
Oracle10g
Advanced PL/SQL

Programming

Student Workbook

Page ii Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle10g Advanced PL/SQL Programming

Oracle 10g Advanced PL/SQL Programming

Contributing Authors: Robert Freeman, Mary Gable, Roger Jones, Brian Peasland, and Rob Roselius.

Published by ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, CO 80112

Editor: Danielle Hopkins and Jan Waleri.

Special thanks to: Many instructors whose ideas and careful review have contributed to the quality of this
workbook, and the many students who have offered comments, suggestions, criticisms, and insights.

Copyright © 2011 by ITCourseware, LLC. All rights reserved. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photo-copying, recording, or by
an information storage retrieval system, without permission in writing from the publisher. Inquiries should be
addressed to ITCourseware, LLC., 7245 South Havana Street, Suite 100, Centennial, Colorado, 80112.
(303) 302-5280.

All brand names, product names, trademarks, and registered trademarks are the property of their respective
owners.

© 2011 ITCourseware, LLC Rev 1.1.2 Page iii

Oracle10g Advanced PL/SQL Programming

Contents

Chapter 1 - Course Introduction ... 7

Course Objectives .. 8
Course Overview .. 10
Using the Workbook ... 11
Suggested References ... 12

Chapter 2 - The PL/SQL Execution Environment .. 15

The Server Process ... 16
PL/SQL Execution .. 18
The PL/SQL Compiler .. 20
Compiler Optimization .. 22
SQL — Parse ... 24
SQL — Execute and Fetch ... 26
Server Memory ... 28
Latches ... 30
Locks ... 32
Labs ... 34

Chapter 3 - Advanced Cursors ... 37

Cursor Types .. 38
Cursors and Storage ... 40
Spanning Commits Across FETCHes .. 42
Dynamic SQL in PL/SQL ... 44
Bulk Operations .. 46
Bulk Returns ... 48
Limiting Results ... 50
Cursor Parameters .. 52
Cursor Variables ... 54
Strong and Weak Cursors ... 56
Using Cursor Variables .. 58
Cursor Type Errors ... 60
Cursor Subqueries .. 62
Labs ... 64

Page iv Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle10g Advanced PL/SQL Programming

Chapter 4 - Dynamic SQL .. 67

Generating SQL at Runtime ... 68
Native Dynamic SQL vs. DBMS_SQL Package ... 70
The EXECUTE IMMEDIATE Statement .. 72
Using Bind Variables ... 74
Multi-row Dynamic Queries .. 76
Bulk Operations with Dynamic SQL ... 78
Using DBMS_SQL for DML and DDL... 80
Using DBMS_SQL for Queries .. 82
Retrieving Meta Information with DBMS_SQL ... 84
Labs ... 86

Chapter 5 - Object-Oriented Oracle ... 89

Introducing Object-Oriented Oracle .. 90
Defining Object Types and Tables in SQL ... 92
Querying and Modifying Object Data .. 94
Object Methods .. 96
Inheritance .. 98
Type Evolution .. 100
Object Views .. 102
Object Types in PL/SQL .. 104
REF Pointers .. 106
Object Functions and Operators ... 108
Labs ... 110

Chapter 6 - Tuning PL/SQL .. 113

PL/SQL vs SQL ... 114
PL/SQL Performance Tips .. 116
Tuning Goals ... 118
Monitoring Wait Events ... 120
DBMS_PROFILER ... 122
DBMS_TRACE ... 124
Execution Plans ... 126
Interpreting Explain Plan Results .. 128
Execution Plan Details ... 130
Trace Files .. 132
TKPROF.. 134
Using trcsess ... 136
DBMS_APPLICATION_INFO .. 138
Labs ... 140

© 2011 ITCourseware, LLC Rev 1.1.2 Page v

Oracle10g Advanced PL/SQL Programming

Chapter 7 - Debugging and Error Handling.. 143

Exception Management ... 144
Exception Propagation .. 146
User-Defined Exceptions .. 148
Exception Error Messages .. 150
 Stack Management .. 152
Debugging with DBMS_OUTPUT .. 154
Debugging with a Table ... 156
Using UTL_FILE .. 158
Using DBMS_DEBUG ... 160
SQL Developer ... 162
Avoiding Bugs ... 164
Labs ... 166

Chapter 8 - Advanced Programming Topics .. 169

Autonomous Transactions ... 170
Invoker's Rights .. 172
Fine-Grained Access Control with DBMS_RLS ... 174
Creating Pipes with DBMS_PIPE ... 176
Writing to and Reading from a Pipe ... 178
Table Functions ... 180
Pipelined Table Functions .. 182
Enabling parallel execution ... 184
DETERMINISTIC Functions ... 186
Labs ... 188

Chapter 9 - Interfacing With External Code ... 191

External Programs and Procedures .. 192
External Procedure Architecture .. 194
Configure Oracle For External Procedures .. 196
Creating a java Stored Procedure ... 198
Security and External Programs ... 200
The Job Scheduler .. 202
Manage and Drop External Jobs ... 204
Native Compilation of PL/SQL Code.. 206
The Oracle Call Interface (OCI and OCCI) .. 208
Pro*C and Pro*C++ .. 210
Using Pro*C and Pro*C++ .. 212
Perl DBI/DBD Architecture ... 214

Page vi Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle10g Advanced PL/SQL Programming

Perl and Stored Procedures .. 216
ODBC .. 218
Using ODBC .. 220
JDBC ... 222

Chapter 10 - Working with XML .. 225

Databases and XML ... 226
Schema Validation ... 228
Unstructured and Structured Storage ... 230
The XMLType Datatype ... 232
XPath Expressions .. 234
Extracting XML Data .. 236
Generating XML ... 238
XMLQuery ... 240
XMLType Views ... 242
Oracle XML DB Repository ... 244
Labs ... 246

Solutions ... 249

Index... 279

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 7

Chapter 1

Chapter 1 - Course Introduction

Oracle10g Advanced PL/SQL Programming

Page 8 Rev 1.1.2 © 2011 ITCourseware, LLC

Use detailed understanding of the PL/SQL execution environment in your
application design and tuning.

Develop programs that make sophisticated and effective use of cursors.

Use all kinds of dynamic SQL in your PL/SQL code.

Design and write solutions using Oracle's object types.

Use Oracle's tools and supplied packages to trace, profile, and tune your
PL/SQL programs.

Use a variety of techniques and tools for debugging PL/SQL code.

Write programs that interface between PL/SQL, and external procedures and
programs.

Use package state to solve application problems.

Use autonomous transactions in stored subprograms and triggers.

Choose which user's application context and rights will apply when a stored
subprogram runs.

Write high-performance code using NOCOPY and pipelined table functions.

Create functions to implement fine-grained access control.

Use DBMS_PIPE to set up inter-session communication between PL/SQL
programs.

Course Objectives

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 9

Chapter 1

Oracle10g Advanced PL/SQL Programming

Page 10 Rev 1.1.2 © 2011 ITCourseware, LLC

Audience: Oracle application developers and database administrators.

Prerequisites: Introduction to Oracle10g PL/SQL Programming.

Classroom Environment:

A workstation per student.

Course Overview

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 11

Chapter 1

Using the Workbook

Chapter 2 Servlet Basics

© 2002 ITCourseware, LLC Rev 2.0.0 Page 17

Add an init() method to your Today servlet that initializes a bornOn date, then print the bornOn date

along with the current date:

Today.java

...

public class Today extends GenericServlet {

private Date bornOn;

public void service(ServletRequest request,

ServletResponse response) throws ServletException, IOException

{

...

// Write the document

out.println("This servlet was born on " + bornOn.toString());

out.println("It is now " + today.toString());

}

public void init() {

bornOn = new Date();

}

}

Hands On:

The init() method is

called when the servlet is

loaded into the container.

This workbook design is based on a page-pair, consisting of a Topic page and a Support page. When you
lay the workbook open flat, the Topic page is on the left and the Support page is on the right. The Topic
page contains the points to be discussed in class. The Support page has code examples, diagrams, screen
shots and additional information. Hands On sections provide opportunities for practical application of key
concepts. Try It and Investigate sections help direct individual discovery.

In addition, there is an index for quick lookup. Printed lab solutions are in the back of the book as well as
online if you need a little help.

Java Servlets

Page 16 Rev 2.0.0 © 2002 ITCourseware, LLC

� The servlet container controls the life cycle of the servlet.

� When the first request is received, the container loads the servlet class

and calls the init() method.

� For every request, the container uses a separate thread to call

the service() method.

� When the servlet is unloaded, the container calls the destroy()

method.

� As with Java’s finalize() method, don’t count on this being

called.

� Override one of the init() methods for one-time initializations, instead of

using a constructor.

� The simplest form takes no parameters.

public void init() {...}

� If you need to know container-specific configuration information, use

the other version.

public void init(ServletConfig config) {...

� Whenever you use the ServletConfig approach, always call the

superclass method, which performs additional initializations.

super.init(config);

The Servlet Life Cycle

The Topic page provides
the main topics for

classroom discussion.

The Support page has
additional information,

examples, and suggestions.

Code examples are in a
fixed font and shaded. The
online file name is listed
above the shaded area.

Screen shots show
examples of what you
should see in class.

Topics are organized into
first (), second (), and

third () level points.

Pages are numbered
sequentially throughout

the book, making lookup
easy.

Callout boxes point out
important parts of the

example code.

Oracle10g Advanced PL/SQL Programming

Page 12 Rev 1.1.2 © 2011 ITCourseware, LLC

Allen, Christopher. 2004. Oracle Database 10g PL/SQL 101. McGraw-Hill Osborne, Emeryville, CA.
ISBN 0072255404

Boardman, Susan, Melanie Caffrey, Solomon Morse, and Benjamin Rosenzweig. 2002. Oracle Web
Application Programming for PL/SQL Developers. Prentice Hall PTR, Upper Saddle River,
NJ. ISBN 0130477311

Date, C.J and Hugh Darwen. 1996. A Guide to SQL Standard. Addison-Wesley, Boston, MA.
ISBN 0201964260

Date, C.J. 2003. An Introduction to Database Systems. Addison-Wesley, Boston, MA.
ISBN 0321197844

Feuerstein, Steven, Charles Dye, and John Beresniewicz. 1998. Oracle Built-in Packages. O'Reilly
and Associates, Sebastopol, CA. ISBN 1565923758

Feuerstein, Steven. 2001. Oracle PL/SQL Best Practices. O'Reilly and Associates, Sebastopol, CA.
ISBN 0596001215

Feuerstein, Steven. 2000. Oracle PL/SQL Developer's Workbook. O'Reilly and Associates,
Sebastopol, CA. ISBN 1565926749

Feuerstein, Steven. 2002. Oracle PL/SQL Programming. O'Reilly and Associates, Sebastopol, CA.
ISBN 0596003811

Loney, Kevin. 2004. Oracle Database 10g: The Complete Reference. McGraw-Hill Osborne,
Emeryville, CA. ISBN 0072253517

McDonald, Connor, Chaim Katz, Christopher Beck, Joel R. Kallman, and David C. Knox. 2004.
Mastering Oracle PL/SQL: Practical Solutions. Apress, Berkeley, CA.
ISBN 1590592174

Pribyl, Bill. 2001. Learning Oracle PL/SQL. O'Reilly and Associates, Sebastopol, CA.
ISBN 0596001800

Price, Jason. 2004. Oracle Database 10g SQL. McGraw-Hill Osborne, Emeryville, CA.
ISBN 0072229810

Rosenzweig, Benjamin and Elena Silvestrova. 2003. Oracle PL/SQL by Example. Prentice Hall PTR,
Upper Saddle River, NJ. ISBN 0131172611

Suggested References

Course Introduction

© 2011 ITCourseware, LLC Rev 1.1.2 Page 13

Chapter 1

Trezzo, Joseph C., Bradley D. Brown, and Richard J. Niemiec. 1999. Oracle PL/SQL Tips and Tricks.
McGraw-Hill Osborne, Emeryville, CA. ISBN 0078824389

Urman, Scott and Michael McLaughlin. 2004. Oracle Database 10g PL/SQL Programming.
McGraw-Hill Osborne, Emeryville, CA. ISBN 0072230665

Urman, Scott and Tim Smith. 1996. Oracle PL/SQL Programming. Oracle Press, Emeryville, CA.
ISBN 0078821762

tahiti.oracle.com
www.oracle.com/technology/tech/pl_sql

Oracle10g Advanced PL/SQL Programming

Page 14 Rev 1.1.2 © 2011 ITCourseware, LLC

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 15

Chapter 2 - The PL/SQL Execution
Environment

Objectives

Describe the basic architecture of the
Oracle Database.

Explain the purpose and components of
the Program Global Area.

Describe all stages in the execution of a
PL/SQL program.

Oracle10g Advanced PL/SQL Programming

Page 16 Rev 1.1.2 © 2011 ITCourseware, LLC

The Server Process

All SQL and (usually all) PL/SQL for your session is performed by a server
process.

Normally, each session has a server process dedicated to it.

 The DBA can configure the database so that the SQL and PL/SQL work
for all users is handled by a pool of shared server processes.

The server process:

Receives and processes SQL and PL/SQL from your application.

Reads blocks of data from data files into the Buffer Cache for use.

Returns results to your application.

The server process contains the heart of Oracle's database technology:

The SQL Cost-Based Optimizer
The SQL Executor
The PL/SQL compiler
The PL/SQL Virtual Machine

Each server process creates its own memory region called the Program Global
Area (PGA).

All Oracle processes, including the server processes and the background
processes comprising the instance, access a region of shared memory called the
System Global Area (SGA).

This allows Oracle processes to share common data and to coordinate
their activities.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 17

The program that executes when a server process starts is the Oracle Kernel — ORACLE.EXE on
Windows, oracle or oracle.bin on UNIX and Linux platforms. The Oracle Kernel is a single, large
(for Oracle10g, over 90 megabytes), binary executable, compiled for the database host platform. In
addition to the SQL and PL/SQL subsystems, this program includes all functionality needed to run the
database instance — the background processes which run when the Oracle Database is started are also
copies of the Oracle Kernel. Thus, all processes accessing the database do so with the same technology
and follow the same mechanisms.

A PL/SQL program runs embedded in the multi-user Oracle server environment. PL/SQL programs
typically include SQL statements. To effectively design new PL/SQL applications, and to debug and tune
existing ones, requires insight into how both PL/SQL and SQL execute at runtime.

Oracle10g Advanced PL/SQL Programming

Page 18 Rev 1.1.2 © 2011 ITCourseware, LLC

PL/SQL programs are executed by Oracle's PL/SQL Virtual Machine (PVM).

The PVM is sometimes referred to as the PL/SQL Executor or the PL/
SQL Engine.

Your PL/SQL program's source code is first processed by the PL/SQL Compiler.

The compiler parses your program, and produces an equivalent set of
PVM instructions (sometimes referred to as MCode).

The compiled MCode can be run immediately by the PVM (for example,
when you run an anonymous PL/SQL block in SQL*Plus).

The compiled MCode can be stored in the database for later execution
(such as when you run a CREATE PROCEDURE, CREATE
PACKAGE, CREATE TRIGGER, or CREATE FUNCTION
statement.)

The PVM behaves like a computer chip, executing the sequence of numeric
instructions (MCode) derived from your PL/SQL source code.

This is similar to the way Java programs work: Java source code is
compiled into Java byte-code, which is run by the Java Virtual Machine
JVM).

The PVM is, of course, highly optimized for programs that access the
Oracle Database.

The PVM is built into the Oracle Server.

It's also built into certain client-side applications, such as Oracle Forms.

PL/SQL Execution

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 19

Application

"EXEC stored_proc"

Oracle

PL/SQL
Compiler

PVM

SGA

stored_proc
M Code

Database

stored_proc
M Code

Application

"DECLARE
 x number;
BEGIN
 x:=42
END;"

Oracle

PL/SQL
Compiler

PVM

SGA

Anon Block
M Code

Database

Application

"CREATE

 PROCEDURE

 stored_proc()

AS . . ."

Oracle

PL/SQL
Compiler

PVM

SGA

Database

stored_proc
M Code

Most commonly, PL/SQL is executed on the Oracle Server, as the result of a call to a stored
procedure, stored function or, a package procedure or function; or when a trigger is fired as the side
effect of some event in the database. In these cases, the pre-compiled PL/SQL has been stored in the
database (in SYS-owned tables in the Data Dictionary, in the SYSTEM tablespace). Once read from the
database and executed, the code remains in server memory in case it is called again, by the same user or
any other user.

An anonymous PL/SQL block, such as one entered into SQL*Plus, or contained in a client application,
is also executed on the Oracle Server. Such anonymous PL/SQL blocks must be parsed and compiled,
and the resulting MCode is not stored in the database. However, the compiled MCode remains in
server memory, in case the exact same block is executed again.

Oracle10g Advanced PL/SQL Programming

Page 20 Rev 1.1.2 © 2011 ITCourseware, LLC

The PL/SQL Compiler

To compile your program, the PL/SQL compiler:

1. Parses your source code:

Checks for syntactic validity (source code keywords and tokens used
correctly.)

Checks for semantic validity (database objects referenced in the source
code exist and are used correctly.)

2. If successful, parsing results in a temporary, internal representation of your
PL/SQL program's semantics.

The parser (or compiler front end) generates this semantic description of
your program, in the language DIANA (Descriptive Intermediate
Attributed Notation for Ada), which will be used be the compiler back
end in the next step.

3. From its internal representation, the compiler generates a binary, executable
form of your program, consisting of numeric machine instructions.

Normally, this is MCode: instructions for the PL/SQL Virtual Machine.

Alternatively, you can have the compiler generate native machine code for
the actual CPU hardware of the platform on which the program will run.

4. When the source code is part of a CREATE statement, the resulting executable
code is stored in the Data Dictionary until it needs to be executed.

If the source code is a dynamically-created anonymous block (such as one
executed in SQL*Plus), it is executed immediately and not stored.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 21

When Oracle developed the PL/SQL language (the first release was in 1991, as part of Oracle Version
6), they modeled many of the language features after the existing programming language Ada,
including:

Basic program structure and syntax
Exception propagation and handling
RECORD types
Package structure
Procedures and functions
Parameter modes

Oracle10g Advanced PL/SQL Programming

Page 22 Rev 1.1.2 © 2011 ITCourseware, LLC

Compiler Optimization

During the code-generation phase, the compiler performs significant
optimization of your PL/SQL program.

In doing so, the compiler may reorganize your code in several ways.

These optimizations preserve the behavior of your program.

The compiler has several areas available for optimization.

Within expressions (when operators have equal precedence), operator
evaluation can be arranged in any order.

For many operators, the operands can be evaluated in any order.

In a function or procedure call, the arguments can be evaluated in any
order.

In a complex expression with many possible evaluation orders, the
evaluations of various pieces can be intermixed.

When a package member is referenced, and the package hasn't been
initialized for the calling session, the compiler can decide whether or not
the reference requires package initialization.

If a statement can raise any of several exceptions, Oracle can choose
which of the exceptions to raise.

If one way of performing an operation may raise an exception, while a
different way of performing it wouldn't, Oracle is not required to raise the
exception.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 23

As of Oracle10g, the PL/SQL compiler automatically performs optimization during code generation,
potentially rearranging the statements expressed in your source code. Some are the kind of
optimizations other language compilers (such as those for C and C++) do; others are very specific to
Oracle. Exactly which reoganizations the compiler performs will depend on the actual program.
Consider this contrived example:

DECLARE
 x NUMBER := 17;
 y NUMBER := 42
 z NUMBER = 1;
BEGIN
 FOR num IN 1..1000 LOOP
 z := (x / y) + (x / y);
 INSERT INTO sometable (somecolumn)
 VALUES (z);
 END LOOP;
END;
/

The evaluation of z := (x / y) + (x / y) is performed in each loop iteration, even though the results are
the same each time. The statement could be moved above the loop, and be evaluated only once.
Furthermore, the value of (x / y) could be determined once, and the result reused (as though there were
a temporary variable w), used like this: w := (x / y); z := w + w;. The compiler will perform this sort of
optimization automatically. While such poor coding practices are easy to see in a tiny sample program, they
(and more subtle variations) can be easily missed in a larger PL/SQL application.

Prior to Oracle10g, making such changes yourself in your source code could yield better-performing
programs. Now the compiler does these and many other optimizations for you. In the very unlikely
event you wish to reduce the amount of optimization performed, you can set the parameter
pl_sql_optimize_level; the values are:

2: (the default) Perform all optimizations, considering your program as a whole and how it interacts with
other PL/SQL programs it calls.

1 Perform only local optimizations within individual branches of the program code.
0: Do compilation as it was done in Oracle9i, with (for example) expressions and procedure arguments

evaluated (more or less) left-to-right.

ALTER SESSION SET pl_sql_optimize_level = 0

You would likely only do this while debugging code being ported from an earlier release to 10g.

According to Oracle, PL/SQL programs run twice as fast under Oracle10g as they did under Oracle9i
(which itself was generally about 1.5 times faster than Oracle8i). Part of this is due to code
optimization and part due to improvements in the PVM.

Oracle10g Advanced PL/SQL Programming

Page 24 Rev 1.1.2 © 2011 ITCourseware, LLC

SQL — Parse

SQL statements are always executed on the Oracle Server, which is, of course,
the primary function of Oracle.

The SQL Statement Executor processes a SQL statement in several phases,
Parse (Soft or Hard), Execute, and Fetch.

Soft Parse:

1. Allocate a Private SQL Area for the statement.

2. From the exact text of the SQL statement, generate a unique hash code
which identifies that statement.

3. Parse the SQL statement to determine if it's syntactically correct.

4. Parse the statement for semantic correctness (tables and columns found,
current user has appropriate privileges, etc.)

5. Check to see if exactly the same (syntactically, semantically, and
environmentally) statement, identified by that hash code, has already been
saved in server memory; if not, Oracle will need to perform a Hard Parse.

Hard Parse:

1. Allocate a Shared SQL Area in server memory for this statement.

2. Generate an optimized execution plan for the statement.

3. Generate an internal, executable representation of the statement based on
the plan.

4. Store the plan and the statement in the Shared SQL Area, identifying it
with the hash code.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 25

The Private SQL Area for a statement holds information used for the current execution of the statement.
This includes runtime information during the actual execution of the statement (temporary memory for
sorting, data structures used in joins, etc.), as well as persistent information about the statement (bind
information, etc.) needed by the current session. The runtime information isn't needed once execution
is finished (a DML statement completes, a query's last row is fetched). The persistent information may
remain available longer — until you close the CURSOR for a query, for example.

In fact, a PL/SQL CURSOR is your program's reference to a specific Private SQL Area. Cursor
attributes (%ISOPEN, %FOUND, %ROWCOUNT, etc.) allow your PL/SQL code access to specific
information from the Private SQL Area for a statement. When your PL/SQL executes DML without
creating an explicit CURSOR, you can use the predefined identifier SQL to refer to the SQL Area for
the most recent statement.

The Shared SQL Area holds the parse tree (internal, executable representation) and the execution plan
of the statement. These can be re-used by anyone who executes that same statement, saving the time
needed for hard parsing. Hard parsing includes SQL statement optimization by Oracle's Cost-Based
Optimizer (CBO). The CBO determines how best to access the rows affected by the query — which
table to access first in a join, how to perform the join, which indexes to use in which order, etc. It
makes these choices based on metadata (presence and types of indexes, types of tables, etc.) and on
statistics about the data itself (number of rows, average row length, etc.) stored in the Data Dictionary. For
effective optimization, statistics must be collected periodically. Normally, the DBA manages statistics
collection, though you can manage the statistics on your own tables if you wish. Changes to the database or
statistics which affect a statement's tables will require the statement to be hard parsed again.

Properties and statistics of Oracle's memory structures and other important internal information are visible in
real time by querying the dynamic performance views (the v$ views). By default, these are visible only to the
DBA account. For tuning and diagnostic purposes, the DBA can grant access to these views to non-DBA,
developer accounts:

GRANT select_catalog_role TO some_user;

The Shared Pool is one of the main components of Oracle's SGA. It holds many data structures used
internally by Oracle's server processes and background processes, only a few of which are important to us
at this point. You can see them in the view V$SGASTAT.

Oracle10g Advanced PL/SQL Programming

Page 26 Rev 1.1.2 © 2011 ITCourseware, LLC

SQL — Execute and Fetch

Execute:

For a query, generate the result set.

That is, identify the exact rows which satisfy the query.

For DML, perform the data manipulation.

This may require data to be retrieved from data files into server
memory.

Fetch (if the statement is a query):

If the program executed a SELECT INTO... statement, copy the column
values of the result set row into the given program variables.

If there is no row in the result set, throw NO_DATA_FOUND.

If the result set contains more than one row, throw
TOO_MANY_ROWS.

If the program opened a cursor, as it performs each FETCH ... INTO ...
(or the equivalent), copy column values of the current result set row into
the given program variable(s), and advance the cursor's row pointer to the
next row.

Close — Release the private SQL area.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 27

The SQL statement optimizer's goal is to return all rows needed for your statement, using minimal
throughput (I/O and other resource consumption). You can ask the optimizer instead to focus on
returning the first few rows, or the first 1, 10, 100, or 1000 rows, as quickly as possible, even if that
will increase the overall throughput needed to complete the entire statement.

ALTER SESSION SET optimizer_mode = first_rows;
 /* first "few" rows fast */

ALTER SESSION SET optimizer_mode = first_rows_1; /* first row fast */
ALTER SESSION SET optimizer_mode = all_rows;

 /* default: minimum overall throughput */

Oracle reads and writes data from data files one block at a time. A block is a unit of storage whose size is
fixed for any given tablespace. A block may be 2, 4, 8, 16, or 32 kilobytes, and typically holds many rows.
To fetch a row, the block containing that row must first be read into server memory. Once read, it remains in
memory so that other rows in that block are available for future SQL operations. Reading a block from its
data file into memory is a physical get or physical read.

When fetching rows for a query, Oracle must read the corresponding blocks that are in memory. Since all
rows for a query must reflect the state of the blocks as they were at the beginning of the query, Oracle must
get the correct version of each block (multiple versions of a block may exist, with each transaction
potentially seeing different versions). This includes blocks containing index entries necessary to process the
query. Each read of a block in a set of blocks of the same version is called a consistent get.

When performing updates or deletes, Oracle must get the current version of the relevant blocks — that is,
the blocks as they appear as of the most recently-committed DML affecting those blocks. These are called
current reads (also referred to as db block gets).

Consistent gets and db block gets are both forms of logical read. A physical read is more costly (that is,
slower), by orders of magnitude, than a logical read. The greater the ratio of logical reads to physical reads
necessary to process a statement, the faster the statement is likely to execute. This ratio, called the buffer
cache hit ratio, can be calculated as:

1 - ((physical reads) / (consistent gets + db block gets))

Oracle10g Advanced PL/SQL Programming

Page 28 Rev 1.1.2 © 2011 ITCourseware, LLC

Server Memory

When an Oracle instance starts up, several background processes run.

These manage critical tasks and services of the Oracle database, such as
storing data properly in the data files, recovering from crashes, etc.

At startup, the instance allocates a very large region of shared memory Oracle
calls the System Global Area (SGA).

The SGA is shared by all users of the database.

Programmers need to familiarize themselves with some critical components of
the SGA:

The Buffer Cache stores blocks of data containing the rows needed by a
statement, which must first be read from their data files.

Any subsequent statement that accesses the same rows, or other
rows in the same blocks, will find them already in memory.

The Shared Pool of the SGA contains the Dictionary Cache, which
contains rows of metadata that have been read from the Data Dictionary.

This is read, for example, when parsing the semantics of a SQL
statement.

The Shared Pool also contains the Library Cache, which itself contains:

Shared SQL Areas for recent statements.

Compiled PL/SQL procedures, functions, triggers, packages,
anonymous blocks, and Java classes.

The Shared Pool also contains latches, locks, and other data structures.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 29

The SGA contains many regions and data structures used for the vast variety of Oracle operations. You can
find the current sizes of all of these in the view V$SGASTAT. For PL/SQL developers, the most important
SGA components include the Buffer Cache and the Shared Pool.

The Buffer Cache holds working copies of data file blocks, containing table rows, index entries, and other
database data.

The Shared Pool contains many structures. Of interest to developers are:

Dictionary Cache

To process a SQL statement, Oracle must look up information about the tables and other objects
referenced in the statement in the Data Dictionary. Oracle uses additional SQL statements, called
recursive SQL, to retrieve this information. Recursive SQL is also used in processing DDL statements
and when performing space allocation. Once retrieved, this information is cached in the Dictionary
Cache. The Dictionary Cache stores the individual rows of this information, and for this reason is also
called the Row Cache (do not confuse this with rows of actual database data, residing in blocks in the
Buffer Cache). Recursive SQL is not needed when the required information is already in the Dictionary
Cache.

Library Cache

Compiled PL/SQL programs, SQL statements, and Java classes are cached in the Library Cache.
Recently-run SQL statements and PL/SQL blocks are in the SQL Area of the Library Cache. Each is
identified by its SQL ID, a hash code derived from the exact text of the statement. Along with the text of
the statement, the Shared SQL Area of the statement includes the statement's compiled form and
execution plan (along with other data and statistics for the statement). Since two sessions may execute
the exact same statement under different conditions (such as optimizer mode) which result in different
execution plans, there may be multiple execution plans for a single statement in the SQL Area.

You can see statements in the Library Cache by querying V$SQL.

sqlarea.sql
SELECT sql_id, parsing_schema_name, sql_text
 FROM v$sql
/

Oracle10g Advanced PL/SQL Programming

Page 30 Rev 1.1.2 © 2011 ITCourseware, LLC

Latches

A latch is a simple data structure in memory whose value indicates whether or
not its associated resource is currently in use.

Before using a shared memory resource, each Oracle process first obtains the
latch for that resource, then accesses the resource.

A latch can be held by only one process at a time.

If the latch is already taken, your Oracle process may:

Spin (active wait) — Just keep trying, as fast as it can, until the latch is
free.

Sleep — Wait a few fractions of a second, then try again.

Not wait — Abandon the operation.

Latches are very efficient, and are typically held only briefly.

However, the processing of a statement may require acquisition of many
latches.

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 31

There are hundreds of different latches, for different shared resources in the SGA. In most cases, each
latch protects a single resource. In some cases a latch may have associated child latches, protecting
different parts of a data structure.

Latches allow for orderly, serialized (one-at-a-time) access to shared resources by any number of different
Oracle processes. They are compact and very efficient, using a single atomic machine instruction to check
or acquire the latch. However, it's possible for an application that works fine under single-user access, or
small-scale testing, to encounter latch contention — processes spinning or waiting an inordinate amount of
time — under heavy loads.

Oracle uses latches internally to protect hundreds of different resources. Statistics on their use is available in
the dynamic performance view V$LATCH:

latches.sql
SELECT name, gets, misses, sleeps, immediate_gets, spin_gets
 FROM v$latch
 ORDER BY gets
/

Oracle10g Advanced PL/SQL Programming

Page 32 Rev 1.1.2 © 2011 ITCourseware, LLC

A lock is a complex data structure in shared memory that allows a session or
transaction to wait for a resource to become free.

A lock uses a complex data structure, allowing sessions to add
themselves to a linked list, or queue, to wait on the lock.

Multiple sessions may interact with a lock, so each must first obtain the
latch protecting the lock before making its change to the lock.

The session frees the latch immediately after modifying the lock.

Another name for a lock is an enqueue.

When you update database rows, your session:

Creates a lock in shared memory for your transaction — a Transaction
(TX) lock.

Flags the rows as locked, placing information identifying your transaction
in the block containing the rows.

Creates one lock in shared memory for each object referenced by the
SQL statement — DML (TM) locks.

When another transaction tries to update any of the rows you have locked, it:

Identifies your transaction using information in the rows' block.

Creates its own lock structure.

Adds its lock structure to your lock's "waiters" queue.

Locks

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 33

Oracle uses hundreds of types of lock. Most of these are used internally to coordinate activity of Oracle
background processes during various normal operations. The lock types relevent to programmers are
Transaction (TX) locks, and DML (TM) locks. When you start a transaction, your session creates a single
TX lock, which allows other sessions to wait on yours. If another session tries to update one of the same
rows, it enqueues on the TX lock. During your transaction, your session also obtained a TM lock for each
table you updated or other object you used. Because of this, no other session will alter those objects until
those locks are free. For example, if another session attempts an ALTER TABLE on one of the tables
you're updating, it will enqueue on the TM lock.

When a transaction updates rows in a block, it adds itself to the block's Interested Transaction List (ITL), a
small data structure in the block header. It then updates the row directory, another small data structure in the
block header, with a 'locked' flag for each row being updated. The flag points to the transaction's ITL entry,
which points (indirectly) to the transaction itself. Another transaction that wishes to update those same rows
will find them marked as locked in the row directory. The lock flag will point to the ITL and thus the original
transaction, which allows the second transaction to locate the TX lock of the first transaction and enqueue
as a waiter. You can see currently-held locks in the view V$LOCK:

SELECT * FROM v$lock WHERE type IN ('TX','TM');

A different presentation of the same information is available from DBA_LOCKS:

SELECT * FROM dba_locks WHERE lock_type IN ('Transaction','DML');

For a TM lock, the ID1 field is the numeric object ID of the locked table. Using this you can find the
locked table in DBA_OBJECTS or ALL_OBJECTS. The mode of the TM lock determines what
operations other transactions can perform on the entire table:

Row Share (SS or RS) lock: Other transactions can SELECT, INSERT, UPDATE, DELETE, and lock
other rows in the table. However, another transaction cannot get an exclusive lock on the table, for example,
to ALTER or DROP the table, while the first transaction has the RS lock.

Row Exclusive (SX or RX) lock: Other transactions can SELECT, INSERT, UPDATE, DELETE, and
lock other rows in the table. However, another transaction cannot get an exclusive or a share row exclusive
table lock (another kind of lock, more restrictive than a row share table lock) on the table.

The mode of the TX lock determines the lock mode for the rows. An INSERT, UPDATE, or DELETE
establishes an exclusive (RX) lock on the rows. A SELECT ... FOR UPDATE establishes a share (RS)
lock on the rows. If, after a SELECT ... FOR UPDATE, you later actually update the rows within the
same transaction, Oracle automatically converts the share (RS) lock to an exclusive (RX) lock.

See the Oracle Concepts guide, "Data Concurrency and Consistency," for more information on lock types
and lock modes.

Oracle10g Advanced PL/SQL Programming

Page 34 Rev 1.1.2 © 2011 ITCourseware, LLC

Labs

Labs in this chapter assume that a student Oracle account has been set up and granted SELECT ANY
TABLE, UPDATE ANY TABLE, and SELECT_CATALOG_ROLE.

Query V$SGASTAT. Find the current sizes of the Library Cache, the Row Cache, the SQL Area,
and the PL/SQL portion of the SQL Area.
(Solution: sgastats.sql)

Querying V$SQL, find the statements that were originally issued under your current Oracle user
name.
(Solution: usersql.sql)

Query both V$LOCK and DBA_LOCKS, looking only for TX and TM locks. Are there any
transactions currently performing DML?
(Solution: locks1.sql)

Run an UPDATE statement to update the OE.CUSTOMERS table, setting
ACCOUNT_MGR_ID to 148 — do not commit (you will rollback at the end of this exercise!).
Query V$LOCK and DBA_LOCKS, looking only for TX and TM locks. What locks were
created? Do not COMMIT, ROLLBACK, or exit yet.
(Solution: locks2.sql)

From the output of the DBA_LOCKS query with your UPDATE transaction still open, identify the
object IDs of all locked objects. Using this information, look the locked table or tables up in
DBA_OBJECTS. What tables are locked? What mode is each locked in? Why? Do not
COMMIT, ROLLBACK, or exit yet.
(Solution: locked_objects.sql)

In a second session, run a new update statement to update the ACCOUNT_MGR_ID to 148
where the NLS_TERRITORY is equal to 'JAPAN'. What happens (or doesn't happen...)? In
your first session, query V$LOCK and DBA_LOCKS. What TX and TM locks are there now?
Which are held, which are requested, which are blocking? Now ROLLBACK your first session,
and examine V$LOCK and DBA_LOCKS again. What locks exist? Now ROLLBACK your
second session, and examine V$LOCK and DBA_LOCKS again. Are there any TX or TM locks
left from your transactions?
(Solutions: wait_session1.sql, wait_session2.sql).

Chapter 2 The PL/SQL Execution Environment

© 2011 ITCourseware, LLC Rev 1.1.2 Page 35

Oracle10g Advanced PL/SQL Programming

Page 36 Rev 1.1.2 © 2011 ITCourseware, LLC

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 89

Chapter 5 - Object-Oriented Oracle

Objectives

Describe the different object types in
Oracle.

Understand the advantages in using object
types.

Create PL/SQL code that contains
different object types.

Oracle10g Advanced PL/SQL Programming

Page 90 Rev 1.1.2 © 2011 ITCourseware, LLC

Oracle's Object Relational Model is similar to Object-Oriented Programming
(OOP).

Your can store an object in a table, query the object, and enjoy all the
other database features standard relational tables benefit from.

An object type in Oracle is a user-defined datatype composed of standard
datatypes and/or other user-defined datatypes.

Object types let you extend the standard datatypes with more complex
representations of real-world items.

An object table in Oracle is a table where each row represents one object.

An object table only has one column — the object type.

Oracle's object-relational features lend themselves nicely to working with OO
programming languages.

No mapping layer is required between objects in the database and objects
in the application code.

Reusability of objects makes application development more efficient.

It is easy to model complex, real-world business entities and logic.

Objects encapsulate operations along with the data.

As a disadvantage, it can be more cumbersome to work with user-defined
datatypes, especially in non-OO programming languages.

Introducing Object-Oriented Oracle

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 91

sessalC

0.3,IarbeglA,101htaM

0.3,noitisopmoCdecnavdA,302lgnE

0.4,IIscisyhP,201syhP

renwO raC

boB)8,detcejnIleuF(,6002,gnatsuM,droF

euS)8,detarubraC(,6691,oramaC,telorvehC

yllaS)6,detcejnIleuF(,8891,XZ003,nassiN

As an example, a car's attributes can include make, model, year, and engine. For the car object example,
the engine attribute could be an object itself, with attributes of ignition and num_cylinders.

The following table shows the owner of the car in one column, and the car object type in the second
column.

The following object table contains objects representing classes at a university. Each row holds an object
representing a university class.

Note:
Though not technically accurate, some resources may describe an object table as any table in which any
column is declared with a user-defined datatype.

Comparison of Object-Oriented vs. Relational design

detneirO-tcejbO lanoitaleR

setubirttafonoitinifeD rehtorofstcejboesuernaC
.snoitinifed

wenhcaeeralcedylticilpxetsuM
.etubirtta

setubirttafoegarotS htiw,tcejbonasinmulochcaE
.setubirttaelpitlumyllaitnetop

enoylnodnaenosinmulochcaE
.etubirtta

snoitcnuF yltceridebnacsnoitcnuF
.atadehthtiwdetaicossa

otdeitton,enoladnatssnoitcnuF
.elbatyna

snoitareponioJ ottcejboenoniojotelbatoN
.rehtona

.selbatowtnisetubirttaniojnaC

noitacilppahtiwnoitcaretnI
stcejbo

nistcejbohtiwyltceridtcaretnI
.segaugnalPOO

neewtebgnippamseriuqeR
dnaelbatehtnisetubirtta

.tcejboehtnisetubirtta

LQShtiwnoitcaretnI esuotseuqinhcetlaicepsseriuqeR
.stcejbonoLQS

LQShtiwsnoitcaretnievitaN
.stnemetats

Oracle10g Advanced PL/SQL Programming

Page 92 Rev 1.1.2 © 2011 ITCourseware, LLC

Defining Object Types and Tables in SQL

The CREATE TYPE...AS OBJECT statement is used to create a user-
defined object datatype, specifying its attributes.

CREATE TYPE engine_typ AS OBJECT (
cylinders NUMBER,
manufacturer VARCHAR2(30)) NOT FINAL;

You must have been granted the CREATE TYPE or CREATE ANY
TYPE system privilege.

Specify NOT FINAL to allow inheritance from this type, as FINAL is
the default.

Once the user-defined datatype has been created, create a table using the
datatype name just like you would use CHAR, NUMBER, DATE, etc.

The type definitions are stored in the Data Dictionary, accessible through the
DBA_TYPES view.

The DESCRIBE command in SQL*Plus can be used to easily show the
type definition.

Once the type is created, it can be used in a CREATE TABLE statement just
like any standard datatype.

CREATE TABLE vehicles (
vehicle_id NUMBER,
date_of_service DATE,
characteristics car_typ) NOT FINAL;

To create an object table, with the object type as its only column, you can use
the OF clause.

CREATE TABLE car_characteristics OF car_typ;

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 93

We can create a user-defined datatype called car_typ, which is comprised of simple attributes, as well as
the engine_typ type that we create first.

engine_car.sql
CREATE TYPE engine_typ AS OBJECT (

cylinders NUMBER,
manufacturer VARCHAR2(30)) NOT FINAL;

CREATE TYPE car_typ AS OBJECT (
make VARCHAR2(30),
model VARCHAR2(30),
year CHAR(4),
engine engine_typ) NOT FINAL;

The DESCRIBE command in SQL*Plus will show you the attributes of the user-defined datatype. The
SET DESCRIBE DEPTH ALL command will let you see all levels of the object types.

SQL> set describe depth all
SQL> desc car_typ
car_typ is NOT FINAL
 Name Null? Type
 ----------------- -------- ------------
 MAKE VARCHAR2(30)
 MODEL VARCHAR2(30)
 YEAR CHAR(4)
 ENGINE ENGINE_TYP
 CYLINDERS NUMBER
 MANUFACTURER VARCHAR2(30)

Once the type is created, you can create a tables with the user-defined datatype.

vehicle.sql
CREATE TABLE vehicles (

vehicle_id NUMBER,
date_of_service DATE,
characteristics car_typ);

car_char.sql
CREATE TABLE car_characteristics OF car_typ;

Try It:
Perform a DESCRIBE on the car_characteristics object table to show all of the attributes.

Oracle10g Advanced PL/SQL Programming

Page 94 Rev 1.1.2 © 2011 ITCourseware, LLC

Querying and Modifying Object Data

Query the individual attributes of the user-defined datatype with the
table.column.attribute notation.

SELECT v.characteristics.make
 FROM vehicles v;

The table or its alias must appear in the SELECT clause, otherwise the
ORA-00904: invalid column name error will appear.

The object values will be wrapped in the object type name.

When inserting a row of data, wrap the object's attributes in the object name.

INSERT INTO vehicle
VALUES (1001, '08-MAR-2005',
car_typ('FORD', 'F-150', '2005', engine_typ(8, 'Triton'))

);

You can update the attribute of an object type directly by using the
table.column.attribute notation.

UPDATE vehicle v
 SET v.characteristics.model = 'IMPALA'
 WHERE vehicle_id = 1002;

When you delete a row, the object is automatically destroyed.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 95

vehicle_data.sql
INSERT INTO vehicle VALUES (
 1001, '08-MAR-2005',
 car_typ('FORD', 'F-150', '2005', engine_typ(8, 'Triton'))
);

INSERT INTO vehicle
 VALUES (1002, '17-FEB-2006',
 car_typ('CHEVROLET', 'MALIBU', '2003', engine_typ(6, 'Chevrolet'))
);

UPDATE vehicle v
 SET v.characteristics.model = 'IMPALA'
 WHERE vehicle_id = 1002;

SELECT * FROM vehicle;

SELECT vehicle_id, v.characteristics.make, v.characteristics.model
 FROM vehicle v;

Oracle10g Advanced PL/SQL Programming

Page 96 Rev 1.1.2 © 2011 ITCourseware, LLC

Object Methods

Functions associated with an object type are called member methods.

Declare a method when creating the user-defined object datatype.

Provide the method code by writing a BODY for the datatype.

This is similar to writing a package specification and body.

Member methods interact with the object's attributes.

Member methods have a built-in reference called SELF, which points to
the current instance of the object.

Constructor methods instantiate the object by giving values to the attributes.

An attribute value constructor is defined by Oracle and can accept literals
for each of the attributes.

You may provide additional constructors by writing methods that have the
same name as the datatype.

You can define a MAP method to be used in equality comparisons.

You can define an ORDER method to be used in sorting operations.

The method needs to return a negative, positive, or zero value for an
object that is less than, greater than, or equal to the current object.

Methods marked STATIC operate on the object type, not the individual object.

Additional methods can be written to manipulate the individual object.

These are called instance methods and can reference the object's
attributes.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 97

The following version of our object type defines a method that can be used for sorting the objects.

car2.sql
CREATE OR REPLACE TYPE car_typ2 AS OBJECT (
 make VARCHAR2(30),
 model VARCHAR2(30),
 year CHAR(4),
 engine engine_typ,
 ORDER MEMBER FUNCTION ordering (c car_typ2) RETURN INTEGER
) NOT FINAL;
/

CREATE OR REPLACE TYPE BODY car_typ2 AS
 ORDER MEMBER FUNCTION ordering (c car_typ2) RETURN INTEGER IS
 BEGIN
 IF (year < c.year) THEN
 RETURN -1;
 ELSIF (year > c.year) THEN
 RETURN 1;
 ELSE -- years are equal, sort by the makes
 IF (make < c.make) THEN
 RETURN -1;
 ELSIF (make > c.make) THEN
 RETURN 1;
 ELSE -- same year and make, they sort equal
 RETURN 0;
 END IF;
 END IF;
 END;
END;
/

Now, if we create a vehicle2 table with a car_typ2 field, we can perform a sort on the object field. The
Oracle engine will automatically call our method marked with ORDER to perform the ORDER BY.

vehicle2.sql
...
 SELECT v.characteristics.year year, v.characteristics.make make
 FROM vehicle2 v
ORDER BY v.characteristics;

Notice that the data was sorted by year and then make, as indicated by the ordering function.
YEAR MAKE
---- ------------------------------
2003 CHEVROLET
2005 FORD

Oracle10g Advanced PL/SQL Programming

Page 98 Rev 1.1.2 © 2011 ITCourseware, LLC

Inheritance

Type inheritance means that any user-defined datatype inherits, or takes over,
features from any parent types.

Type inheritance provides a higher level of abstraction for modeling
complex business entities.

The parent type is called the supertype.

The child type is called the subtype.

Due to type inheritance, subtypes automatically acquire any changes
made to its supertypes.

To inherit from an existing user-defined type, specify the UNDER keyword
along with the supertype.

CREATE TYPE convertible_typ UNDER car_typ (
shell VARCHAR2(4),
retraction VARCHAR2(6));

You cannot inherit from a FINAL type.

Attribute chaining is the succession of attributes from a parent object type to its
child object type.

The UNDER keyword causes all of the attributes of the supertype to
exist in the subtype as well.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 99

A subtype of a car might be a convertible, that has either a hard or soft shell top, and manual or power
retraction.

convertible.sql
CREATE TYPE convertible_typ UNDER car_typ (

shell VARCHAR2(4),
retraction VARCHAR2(6));

conv_tab.sql
CREATE TABLE conv OF convertible_typ;

A DESCRIBE of the conv table shows that it has all of the attributes of the supertype, car_typ, as well as
the attributes specified in the subtype, convertible_typ.

Name Null? Type
--- -------- --------------------
MAKE VARCHAR2(30)
MODEL VARCHAR2(30)
YEAR CHAR(4)
ENGINE ENGINE_TYP
SHELL VARCHAR2(4)
RETRACTION VARCHAR2(6)

Oracle10g Advanced PL/SQL Programming

Page 100 Rev 1.1.2 © 2011 ITCourseware, LLC

Type Evolution

Type evolution is the process of changing the object type with the ALTER
TYPE command.

Several operations can be performed to change an existing user-defined
datatype.

Add or remove attributes.

Any dependent tables receiving a new attribute will store NULL in
that column.

Any dependent tables that have an attribute removed will have their
columns removed as well.

Add, remove or modify methods.

Change a numeric attribute to increase its length, precision, or scale.

Change a variable character attribute to increase its length.

Change the finality of the type (FINAL or NOT FINAL).

Due to inheritance and attribute chaining, any objects that reference this type will
be affected by the change.

Any dependent views, operators, index types, and stored PL/SQL blocks
will be marked INVALID.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 101

The following example shows the car_typ2 type receiving a new attribute to store the color of a car.

car2_evolve.sql
ALTER TYPE car_typ2
 ADD ATTRIBUTE (color VARCHAR2(15)) CASCADE;

SQL> DESC car_typ2
 car_typ2 is NOT FINAL
 Name Null? Type
 --- -------- --------------------

 MAKE VARCHAR2(30)
 MODEL VARCHAR2(30)
 YEAR CHAR(4)
 ENGINE ENGINE_TYP
 COLOR VARCHAR2(15)

METHOD

 ORDER MEMBER FUNCTION ORDERING RETURNS NUMBER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 C CAR_TYP2 IN

Oracle10g Advanced PL/SQL Programming

Page 102 Rev 1.1.2 © 2011 ITCourseware, LLC

Object Views

If you have an existing relational database schema, without any fields or tables
stored as objects, you can still treat this data as objects from an OO application.

An object view is created as a wrapper around the existing relational data.

The OO application can then utilize the view without changing the
relational database model.

The object view is created in two steps:

1. Create an object datatype to be used by the OO application.

CREATE TYPE region_typ AS OBJECT (
region_id NUMBER,
region_name VARCHAR2(25));

2. Create an object view based on this datatype, which queries the
underlying relational tables.

CREATE VIEW region_obj_view OF region_typ
WITH OBJECT IDENTIFIER (region_id) AS
SELECT region_id, region_name FROM regions

Each row in the object view is considered an object.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 103

Before an object view can be created, we must first create a user-defined type. Our example will create an
object view on the hr.regions table, so we must first create an object type which resembles this table. We
can then create a view based on the object type, and the underlying table.

region.sql
CREATE TYPE region_typ AS OBJECT (
 region_id NUMBER,
 region_name VARCHAR2(25))
/

CREATE VIEW region_obj_view OF region_typ
 WITH OBJECT IDENTIFIER (region_id) AS
 SELECT region_id, region_name FROM hr.regions
/

This view can now be used in the same way that a true object table, such as car_characteristics, can be
used. An object-oriented application can query an object view, based on relational tables, the same way
that it can query an object table.

SQL> SELECT * FROM region_obj_view;

 REGION_ID REGION_NAME
---------- -------------------------
 1 Europe
 2 Americas
 3 Asia
 4 Middle East and Africa

Oracle10g Advanced PL/SQL Programming

Page 104 Rev 1.1.2 © 2011 ITCourseware, LLC

Object Types in PL/SQL

Object types in PL/SQL can be used wherever standard datatypes can be used.

Variables in PL/SQL can be defined with object types.

Parameters in PL/SQL functions and procedures can use object types.

Functions can return object types as well.

Scope and instantiation rules hold for object types.

Local objects are instantiated when you enter the PL/SQL block and
destroyed when you leave the block.

Objects local to the block can only be seen inside that block.

An object in PL/SQL is automatically NULL until you call its constructor to
initialize the object.

The object itself is NULL, not just its attributes.

Attributes of the object can be referred to individually with the
variable.attribute notation.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 105

In the following example, we use the car_typ datatype and its constructor method in an anonymous block.

anon_block.sql
SET SERVEROUTPUT ON
DECLARE
 -- Create a variable (initally empty) of CAR_TYP
 car car_typ;
BEGIN
 -- Call the constructor method to initialize car
 car := car_typ('Nissan','Maxima','2004', engine_typ(6,230));
 -- Add the car to the vehicles table
 INSERT INTO vehicle VALUES (1003, SYSDATE, car);
 DBMS_OUTPUT.PUT_LINE(car.make || ' : ' || car.model);
END;
/

Note that the DBMS_OUTPUT line refers to the individual attributes of the object.

The car_typ datatype can be used as an input parameter, as shown in this stored procedure.

add_vehicle.sql
CREATE OR REPLACE PROCEDURE add_vehicle (car_id NUMBER, car car_typ)
AS
BEGIN
 INSERT INTO vehicle VALUES (car_id, SYSDATE, car);
END;
/

Oracle10g Advanced PL/SQL Programming

Page 106 Rev 1.1.2 © 2011 ITCourseware, LLC

REF Pointers

A REF is a logical pointer, or reference, to an object.

A REF can be used to examine or update the object to which it refers.

A common use for a REF is to implement a foreign key to another object.

The DEREF function will follow the REF pointer and return the object being
pointed to.

An object that is deleted, may have REFs still pointing to it.

Any REF that is no longer pointing to a valid object is a dangling REF.

The IS DANGLING operator can be used to determine which entries in
a table have a dangling REF.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 107

In the following example, we create a table called fleet to represent a fleet of vehicles for our company.
This table will contain pointers to the car_characteristics table. The car_ref column is a REF pointing to a
car_typ object, limited to the car_characteristics table. We will then insert two rows of information using
a REF to a specific row in the car_characteristics table.

fleet.sql
CREATE TABLE fleet (
 department VARCHAR2(20),
 car_ref REF car_typ SCOPE IS car_characteristics)
/

INSERT INTO fleet SELECT 'PAYROLL',
 REF(c) FROM car_characteristics c WHERE c.make = 'CHEVROLET'
/

INSERT INTO fleet SELECT 'MOTOR POOL',
 REF(c) FROM car_characteristics c WHERE c.make = 'FORD'
/

Querying the fleet table, we can see the reference pointer, and then use DEREF to see the row from the
car_characteristics table.

SELECT department, car_ref, DEREF(car_ref) FROM fleet;

DEPARTMENT

CAR_REF
--
DEREF(CAR_REF)(MAKE, MODEL, YEAR, ENGINE(CYLINDERS, MANUFACTURER))
--
PAYROLL
0000220208247F7B4CD1E0A58FE04011AC2C0A7021247F7B4CD1DEA58FE04011AC2C0A7021
CAR_TYP('CHEVROLET', 'MALIBU', '2003', ENGINE_TYP(6, 'Chevrolet'))

MOTOR POOL
0000220208247F7B4CD1DFA58FE04011AC2C0A7021247F7B4CD1DEA58FE04011AC2C0A7021
CAR_TYP('FORD', 'F-150', '2005', ENGINE_TYP(8, 'Triton'))

Oracle10g Advanced PL/SQL Programming

Page 108 Rev 1.1.2 © 2011 ITCourseware, LLC

Object Functions and Operators

The IS OF operator tests whether the given object belongs to the given type.

The VALUE function takes the table alias as a parameter and returns the object
instance from the appropriate rows.

VALUE returns the data as an object.

The SYS_TYPEID function returns the typeid of the most specific type of the
given parameter.

This function is useful in determining which type in the type hierarchy the
object belongs to.

The TREAT function checks that an expression can be operated on as if it were
a different datatype.

The most common use is to determine if a supertype can function as the
subtype.

Oracle also includes the UTL_REF supplied package to perform reference-
based operations.

UTL_REF procedures let you write generic methods without knowing
the object name.

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 109

In the following example, we return the object as data from the car_characteristics table where that object
is of the type car_typ. The second SELECT raises an error, since the value is not an engine_typ.

value.sql
SELECT VALUE(c) FROM car_characteristics c
 WHERE VALUE(c) IS OF (car_typ);

SELECT VALUE(c) FROM car_characteristics c
 WHERE VALUE(c) IS OF (engine_typ);

VALUE(C)(MAKE, MODEL, YEAR, ENGINE(CYLINDERS, MANUFACTURER))
--
CAR_TYP('FORD', 'F-150', '2005', ENGINE_TYP(8, 'Triton'))
CAR_TYP('CHEVROLET', 'MALIBU', '2003', ENGINE_TYP(6, 'Chevrolet'))

 WHERE VALUE(c) IS OF (engine_typ)
 *
ERROR at line 2:
ORA-00932: inconsistent datatypes: expected UDT got HR.CAR_TYP

The UTL_REF supplied package contains the following subprograms:

erudecorP egasU

TCEJBO_ETELED nevigehtybotdetniopelbattcejbonamorftcejbonasevomeR
.ecnerefer

TCEJBO_KCOL .ecnerefernevigehtybotdetniopelbattcejboehtnitcejbonaskcoL

TCEJBO_TCELES ehtserotsdnaecnerefernevigehtybotdetnioptcejbonastceleS
.elbairavLQS/LPehtnitcejbo

TCEJBO_ETADPU .ecnerefernevigehtybotdetnioptcejboehtsetadpU

Oracle10g Advanced PL/SQL Programming

Page 110 Rev 1.1.2 © 2011 ITCourseware, LLC

Create an object type called current_weather_typ to model current weather observations. This
type should have attributes for city, state, current temperature, and current status (such as snowy,
sunny, etc.)
(Solution: weather.sql)

Create an object table called current_weather with the only column defined as the datatype you
just created.
(Solution: weather_tab.sql)

Perform a DESCRIBE on both the type and the table you created to verify that all has been
created properly.
(Solution: weather_desc.sql)

Insert the following values into the table you created. Don't forget to commit!

(Solution: weather_ins.sql)

Query the table to ensure the values have been entered correctly.
(Solution: weather_sel.sql)

Modify the type to add a new attribute for the wind speed. Query the table to see the results of your
change and the values for your new attribute.
(Solution: wind_speed.sql)

Create a procedure called new_weather that will insert a new row of data into the table, accepting
the type attributes as input.
(Solution: new_weather.sql)

Labs

ytiC etatS pmeT sutatS

kroYweN YN 23 ynnuS

notsoB AM 72 yduolC

ogacihC LI 51 drazzilB

Chapter 5 Object-Oriented Oracle

© 2011 ITCourseware, LLC Rev 1.1.2 Page 111

Use the new procedure to add a new weather report into the table. Query the table to ensure the
data was added correctly.
(Solution: add_weather.sql)

Oracle10g Advanced PL/SQL Programming

Page 112 Rev 1.1.2 © 2011 ITCourseware, LLC

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 169

Chapter 8 - Advanced Programming Topics

Objectives

Use autonomous transactions in stored
subprograms and triggers.

Choose which user's application context and
rights will apply when a stored subprogram
runs.

Create functions to implement fine-grained
access control.

Use DBMS_PIPE to set up inter-session
communication between PL/SQL programs.

Dynamically generate data that can be
accessed from a SELECT statement with
table functions.

Write high-performance code using
pipelined table functions.

Oracle10g Advanced PL/SQL Programming

Page 170 Rev 1.1.2 © 2011 ITCourseware, LLC

¯̄̄̄ From an Oracle session, all of the changes made to data are part of a single
transaction, regardless of the number of DML statements, or procedure and
function calls made.

Most of the time, this behavior is desired, but can be overridden by
declaring a PL/SQL unit to be an autonomous transaction.

An autonomous transaction is an independent transaction started within another
transaction (the main transaction).

Autonomous transactions allow you to temporarily suspend the main
transaction, perform additional SQL operations, commit or rollback those
operations separately, then resume the main transaction.

The autonomous transaction does not share any resources, locks, or commit
dependencies with the main transaction, allowing you to perform operations
such as log events and increment counters even when the main transaction is
rolled back.

Autonomous transactions can be used in anonymous PL/SQL blocks, local and
stand-alone PL/SQL units, packaged PL/SQL units, database triggers, and object
type methods.

Autonomous transactions are specified individually for each subprogram
in a package.

To define an autonomous transaction, you use a PRAGMA statement (compiler
directive) in the declaration section of the PL/SQL block.

PRAGMA AUTONOMOUS_TRANSACTION;

You must commit or rollback within the specific program unit that is
declared as autonomous.

Autonomous Transactions

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 171

auton_trig.sql
CREATE TABLE emp_log
 (empno NUMBER(6),
 userid VARCHAR2(30),
 tran_date DATE)
/

CREATE OR REPLACE TRIGGER insert_log
 BEFORE INSERT OR UPDATE ON hr.employees FOR EACH ROW
 DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 INSERT INTO emp_log
 VALUES (:new.employee_id, USER, SYSDATE);
 COMMIT;
 END;
/
INSERT INTO hr.employees (employee_id, last_name, email,
 hire_date, job_id)
 VALUES (999, 'Ellison', 'larry@oracle.com', SYSDATE, 'SA_REP');
ROLLBACK;
SELECT * FROM hr.employees WHERE employee_id = 999;
SELECT * FROM emp_log;

The output:
INSERT INTO hr.employees (employee_id, last_name, email,
 hire_date, job_id)
 VALUES (999, 'Ellison', 'larry@oracle.com', SYSDATE, 'SA_REP');

1 row inserted.

ROLLBACK;

Rollback complete.

SELECT * FROM hr.employees WHERE employee_id = 999;

no rows selected

SELECT * FROM emp_log;

 EMPNO USERID TRAN_DATE
---------- ------------------------------ ---------
 999 HR 14-AUG-06

Oracle10g Advanced PL/SQL Programming

Page 172 Rev 1.1.2 © 2011 ITCourseware, LLC

Invoker's Rights

By default, stored PL/SQL program units execute with the privileges and schema
context of the creator of the unit, rather than the user who is executing the code.

Use the AUTHID clause to override this default behavior.

AUTHID CURRENT_USER

This signals that the program will execute using the rights of the user
currently executing the stored program.

When the AUTHID clause is used for a package, it is defined in the package
specification and applies to all routines in the package.

Priviliges are checked when executing a stored subprogram.

Invoker's rights will require that the invoker (current user) has all of the
necessary privileges for the tables and other subprograms being
manipulated.

Using the invoker's schema context means that object resolution will be based
on the invoker's schema, not the schema of the user that defined the
subprogram.

Each user may have different synonyms, tables, and views defined.

Make sure that tables and views are fully-qualified with their schema
name to avoid confusion.

You can explicitly specify the default behavior of definer's rights with the
AUTHID clause.

AUTHID DEFINER

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 173

Consider a procedure which updates an unqualified reference to emp.

With invoker's rights, a user would need to have the DELETE privilege on the emp table. And, the
resolution of emp would depend on the current user's schema definition.

delete_emp1.sql
CREATE OR REPLACE PROCEDURE delete_emp1 (in_empid NUMBER)
 AUTHID CURRENT_USER IS
BEGIN
 DELETE FROM emp
 WHERE employee_id = in_empid;
END;
/

The same procedure using definer's rights would not require the invoker to have the DELETE privilege on
emp, only the EXECUTE privilege on the procedure. Additionally, the resolution of emp would be based
on the schema of the procedure's creator, not the user running it.

delete_emp2.sql
CREATE OR REPLACE PROCEDURE delete_emp2 (in_empid NUMBER)
 AUTHID DEFINER IS
BEGIN
 DELETE FROM emp
 WHERE employee_id = in_empid;
END;
/

Try It:
Log into the database as hr, and create a synonym of emp:
CREATE SYNONYM emp FOR employees;

Then, create each of the procedures above:
@delete_emp1
@delete_emp2

Grant EXECUTE privilege on these procedures to the oe user:
GRANT EXECUTE ON delete_emp1 TO oe;
GRANT EXECUTE ON delete_emp2 TO oe;

Now log in as the oe user and try executing each procedure:
EXEC hr.delete_emp1(133); -- this call fails
EXEC hr.delete_emp2(133); -- this call succeeds

Oracle10g Advanced PL/SQL Programming

Page 174 Rev 1.1.2 © 2011 ITCourseware, LLC

Fine-grained access control, also referred to as row-level security, is used to
create a Virtual Private Database (VPD).

Security rules are applied to a statement at parse time based on the
database object(s) (a table, view or synonym) that it references.

You can associate your own security policy with an object using a
PL/SQL function, called a policy function.

DBMS_RLS.ADD_POLICY('hr', 'jobs', 'job_policy',
'hr', 'job_policy_func', 'select');

Whenever the database object is referenced in the specified type of statement, a
transient view is created and its result set substituted for the original object.

Oracle produces this transient view by calling the policy function.

SELECT * FROM hr.jobs WHERE predicate

The predicate is the return value from this function, which is used
to limit the rows that can be accessed by the end user.

The policy function can reference session environment variables to
help determine its resulting predicate.

You can achieve column-level VPD by specifying columns for INDEX,
SELECT, INSERT, UPDATE, or DELETE statements.

The policy will only be applied when a specified column is accessed.

Oracle invokes the function with definer's rights; therefore, no privileges to the
function, or any objects that it references, need to be granted to any other users.

Fine-Grained Access Control with DBMS_RLS

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 175

Note:
DMBS_RLS is only available in the Enterprise Edition.

margorpbuS noitpircseD

YCILOP_DEPUORG_DDA puorgycilopahtiwdetaicossaycilopasddA

YCILOP_DDA ro,weiv,elbataotyciloplortnocsseccadeniarg-enifasddA
mynonys

TXETNOC_YCILOP_DDA noitacilppaevitcaehtroftxetnocehtsddA

PUORG_YCILOP_ETAERC puorgycilopasetaerC

PUORG_YCILOP_ETELED puorgycilopaseteleD

YCILOP_DEPUORG_ELBASID ycilopytirucespuorglevel-woraselbasiD

YCILOP_DEPUORG_PORD puorgycilopahtiwdetaicossaycilopasporD

YCILOP_PORD ro,weiv,elbatamorfyciloplortnocsseccadeniarg-enifasporD
mynonys

TXETNOC_YCILOP_PORD enoevahlliwtitahtostcejboehtmorftxetnocgnivirdasporD
txetnocgnivirdssel

YCILOP_DEPUORG_ELBANE ycilopytirucespuorglevel-woraselbasidroselbanE

YCILOP_ELBANE yciloplortnocsseccadeniarg-enifaselbasidroselbanE

YCILOP_DEPUORG_HSERFER ycilopdehserferahtiwdetaicossastnemetatsLQSehtsesrapeR

YCILOP_HSERFER otycilopehthtiwdetaicossastnemetatsdehcacehtllasesuaC
desrapereb

Your policy function must have the following interface:
FUNCTION policy_function(object_schema IN VARCHAR2,
 object_name VARCHAR2) RETURN VARCHAR2

DBMS_RLS subprograms:

Oracle10g Advanced PL/SQL Programming

Page 176 Rev 1.1.2 © 2011 ITCourseware, LLC

Creating Pipes with DBMS_PIPE

You can communicate between multiple Oracle sessions using pipes, which
utilize shared memory to temporarily store data.

Data in a pipe is lost when the Oracle instance is shutdown.

The DBMS_PIPE package allows you to create public or private pipes.

Any user can access a public pipe, if they know its name.

A private pipe can only be used between sessions belonging to the same
user, procedures running with that user's rights, or a user connected with
SYSDBA privilege.

Use the CREATE_PIPE function to explicitly create a pipe.

A flag is used to specify whether the pipe is private (the default) or public.

You can also create a public pipe implicitly by simply referencing it by
name.

An implicit pipe will disappear when it no longer contains data.

Since public pipes can be created implicitly, CREATE_PIPE is typically
used to create private pipes.

An attempt to explicitly create a pipe with an existing name, whether public or
private, generates an error.

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 177

Note:
EXECUTE privilege must be granted on DBMS_PIPE to users working with pipes.

Oracle10g Advanced PL/SQL Programming

Page 178 Rev 1.1.2 © 2011 ITCourseware, LLC

Write data items into a message buffer with one or more calls to
PACK_MESSAGE, which is overloaded for various datatypes.

DBMS_PIPE.PACK_MESSAGE('First item in message');
DBMS_PIPE.PACK_MESSAGE('Second item in message');
DBMS_PIPE.PACK_MESSAGE(numeric_item_3);

Currently, the maximum buffer size is 4096 bytes, which includes 4 bytes
per item for header and terminating information.

Place the message in a pipe by calling SEND_MESSAGE with the pipe name.

status := DBMS_PIPE.SEND_MESSAGE('Pipe1');

Read a message from a pipe by calling RECEIVE_MESSAGE.

status := DBMS_PIPE.RECEIVE_MESSAGE('Pipe1', 432,000);

A timeout value in seconds, which defaults to DBMS_PIPE.MAXWAIT
or 1,000 days, may be passed.

If RECEIVE_MESSAGE does not error or timeout, then the next
message is removed from the pipe.

Call UNPACK_MESSAGE one or more times to retrieve the individual items.

DBMS_PIPE.UNPACK_MESSAGE(item1);

If you call SEND_MESSAGE or RECEIVE_MESSAGE with a pipe name
that was not explicitly created, then a public pipe of that name will be created
implicitly.

Writing to and Reading from a Pipe

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 179

pipe_send.sql
SET SERVEROUTPUT ON
DECLARE
 pipe_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Error information can be sent ' ||
 'from a trigger to another session that does logging ' ||
 'in an autonomous transaction!');
 pipe_status := DBMS_PIPE.SEND_MESSAGE('Pipe1');

 IF pipe_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Message sent successfully');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Message failed');
 END IF;
END;
/

pipe_receive.sql
SET SERVEROUTPUT ON
DECLARE
 pipe_status INTEGER;
 message VARCHAR2(256);
BEGIN
 pipe_status := DBMS_PIPE.RECEIVE_MESSAGE('Pipe1', 120);

 IF pipe_status = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(message);
 DBMS_OUTPUT.PUT_LINE(message);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Message failed or timed out');
 END IF;
END;
/

Try It:
In one session, run pipe_receive.sql. It will wait for 120 seconds for a message to appear in the pipe. In
another session, run pipe_send.sql. The first session will immediately return and output the message.

Oracle10g Advanced PL/SQL Programming

Page 180 Rev 1.1.2 © 2011 ITCourseware, LLC

Table Functions

A table function produces a collection of rows (a PL/SQL table or varray) that
can be accessed in the FROM clause of a SELECT statement, just like a
physical database table.

SELECT * FROM TABLE (horse_family(sire, dam));

The TABLE keyword is placed before the function call.

You can also call a table function from the SELECT list of a query, or
use it in the definition of a VIEW.

CREATE OR REPLACE VIEW horse_view AS
 SELECT * FROM TABLE (horse_family
 (horse_t('King', 'PALOMINO', '30-JUN-2004'),
 horse_t('Goldie', 'PALOMINO', '01-JAN-2005')));

A SELECT from the view makes the table function as easy to use
as a database table.

SELECT * FROM horse_view WHERE dob < SYSDATE;

Table functions are typically used to produce a result set from information
outside of the database, that needs to be generated on the fly.

Define a table function with an autonomous transaction to produce fanout.

With fanout you save data for later use that is otherwise being excluded
from the result set.

DML statements can be used to INSERT and COMMIT the data
into a secondary table within the function.

You may also pass collections or ref cursors into a table function which allows
calls to be daisy-chained together.

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 181

horse_family.sql
...
CREATE OR REPLACE FUNCTION horse_family (sire_in IN horse_t,
 dam_in IN horse_t)
 RETURN horse_tab
IS
 pony_count PLS_INTEGER;
 horse_list horse_tab := horse_tab();
BEGIN
...
 FOR i IN 1 .. pony_count
 LOOP
 horse_list.EXTEND;
 horse_list(horse_list.LAST) :=
 horse_t('Baby' || i, dam_in.breed, ADD_MONTHS(SYSDATE, i * 12));
 END LOOP;

 RETURN horse_list;
END horse_family;
/

show_horse_family.sql
...
BEGIN
 sire := horse_t('King', 'PALOMINO', '30-JUN-2004');
 dam := horse_t('Goldie', 'PALOMINO', '01-JAN-2005');

 FOR rec IN (SELECT * FROM TABLE(horse_family(sire, dam)))
 LOOP
 DBMS_OUTPUT.PUT_LINE(rec.name || ' ' || rec.breed ||
 ' ' || rec.dob);
 END LOOP;
END;
/

horse_view.sql
CREATE OR REPLACE VIEW horse_view AS
 SELECT * FROM TABLE
 (horse_family(horse_t('King', 'PALOMINO', '30-JUN-2004'),
 horse_t('Goldie', 'PALOMINO', '01-JAN-2005')));

show_view_family.sql
SELECT * FROM horse_view WHERE dob < SYSDATE;

Oracle10g Advanced PL/SQL Programming

Page 182 Rev 1.1.2 © 2011 ITCourseware, LLC

Pipelined Table Functions

Pipelined table functions allow you to return result sets one row at a time.

The caller may use the data as soon as it is produced, without it being
staged or cached.

Pipelining helps eliminate the use of intermediate staging tables during
transformations for datawarehouses and reduces memory usage.

Define the table function as PIPELINED, and RETURN a collection.

CREATE FUNCTION ticker_f(stocklist refcur_pkg.refcur_t)
 RETURN tickertypeset PIPELINED

IS ...

The collection returned must be made up of SQL datatype elements, such
as NUMBER or VARCHAR2.

To return the individual records, call PIPE ROW with an element that matches
the datatype declared for the RETURN collection.

PIPE ROW (ticker_item);

PIPE ROW may be used only in the body of pipelined table functions.

The function's RETURN statement is only used to transfer control out of
the function, since the data is returned as it is generated with PIPE ROW.

Autonomous transactions require a COMMIT or ROLLBACK before each
PIPE ROW statement, since they are swapping control with the calling routine.

Pipelined table functions can dramatically speed up first rows queries, since the
remaining rows never need to be generated.

... WHERE ROWNUM < 25;

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 183

stock_func.sql
...
CREATE OR REPLACE FUNCTION ticker_f(stocklist refcur_pkg.refcur_t)
 RETURN tickertypeset PIPELINED
IS
 the_row_as_object tickertype := tickertype(NULL, NULL, NULL, NULL);

 TYPE stocklist_tt IS TABLE OF stocklist%ROWTYPE
 INDEX BY PLS_INTEGER;

 l_stocklist stocklist_tt;
 retval tickertypeset := tickertypeset();
 the_row pls_integer;
BEGIN
 FETCH stocklist
 BULK COLLECT INTO l_stocklist;
 CLOSE stocklist;

 the_row := l_stocklist.FIRST;

 WHILE (the_row IS NOT NULL)
 LOOP
 -- row one
 the_row_as_object.ticker := l_stocklist(the_row).ticker;
 the_row_as_object.pricetype := 'O';
 the_row_as_object.price := l_stocklist(the_row).open_price;
 the_row_as_object.pricedate := l_stocklist(the_row).trade_date;

 PIPE ROW (the_row_as_object);

 -- row two
 the_row_as_object.pricetype := 'C';
 the_row_as_object.price := l_stocklist(the_row).close_price;
 the_row_as_object.pricedate := l_stocklist(the_row).trade_date;

 PIPE ROW (the_row_as_object);

 the_row := l_stocklist.NEXT (the_row);
 END LOOP;
 RETURN;
END;
/

first_stocks.sql
SELECT *
 FROM TABLE (ticker_f (CURSOR (SELECT * FROM stocks)))
 WHERE ROWNUM < 25;

Oracle10g Advanced PL/SQL Programming

Page 184 Rev 1.1.2 © 2011 ITCourseware, LLC

Enabling parallel execution

Use the PARALLEL_ENABLE hint to take advantage of multiple processors.

The Oracle runtime system will then be able to execute the function in
parallel, when called from a parallel DML statement.

When a table function's parameter list consists only of a single ref cursor, you
must specify what type of partitioning should be used to distribute the data
among the slave sessions.

Use PARTITION ... BY ANY to allow the runtime to arbitrarily distribute
the data.

CREATE FUNCTION parallel_exmpl(
input_rows REF CURSOR)

RETURN My_Types.output_tab PIPELINED
PARALLEL_ENABLE(PARTITION input_rows BY ANY) ...

Both weak and strongly-typed ref cursors can use ANY for the
partitioning.

If the input REF CURSOR is strongly-typed, you can use HASH or
RANGE with a column list to group the data given to each slave.

CREATE FUNCTION parallel_exmpl(
input_rows My_Types.cur_t)

RETURN My_Types.output_tab PIPELINED
PARALLEL_ENABLE(

PARTITION input_rows BY HASH(input_column)) ...

Do not use session state information, such as package variables, from a parallel
function, as those variables should not be shared among the slaves.

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 185

Parallel table functions are used mainly in data warehouses where queries must be run in parallel to achieve
results in a reasonable amount of time. In this scenario, parallel table functions can be used as the input to
other parallel table functions, allowing complex results, without storing all of the intermediate data in
temporary tables.

stock_parallel.sql
...
CREATE OR REPLACE FUNCTION ticker_f(stocklist refcur_pkg.refcur_t)
 RETURN tickertypeset
 PIPELINED
 PARALLEL_ENABLE (PARTITION stocklist BY ANY)
IS

...
BEGIN

...
END;
/

show_stock_parallel.sql
SELECT * /* PARALLEL (my_tab, 4) */
 FROM TABLE (ticker_f (CURSOR (SELECT * FROM stocks))) my_tab
 WHERE price BETWEEN 500 AND 2000;

Oracle10g Advanced PL/SQL Programming

Page 186 Rev 1.1.2 © 2011 ITCourseware, LLC

DETERMINISTIC Functions

A deterministic function produces the same result value for any combination of
argument values passed into it.

Oracle automatically attempts to use previously-calculated results for a
deterministic function, when the same input values are used in subsequent
invocations.

To mark a function as deterministic, place the DETERMINISTIC keyword
after the return type in a declaration of the function.

CREATE FUNCTION times_two (val NUMBER)
RETURN NUMBER DETERMINISTIC IS

BEGIN
 RETURN val * 2; -- same result for every val passed in
END;

A function is non-deterministic if it utilizes package or database data,
since that information could change from one invocation to the next.

Since Oracle has no way of detecting whether a function is deterministic,
unpredictable results can occur if the function is not truly deterministic.

Only functions that are DETERMINISTIC are allowed in function-based
indexes and in certain snapshots and materialized views.

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 187

The DETERMINISTIC keyword may be used:

On a function defined in a CREATE FUNCTION statement.
In a function declaration in a CREATE PACKAGE statement.
On a method declaration in a CREATE TYPE statement.

The following features require that any function used with them be declared DETERMINISTIC:

Any user-defined function used in a function-based index.
Any function used in a materialized view, if that view is to qualify for Fast Refresh or is marked
ENABLE QUERY REWRITE.

Functions that fall in the following categories should typically be DETERMINISTIC:

Functions used in a WHERE, ORDER BY, or GROUP BY clause.
Functions that in any other way help determine whether or where a row should appear in a result set.

Consider the following when you create DETERMINISTIC functions:

The database cannot recognize whether the behavior of the function is indeed deterministic. If the
DETERMINISTIC keyword is applied to a function whose behavior is not truly deterministic,
then the result of queries involving that function is unpredictable.

If you change the semantics of a DETERMINISTIC function and recompile it, then existing
function-based indexes and materialized views must be rebuilt.

Oracle10g Advanced PL/SQL Programming

Page 188 Rev 1.1.2 © 2011 ITCourseware, LLC

Labs

As the hr user, create a package called logging. Include a stored procedure called log_mesg that
takes a string message and writes it into the logging table, along with the current date and time. Test
your procedure to make sure it works. (Hint: you will first need to create a log table that has
TIMESTAMP and VARCHAR2 columns to hold the log messages.)
(Solutions: log_tab.sql, logging_pack.sql)

Add a trigger to the hr.employees table that will call log_mesg when a row is inserted or updated.
Test the trigger, including the case when the modification is rolled back. Does the log entry persist
across a ROLLBACK? Make the stored procedure in the logging package an autonomous
transaction and test it again.
(Solutions: emplog_trig.sql, logging_test2.sql, logging_pack2.sql)

a. As the hr user, grant EXECUTE on the logging package to the oe user.
(Solution: logging_grant.sql)

b. As the oe user, note that you cannot examine the log table.
(Solution: query_log.sql)

c. Add a trigger to the oe.customers table that calls hr.logging.log_mesg when a row is inserted
or updated. Test the trigger.
(Solution: custlog_trig.sql, logging_test3.sql)

d. Examine the log table as the hr user. Note that the oe user is able to make these changes.
(Solution: query_log.sql)

e. Change the logging procedure to use the current user's rights, instead of the definer's.
(Solution: logging_pack3.sql)

f. What happens now? Add a log table as the oe user and test as both the hr and oe user - note
where the log messages are written for each user.
(Solution: logging_test3.sql, log_tab.sql, query_log.sql, logging.txt)

Create two scripts that write to the same pipe. The first script should write a single message with
three items, while the second should write three messages of one item each. Create a script that will
read and display all of the data on the pipe, assuming that the two scripts were executed to populate
the pipe.
(Solution: sender1.sql, sender2.sql, receiver.sql)

Chapter 8 Advanced Programming Topics

© 2011 ITCourseware, LLC Rev 1.1.2 Page 189

Create a table function named evens that takes an integer limit as a parameter, and returns a table
of all positive, even numbers up to limit. Test this function with both small and large values for limit.
(Hint: Use a large value that is big enough to cause a delay in the returned results.)
(Solution: evens.sql, show_evens.sql, show_evens_big.sql)

Modify the function created in to be a pipelined table function. Test it again with small and large
values to see the effect of pipelining the results.
(Solution: evens2.sql, show_evens.sql, show_evens_big.sql)

Oracle10g Advanced PL/SQL Programming

Page 190 Rev 1.1.2 © 2011 ITCourseware, LLC

