city, state or province, and the country code.

For each of the various locations associated with warehouses and departments, we record the country
name, currency symbol, currency name, and the geographical region.

OE:
For our products, such as computer hardware and software, music, clothing, and tools, we store
information such as product ID, product category, order entries, the shipping weight group, the warranty
period, the supplier, the availability, a list price, a minimum retail price, and a URL for manufacturer
information. Inventory information includes the warehouse where the product is available and the quantity on
hand. Each warehouse has a warehouse ID number, name, facility description, and location ID.

Each customer has an ID number. Customer information includes customer name, street name, city or
province, country, phone numbers (up to five phone numbers per customer), and zip code. Some customers
place orders online, so we store their email addresses. Customers have a credit limit. Some customers have
an Account Manager at our company.

When a customer places an order, we record the date of the order, how it was placed, the current status,
shipping mode, total amount, and the Sales Representative who served the customer. The Sales
Representative may or may not be the same person as the customer's Account Manager. If an order is
placed online, no sales rep is involved. Of course the order information includes the number of items
ordered, the unit price, and the products ordered.

Oracle10g Advanced SQL Programming

Page 34 Rev 1.1.2 © 2011 ITCourseware, LLC

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 235

Chapter 12 - Data Warehouse Features

Objectives

Leverage partitioning for efficient queries over
large amounts of data.

Use parallel execution to speed up SQL results.

Take advantage of Oracle's SQL features for
both DML and query processing.

Oracle10g Advanced SQL Programming

Page 236 Rev 1.1.2 © 2011 ITCourseware, LLC

Partitioning lets you break down a table's storage into smaller, more manageable
pieces, based on specified data values.

Each piece is called a partition.

A partition can be broken down further into subpartitions.

A partition key is a set of one or more columns, the values of which determine
which partition a row of data resides in.

SQL queries do not have to be modified to deal with partitioned tables.

Partitioning can be totally transparent to the application.

Each partition can be queried independently if desired.

Partitioning improves both performance and availability for large tables.

Partition pruning and partition-wise joins speed up query processing.

Older partitions can be placed in READ ONLY tablespaces, easing
demands on backups.

Partitions are often placed in separate tablespaces, each residing on a
different disk unit.

If you lose a disk unit, you only lose the data in that partition.

Indexes can be partitioned, too.

Each partition of a table or index must have the same logical structure.

Each partition of a table or index can have a different physical structure.

Partitioned Tables

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 237

A table can easily be broken down into multiple partitions. In the diagram below, we can query the
PEOPLE table, or query the individual partitions.

The query:

SELECT value FROM people;

will return Bob, Sue, Jack, Jill, Jane, and Tim.

The query:

SELECT value FROM people PARTITION (partition_b);

will return only Jack and Jill.

The DBA_TAB_PARTITIONS Data Dictionary view will show how a table is partitioned.

ID VALUE

1 Bob

3 Sue

ID VALUE

2 Jack

6 Jill

ID VALUE

4 Jane

5 Tim

Partition A

Partition B

Partition C

PEOPLE

table

Oracle10g Advanced SQL Programming

Page 238 Rev 1.1.2 © 2011 ITCourseware, LLC

Partitioning Methods

RANGE partitioning maps rows to partitions based on a range of values.

A common implementation is to partition based on a date field.

For example, each partition would hold a month, a quarter, or a
year's worth of data.

Each partition has a VALUES LESS THAN clause, which defines the
bounds of the range.

LIST partitioning maps rows to partitions based on a defined list of values.

Use list partitioning if the partition key will only have a small number of
distinct values.

HASH partitioning uses a hash function on the partition key to map the row to a
specific partition.

Hash partitioning is useful when the partition key does not lend itself to
range or list partitioning.

Composite partitioning starts with range partitioning and subpartitions by hash or
list partitioning.

Composite range-hash partitioning is great for dividing the data by date
and then subdividing into an even number of buckets.

Composite range-list partitioning is often used when dividing sales data by
date and then by geographical region.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 239

A range-partitioned table:

sales_data.sql
CREATE TABLE sales_data (
 sales_tx_id NUMBER(6,0),
 sales_amount NUMBER(6,2),
 sales_date DATE
) PARTITION BY RANGE (sales_date)
 (PARTITION sales_q1 VALUES LESS THAN
 (TO_DATE('04/01/2006','MM/DD/YYYY')),
 PARTITION sales_q2 VALUES LESS THAN
 (TO_DATE('07/01/2006','MM/DD/YYYY')),
 PARTITION sales_q3 VALUES LESS THAN
 (TO_DATE('10/01/2006','MM/DD/YYYY')),
 PARTITION sales_q4 VALUES LESS THAN
 (TO_DATE('01/01/2007','MM/DD/YYYY')));

The SALES_DATE column is the partition key.

A row with SALES_DATE equal to 12/13/2006 will be stored in partition SALES_Q4. A row with
SALES_DATE equal to 01/26/2006 will be stored in partition SALES_Q1. There is no lower bound in
range partitioning. If you need to implement a lower bound, then you will have to use a constraint to ensure
the lower bound is enforced. If you desire no upper bound, then use the VALUES LESS THAN
MAXVALUE clause when creating the partition. A list-partitioned table:

students.sql
CREATE TABLE students (
 student_id NUMBER,
 student_name VARCHAR2(60),
 student_year CHAR(2)

 CHECK (student_year IN ('FR','SO','JR','SR')))
PARTITION BY LIST (student_year)
 (PARTITION freshmen VALUES ('FR'),
 PARTITION sophomores VALUES ('SO'),
 PARTITION juniors VALUES ('JR'),
 PARTITION seniors VALUES ('SR'));

A PARTITION VALUES (DEFAULT) clause will catch all partition key values not explicitly listed in any
other partition. A hash-partitioned table:

employees.sql
CREATE TABLE employees (
 ssn NUMBER,
 name VARCHAR2(50))
PARTITION BY HASH (ssn)
PARTITIONS 5
STORE IN (ts1, ts2, ts3, ts4, ts5);

Oracle10g Advanced SQL Programming

Page 240 Rev 1.1.2 © 2011 ITCourseware, LLC

Partition Pruning and Partition-wise Joins

Partition pruning eliminates unneeded partitions from consideration when
processing a SQL statement.

Accessing only those partitions that will participate in the query can
greatly improve performance.

The Optimizer will automatically perform partition pruning when possible.

The partition key should be chosen carefully so that most common
queries on the table can be supported by partition pruning.

A partition-wise join occurs when two tables are joined on the partition key
columns.

A partition-wise join can be a great performance boost to processing the
join operation.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 241

Q1

Q2

Q3

Q4

ID A_DATE VALUE

1 01/26/06 101.34

2 03/10/06 99.23

ID A_DATE VALUE

7 04/12/06 87.33

8 04/18/06 91.23

ID A_DATE VALUE

10 07/01/06 183.34

15 08/08/06 127.79

ID A_DATE VALUE

21 10/31/06 10.23

25 11/28/06 88.45

In a range-partitioned table ACCOUNTS_PAYABLE, each partition is one quarter's worth of accounts
payable information.

A user issues the following query, looking for August's accounts payable information:

SELECT a_date,value
 FROM accounts_payable
 WHERE a_date BETWEEN TO_DATE('08/01/06', 'MM/DD/YY')
 AND TO_DATE('08/31/06', 'MM/DD/YY');

The Optimizer will automatically prune all unnecessary partitions. In this example, only partition Q3 will
participate in the query.

Similar to the ACCOUNTS_PAYABLE table, we also have a RECEIPTS table. The RECEIPTS table
is also partitioned by the fiscal quarter. Someone in accounting is looking to summarize the accounts
payable by receipt and issues the following query:

SELECT r.receipt_id, ap.id, ap.value
 FROM accounts_payable ap JOIN receipts r
 ON (r.ap_id = ap.id)
 WHERE ap.a_date BETWEEN TO_DATE('01/01/06', 'MM/DD/YY')
 AND TO_DATE('06/30/06', 'MM/DD/YY');

Partition pruning will eliminate all but the first and second quarter. Since the ACCOUNTS_PAYABLE and
RECEIPTS tables are both partitioned on the join column, the Optimizer will also perform a partition-wise
join on the remaining partitions.

Oracle10g Advanced SQL Programming

Page 242 Rev 1.1.2 © 2011 ITCourseware, LLC

Bitmap Indexes

Use bitmap indexes on columns with a relatively low cardinality — those with
only a few discrete values.

Creating a bitmap index is nearly identical to creating a regular, B-tree
index.

CREATE BITMAP INDEX sales_region_bidx
ON sales(region);

The Optimizer will ignore B-tree indexes on columns with low cardinality.

A bitmap will be created for each possible value in a column.

Each bit in the bitmap will point to a specific row in the table.

If the column contains the value in that row, the bit for that row will be
turned on; else the bit will be off.

Bitmaps typically offer performance benefits for data warehouse applications.

Bitmap indexes often require less space than B-tree indexes.

Mutiple bitmaps can be logically AND'd or OR'd together to help query
performance.

Bitmap indexes are most effective when used with multiple
conditions in the WHERE clause.

Bitmap indexes are not well suited for OLTP applications, which typically
experience a high degree of concurrent DML operations.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 243

ELBAT_SELAS

DI ETAD_S NOIGER

1 60/10/10 tsaE

3 60/21/30 tseW

4 60/20/10 lartneC

7 60/50/60 tseW

8 60/21/30 lartneC

In this SALES table, we have three regions: East, West, and Central. The low number of distinct values
lends itself well to a bitmap index. We can see the bitmaps next to the rows of data in the following diagram:

The bitmaps can be logically combined depending on the WHERE clause in your query. Assume the user
issues the following query:

SELECT * FROM sales
 WHERE region = 'East' OR region = 'West';

The bitmaps for the east and west regions can be logically OR'd together as follows:

The resulting bitmap of the OR operation now points to all rows where the region is East or West.

XDIB_NOIGER_SELAS

pamtiBtsaE pamtiBlartneC pamtiBtseW

1 0 0

0 0 1

0 1 0

0 0 1

0 1 0

XDIB_NOIGER_SELAS

pamtiBtsaE pamtiBlartneC tseWROtsaE

1 0 1

0 1 1

0 1 0

0 1 1

0 0 0

Oracle10g Advanced SQL Programming

Page 244 Rev 1.1.2 © 2011 ITCourseware, LLC

Materialized Views

A materialized view stores the results of a pre-defined query.

Typically, the materialized view's base query performs summary or other
aggregation operations.

Materialized views are used to improve performance of long-running queries or
to replicate data.

If possible, the Optimizer will rewrite a query to use the materialized view instead
of the base tables.

This Query Rewrite, using a materialized view, is transparent to the user.

A user can query a materialized view directly if they choose.

The SQL Access Advisor in Oracle10g can be used to determine which queries
would benefit from a materialized view.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 245

In your data warehouse, you might have 3 tables containing sales data. These tables are frequently
joined together with a query similar to the following:

 SELECT region_name, AVG(sales_value)
 FROM salesman sm, sales_data sd, sales_region sr
 WHERE sm.region_id = sr.region_id
 AND sm.salesman_id = sd.salesman_id
 GROUP BY region_name;

The DBA creates a materialized view with the following statement:

CREATE MATERIALIZED VIEW sales_region_mv
 TABLESPACE users
 BUILD IMMEDIATE
 REFRESH COMPLETE ON DEMAND
 ENABLE QUERY REWRITE AS
 SELECT region_name, AVG(sales_value), SUM(sales_value),
 MAX(sales_value), MIN(sales_value)
 FROM salesman sm, sales_data sd, sales_region sr
 WHERE sm.region_id = sr.region_id
 AND sm.salesman_id = sd.salesman_id
 GROUP BY region_name;

If a user issues the first query the materialized view will be used instead, saving a great deal of processing
time. The materialized view will even be used for this query:

 SELECT region_name, MIN(sales_value), MAX(sales_value)
 FROM salesman sm, sales_data sd, sales_region sr
 WHERE sm.region_id = sr.region_id
 AND sm.salesman_id = sd.salesman_id
GROUP BY region_name;

Oracle10g Advanced SQL Programming

Page 246 Rev 1.1.2 © 2011 ITCourseware, LLC

Creating Materialized Views

You must have been granted the CREATE MATERIALIZED VIEW system
privilege, and either the CREATE TABLE or CREATE ANY TABLE system
privilege.

The BUILD clause determines if the materialized view is immediately populated
with data, or populated later.

The default is IMMEDIATE.

You must enable query rewrite if you want the materialized view to be eligible for
use by other queries.

The default is DISABLE QUERY REWRITE.

CREATE MATERIALIZED VIEW mview_name
 [TABLESPACE ts_name]

 [<storage_clause>]
 [BUILD IMMEDIATE|DEFERRED]
 [REFRESH FAST|COMPLETE|FORCE]
 [ENABLE|DISABLE QUERY REWRITE]
 AS <subquery>;

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 247

Disabling query rewrite for a materialized view is still useful. You may not want your users to enjoy query
rewrite for their queries if the contents of the materialized view is stale. However, you may want aggregate
queries that do not require the latest and greatest data to be able to use the contents of the materialized
view. In this case, you disable query rewrite for the materialized view and query the materialized view
directly. You can change the query rewrite ability of a materialized view with the ALTER
MATERIALIZED VIEW command.

Query rewrite has the following restrictions:

If a column appears in the base query's GROUP BY clause, it must also appear in the columns of
the SELECT clause.

You cannot have a CONNECT BY clause in the query.

The base tables and the materialized view cannot be owned by the SYS user.

If the materialized view base query has both local and remote tables, only queries on the local
tables are eligible for query rewrite.

Oracle10g Advanced SQL Programming

Page 248 Rev 1.1.2 © 2011 ITCourseware, LLC

Refreshing Materialized Views

There are three ways to refresh the materialized view's contents from the base
tables.

A FAST refresh will be updated as changes occur to the base tables, but
it requires the most overhead.

A COMPLETE refresh updates the materialized view by rerunning the
base query.

Specifying FORCE indicates to perform a FAST refresh if possible, else
perform a COMPLETE refresh.

FORCE is the default.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 249

Before you can create a fast refresh materialized view, you must create materialized view logs on each base
table. Writing to the materialized view logs for each transaction on the base table incurs overhead, so weigh
the pros and cons of fast refresh carefully. Creating a materialized view log is as simple as the following
command:

CREATE MATERIALIZED VIEW LOG ON schema.table_name;

If using fast refresh, you have an optional parameter: ON COMMIT or ON DEMAND. The ON
COMMIT parameter indicates that the fast refresh is to take place on every commit of the base tables.
The ON DEMAND parameter indicates that you will perform the fast refresh by calling the
DBMS_MVIEW supplied package. Fast refresh with ON COMMIT requires the most overhead, so it
should be used carefully.

Not all materialized views can be fast refreshed. The DBMS_MVIEW.EXPLAIN_MVIEW procedure
can tell you if the materialized view can be fast refreshed.

Oracle10g Advanced SQL Programming

Page 250 Rev 1.1.2 © 2011 ITCourseware, LLC

The MERGE Statement

The MERGE statement lets you select rows of data from a source table and
either insert new rows into a destination table, or update existing rows in that
destination table.

MERGE INTO dest_table
 USING source_table
 ON (condition)
 WHEN MATCHED THEN UPDATE . . .
 WHEN NOT MATCHED THEN INSERT . . .;

Before the MERGE statement was available, you had to perform
separate INSERT and UPDATE statements.

The INTO clause denotes the destination table and the USING clause indicates
the source table.

With the ON clause you can define a test condition to be applied to each source
row.

The WHEN MATCHED clause specifies how to update existing rows for
those source rows that match the test condition.

For rows that do pass the test condition, the WHEN NOT MATCHED clause
specifies how to insert the new rows into the destination table.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 251

You have been given a table of employee information. In this table, some employees are not yet added to
the HR.EMPLOYEES table. For those employees that are found in the table, we need to ensure that the
email addresses and phone numbers are up-to-date. An example of a MERGE statement which can
accomplish this task in a single SQL statement can be seen below:

MERGE INTO employees dest
 USING emp_source_list source
 ON (source.emp_id = dest.employee_id)
WHEN MATCHED THEN
 UPDATE SET dest.email = source.email_address,
 dest.phone_number = source.phone
WHEN NOT MATCHED THEN
 INSERT (dest.employee_id,dest.first_name,dest.last_name,
 dest.email,dest.phone_number,dest.hire_date)
 VALUES (source.emp_id,source.first,source.last,
 source.email_address,source.phone,SYSDATE);

Oracle10g Advanced SQL Programming

Page 252 Rev 1.1.2 © 2011 ITCourseware, LLC

Multi-table INSERT Statements

Like the name implies, the multi-table INSERT statement will add data to one
or more tables with a single SQL command.

A multi-table INSERT statement is more efficient than multiple single-
table INSERT statements.

A multi-table INSERT statement can contain conditional logic to denote which
tables will receive the rows of data.

INSERT [ALL|FIRST]
[WHEN expr THEN] INTO table1 VALUES ...
[WHEN expr THEN] INTO table2 VALUES ...
[ELSE INTO tableN VALUES ...]

SELECT ...;

The optional WHEN clauses will determine if a table receives the row of data.

You can have at most 127 WHEN clauses.

The optional ELSE clause is a catch-all condition if all other WHEN
conditions fail.

If using WHEN clauses, you can have the row insert into ALL tables that have a
true condition or just the FIRST true condition.

If you are not using WHEN clauses, then you cannot use the FIRST
clause.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 253

A common use of a mutli-table INSERT statement is to insert data into multiple tables at the same time,
similar to the following:

person.sql
INSERT ALL

INTO person (first, last) VALUES (first_name, last_name)
INTO subject (full_name)
 VALUES (first_name || ' ' || last_name)

SELECT employee_id, first_name, last_name
 FROM hr.employees;

A nice feature of the multi-table INSERT statement is to insert slightly modified data, multiple times, into the
same table.

Add sales forecasts for the next four quarters.
Each quarter will be have a 10% increase in the forecast.

INSERT ALL
INTO forecast VALUES (sysdate,region, avg_sales*1.10)
INTO forecast VALUES (sysdate+90, avg_sales*1.21)
INTO forecast VALUES (sysdate+180, avg_sales*1.33)
INTO forecast VALUES (sysdate+270, avg_sales*1.46)

SELECT region, AVG(sales_value) AS avg_sales
 FROM sales GROUP BY region;

An example of a conditional multi-table INSERT:

INSERT FIRST
 WHEN avg_sales < 1000 THEN
 INTO poor_regions VALUES (region, avg_sales)
 WHEN avg_sales < 100 THEN
 INTO terrible_regions VALUES (region)
 WHEN avg_sales < 9999 THEN
 INTO good_regions VALUES (region, avg_sales)
 ELSE
 INTO great_regions VALUES (region, 'Doing Excellent!')
SELECT region, AVG(sales_value) AS avg_sales
 FROM sales GROUP BY region;

Note in the example above, no data will ever be inserted into the TERRIBLE_REGIONS table due
to the FIRST clause.

Oracle10g Advanced SQL Programming

Page 254 Rev 1.1.2 © 2011 ITCourseware, LLC

Parallel Statements

A SQL statement can be broken down into smaller units, each of which is run in
parallel (at the same time).

All of the results from each unit of work are combined into one result set.

For demanding SQL statements, parallel execution results in a shorter processing
time.

Short-running SQL statements will most likely not benefit from
parallelism.

A query coordinator oversees the parallel execution.

The query coordinator will acquire multiple slave processes.

Each slave process performs the work in parallel.

The query coordinator is responsible for combining the output from the
slave processes into the final result.

The degree of parallelism is defined as the number of slave processes
performing the work for a single operation.

The degree or parallelism should be no more than twice the total number
of CPUs on your database server.

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 255

Parallel queries are useful in the following situations:

Queries requiring large table scans
Queries involving join operations
Queries on partitioned tables
Creating large indexes or materialized views

Parallel queries are not necessarily useful under any of the following circumstances:

Your database server only has one CPU
The CPU units on your database server typically experience high usage
There is not enough free physical memory on the server
Your database server does not have sufficient I/O bandwidth

The Oracle database contains parameters to help control parallel execution. The database will pre-start a
number of slave processes denoted by the PARALLEL_MIN_SERVERS initialization parameter. The
PARALLEL_MAX_SERVERS initialization parameter defines the maximum number of slave processes
available to all sessions. The default values for both parameters are normally useful for most Oracle
instances.

The degree of parallelism is defined for the SQL statement by the following, in order:

1. The degree noted in the PARALLEL hint in the SQL statement.

2. An ALTER SESSION FORCE QUERY PARALLEL command.

3. The default degree of parallelism associated with the table, either with the CREATE TABLE or
ALTER TABLE commands.

4. The default degree of parallelism associated with an index used in the execution plan.

A parallel query, with degree of parallelism set to 4:

SELECT /*+ PARALLEL(s 4) PARALLEL(t 4) */
 r.region, MAX(s.sales_value)
 FROM sales s, regions r
 WHERE s.region_id = r.region_id;

DML operations can be performed in parallel:

UPDATE /*+PARALLEL(employees 8) */ SET salary = salary*1.1;

Oracle10g Advanced SQL Programming

Page 256 Rev 1.1.2 © 2011 ITCourseware, LLC

Create a table, EMP_REGIONS, with four columns: EMPLOYEE_ID, FIRST_NAME,
LAST_NAME, and REGION_NAME. The column types should match the corresponding
columns from HR.EMPLOYEES and HR.REGIONS. Your table will be list-partitioned,
with four partitions — one for each region. Populate the EMP_REGIONS table with data
from HR.EMPLOYEES and HR.REGIONS table. (Hint: You will need the
HR.DEPARTMENTS, HR.LOCATIONS, and HR.COUNTRIES tables in your join.)
(Solution: cr_regions.sql)

Query the EMP_REGIONS table to show the data and also query each partition individually
to see the data has been populated into the correct partition.
(Solution: regions_query.sql)

In SQL*Plus, set the TIMING ON option. Run this query on the SH schema's SALES table:

 SELECT promo_id, MAX(amount_sold)
 FROM sh.sales
GROUP BY promo_id

Repeat the query a few times, noting the execution time. Now, create a normal view,
V_PROMO_SALES, using this query. Run a SELECT * FROM v_promo_sales query a
few times, again noting the execution time. Finally, create a materialized view,
MV_PROMO_SALES, using the same query. Take note of the time necessary to execute the
CREATE MATERIALIZED VIEW statement. Run SELECT * FROM mv_promo_sales a
few times, noting the execution time.
(Solution: cr_promo_views.sql)

In SQL*Plus, set AUTOTRACE ON EXPLAIN. Alter the MV_PROMO_SALES
materialized view, to ENABLE QUERY REWRITE. Now, do an ALTER SESSION to set
QUERY_REWRITE_ENABLED to FALSE. Execute the query above and note the execution
plan. Finally, do another ALTER SESSION to set QUERY_REWRITE_ENABLED to
FORCE. Reexecute the query, and note the execution plan, as well as the execution time.
Turn AUTOTRACE off when you finish.
(Solution: query_rewrite.sql)

Labs

Chapter 12 Data Warehouse Features

© 2011 ITCourseware, LLC Rev 1.1.2 Page 257

Do the following with a single INSERT statement:

Add every employee whose first or last name begins with 'A' to the 'Asia' region in
EMP_REGIONS.

Add every employee whose first or last name begins with 'M' to the 'Middle East' region in
EMP_REGIONS.

(Solution: insert_first.sql)

Oracle10g Advanced SQL Programming

Page 258 Rev 1.1.2 © 2011 ITCourseware, LLC

