C++ Programming

Student Workbook

Lcoursewa re

C++ PROGRAMMING

C++Programming

Published by I TCourseware, LLC, 7245 South Havana Street, Suite 100, Centennial, CO
80112

Contributing Authors: Andrew Boardman, Todd Gibson, Evans Nash
Editor: Danielle Waleri
Assistant Editor: Ginny Jaranowski

Special thanks to: Many instructors whose ideas and careful review have contributed to the
quality of this workbook, including Brandon Caldwell, Rick Sussenbach, and Lynwood Wilson,
and to the many students who have offered comments, suggestions, criticisms, and insights.

Copyright © 2011 by ITCourseware, LLC. Allrights reserved. No part of this book may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording, or by an information storage retrieval system, without permissionin
writing from the publisher. Inquiries should be addressed to ITCourseware, LLC, 7245 South
Havana Street, Suite 100, Centennial, CO, 80112. (303) 302-5280.

All brand names, product names, trademarks, and registered trademarks are the property of
theirrespective owners.

Pageii © 2011 by ITCourseware, LLC 2.1.2

TABLE OF CONTENTS

Contents

Chapter 1 - Course INtrOAUCTIONeuuuuiiie et e e e e e e e e e e e e e e e eaeas 9
COUISE ODJECHIVES ...ttt ettt e e e e e e et et e e e et e e e e e e e e e eeeabann s 11
(101 £5{= @ A= V= PP 13
Suggested References (CONA.)ooeuuriiiiiiii s 14
SUQQESIEA REFEIENCESeeiii e as 15

(O gF=T o] (=] g2 O 1= 111 TR 17
Chapter ODJECLIVESoeeiiiiiiie ettt e e e e e e e e e as 19
Creating @ Data SIIUCLUIEooiiiiieiiiiiiie e e ettt e e e e e e e e eeann s 21
1Y/ 1]1 Lo 0 KPP SUPPPPPPPPRTR 23
(O] o] T=Tod ST o] o1 PRSP 25
CHH INPUEANT OULPUL ..ot e e e e et e e e e e e e e e e e eeneenn s 27
NAIMESPACES ... iietee ettt ettt e et e et et e et et e et et e e e et e e et e e een e e ean e e e enn s 29
Data ADSIIACTION ...ttt e e e e e e e e e e e eeaetb e e e e e e e e e eeeannee 31
Enforcing Data ENCAPSUIALIONcoiiiiiiiiiiiiiee e 33
File OrganiZationooooiiiiiiiiiio ettt e e e e e e e e e e e e et b b eeeeeeeeearnea 35
ClaSSES IN CA i 37
(O] 0] 1o £ TR RRR 39
1L ST 0101 (] PSSR 41
56 o PSSP 43

Chapter 3 - Constructors and DESIIUCIOISccoiiiiiiiiiiiae et 45
Chapter ODJECLIVEScoeeiiiiiiie ettt e e e e e e e e e b as 47
(D= o8 {0 [@ 11 11 11 | PSP 49
The Default CONSIIUCTONoiiieiiiiiie e e e e e e e e e e e e eeeas 51
When are Constructors Called? ... 53
I LSl D] (0 X (o] P UUUPPPPPPRPRPN 55
The COPY CONSIIUCTON ...ttt e e e e e e et s e e e e e e e e eeesasaaa e e e e eeeaeeeeenne 57
(@1 1=T Q@0 0151 110 [(0] TP 59
WhY Did [t WOTK BEIOIE? ...ttt e e e e e e e e eeeeaees 61
(@] 401 1015711 o] o PP 63
THE REPOM CIASSvviiiieie ettt e e e e e e e e e e et b e e e e e eeaes 65
(@00 (3 S = TH L TP 67
INIEANZATION LISTS ...ttt e e e e e e e e e ae e e e e e e e e e e 69
LADS e 71

©2011 by ITCourseware, LLC 2.1.2 Page iii

C++ PROGRAMMING

Chapter 4 - INNEITANCE ... e e et e e e e e e e 73
Chapter ODJECLIVEScoeeiiiiiiie et e e e e e e e e e e b as 75
1] T 1= 1T 77
(2 TU {0 (=T 0 o] o AR 79
Protected ACCESS MOAIfIENciveiiiiii e e e e eaaes 81
ACCESS ANA INNEIIANCEuiiiiii e e e e e e e e e e eaaes 83
Constructors and INNEIMEANCEuii e e raa e 85
INitialization LISIS REVISITEAcovuiiiiiiii e r e eaeeaas 87
MUIIPIE INNEITANCE ...t e e e ettt e e e e e e e e eeeennenes 89
7= 1 0 1 91

Chapter 5 - Virtual FUNCLIONSooiiiiiiiiie et e e e e e e e 97
(O P o] (=T Q@ o] =Tox 1)Y= PSP 99
INheritance and ASSIONMENTuuuii e e e e e e e eeeraaas 101
Inside Report's ASSIgNMENt OPEIAtOrccvvvuiie e e e e e 103
Using Pointers - AQUICK LOOK @t BASICScoeeiiiiiii i 105
Class Assignment and POINTEISuiiiiiiiiii e e 107
Class Assignment and PoinNters - APICIUIEoiiiiiiiii i 109
SEALIC BINAING oeviiiiie e e e e e e e e aaaaa 111
()7 =g g1 ol =1 0o [T o TR ST 113
POLYMOIPNISIN ...t e e e e e e e e e atbb e e e e e e e eaeeenennes 115
The Show_rep() FUNCHONooiiiiiiie e 117
Using the Show_rep() FUNCHIONoooiiiiiiii e e eeeeees 119
Designing Member FUNCHON INNETMTANCEoiiiiiiiiiiiiee e 121
7= 1 01T 123

Chapter 6 - Pure Virtual FUNCHONSuiiiiiiiice et 125
(O P o] (=T A @] o] [=Tox 1)Y= PP 127
Bugfix and Its Relationship with BUQreportccoouiiiiiiiiiicee e, 129
Bugfix: Association With BUGIEPOITiiiiiiii e e s 131
Using BUgfiX With SHOW._T€P() «vvvvuneeiiiii e 133
Adding Bugfixto the HIierarChy ... e 135
Coding forthe DOCUMENT CIASSvvuuiiiiiiiii e e 137
Reexamining the DOCUMENT CIASScoiiiiiiiii e 139
TSV A T (U= LU T 0 o £ 141
Updated: Designing Member Function Inheritancec.cooiiiiiiiiiiicceiee e, 143
= 1 0 1T 145

Pageiv © 2011 by ITCourseware, LLC 2.1.2

TABLE OF CONTENTS

Chapter 7 - References and CONSIANTSovii i 147
Chapter ODJECLIVEScooeiiiiiiieie e e e e e ettt e e e e e e e e eeeeesannas 149
REIEIEINCES ...ttt e e e e e e e et e ettt e e e e e e e e eeeennnnnns 151
DISPIayiNg REIEIENCES ..o e e e et e e e e e e e e eeeeeaees 153
ChangiNg REEIEINCESuuuiiii e e e e s 155
PasS DY RETEIENCEo 157
Returning BY REEIENCEueeii e e e 159
Constant VariabIEseeei e 161
CONSTANT RETEIENCES ...t e e e e e e e e e eeraa s 163
(O] 0153 r= T o 18117/ [=11 0 To 6 KPP RUPPPPPPRRPRRT 165
56 o S PP URRPPPPPPRTRR 167

Chapter 8 -New and deleteoooeiiiiiiiiiii e 169
Chapter ODJECLIVESooeiiiiiiieie e e e et ettt e e e e e e e e e eeeenannes 171
NEW QN EIBTE ... e e e e e e e e et e e e e e e e e eeennennes 173
F N =\ V[[Yo (o o PSSP 175
THE REPOM CIASS ...ttt e e e e e e e e et b e e e e e e eees 177
Compiler Version of the Copy CONSIIUCTONcooiiiiiiiiiiiiiiiee et 179
Guidelines for COPY CONSIIUCTOISuuuuuiieieee ettt e ettt e e e e e e e eeeaneen s 181
The Report CONSrUCLOrS and NEWcooiiiiiiiiiiiiine et e e e e 183
The Report Destructor and delete ... 185
VIFTUBI DESITUCTONS ...ttt e e ettt e e e e e e e e e e e e ettt e e e e e e eeees 187
56 o SR UUPPPPPPPTTRRR 189

Chapter 9 - CastiNg IN C ...t e e e e e e e e e eeeeeaan s 191
Chapter ODJECLIVEScoeeiiiiiiiiie e e e ettt e e e e e e e e eeeessannns 193
CaStNG: ARBVIEBW ...ttt e e e e e e e e ettt e e e e e e e e e e eeeenrannas 195
NEW CASHNG SYNTAX ...ceieeieeiiiiiiie ettt e e e e e e e e e e ettt a e e e e e e e e eeeasassnaaaaeeaaaeeeesnnes 197
Creating @ StrNG ClaSSoooii it e e e e e e et e e e e e e e e eeeeeseanes 199
THE SHNG CIASS ...t e e e et e e e e e ees 201
The ConVErsioN CONSIIUCTONuuuriiiie e eee e e e e e e e ee e e e e e e e 203
Expanding Our Casting OPLIONSccooiiiiiiiiiiiiae et e e e e e e e e e eeeeeenn 205
(01110 [o [@0 =T =1 (0] ST RUPPPPPUTRPRR 207
UsSING the CastiNng OPEIatOroiiieeeiieeeeiiiiiee ettt e e e e e e e e eeattb e e e e e e e eeeeesnnnns 209
56 o SR RUPPPPPPTTRRR 211

©2011 by ITCourseware, LLC 2.1.2 Page v

C++ PROGRAMMING

Chapter 10 - Class Methods and Datacooeiiiiiiiiiiiiiiieeeeeceeeeeeiee e 213
Chapter ODJECLIVEScooeiiiiiiieie e e e e e ettt e e e e e e e e eeeeesannas 215
(O P S D - | - R PR UURPPPPPPPRPRR 217
ClasS METNOUS ...ttt e e e e e e e e e e eeeaaen s 219
USING the NEW DALA ..ot e e e e e e et e e e e e e e e e eeeenens 221
MOre ON ClasS MELNOASuuiiiiiie e e e e e e eeaees 223
56 o S PP RUPPPPPPPRTRR 225
Chapter 11 - Overloaded FUNCLIONSuuiiiiieieciiceeeiiie e 227
Chapter ODJECLIVESooeiiiiiiiiie e e e e e ettt e e e e e e e e eeeensannns 229
FUNCLON OVETlOAAINGoeieeiiiiiiiee et e e e e e e eeeeaees 231
Using Overloaded FUNCHONScoooiiiiiieiii e e e eeeenes 233
U] (I (o] Q@ V/=Tq (o F=To [o o U UUUPPPPRPPRPP 235
Overloading Based 0N CONSINESSuuuuiiiieeeeeiieeiiiiiiee ettt e e e eeeaenn s 237
DefaUlIt ATQUIMENTS ...ttt e e e e e e e e e e e e e abb e r e e e e e e e eeeensnnnns 239
Invoking Functions with Default ArgUMENTSoiiiiiiiiiiii e 241
56 o SR SUPPPPPPPTTRR 243
Chapter 12 - Overloaded OPEIatOrSuiiieeieeeiiiieeiiiiie e et e e e e e e eeeeean s 245
Chapter ODJECLIVEScoeeiiiiiiiiie e e e e ettt s e e e e e e e eeeennannas 247
The Basics Of OVErlOadingcuuuuuiiiiiiiiieiieei e 249
(@)Y= g (o= To [TaTo lo] o<1 = 1o] i PRSP TRRPPP 251
Coping With COMMUEALIVITY ... ettt e e e e e e e eeeneenn 253
NON-CoMMUEALIVE OPEIALOISuiiiieeiiiieeiiiiiee e ettt e e e e e e e e e eeaeaa e e e e e e e aaeeeennes 255
friends and Their ProbIems ... 257
The ASSIGNMENT OPEIALOLceeeiiiiiiiee ettt e e e e e e e et bbb e e e e eeeees 259
Overloading the KK OPEIALONuuuiiiiii e e e e e e e 261
USING DAt WItN COUL ... e e et e e e e e e e e eeeenens 263
56 o SR SRPPPPPPPTTRR 265
Chapter 13 - EXCeption HANAIINGcoouuiiiiiiiee et 267
Chapter ODJECLIVEScoeeiiiiiiie e e e e ettt e e e e e e e e eeeeerannas 269
Why EXCeption HaNAliNg?uuuueiiiiieiieeee e 271
trY / CAICN T TNIOW .t e e e e e 273
EXCEPUON ClASSES ... ittt ettt e e e e e e e e e e eeetabbb i r e e e e e e eeeeeesnnnns 275
Standard EXCeption HIEIAICNYuuuiiiiiiii e 277
MuUltiple CAtCh BIOCKScooeiiiiiiee et e e e e eeeeaees 279
Catching EVEIYININGcooveiiiiii et e e s 281

Page vi © 2011 by ITCourseware, LLC 2.1.2

TABLE OF CONTENTS

UNhandIed EXCEPLIONSc.euuuiiiiiiee ettt e ettt e e e e e e e e e eataba e e e e e e e eaeeeesnnes 283
Exception in Constructors and DESIUCLOIScovveeiiiiiiiiiiiiiiee ettt eeeeeeeees 285
DesigNINg fOr EXCEPLIONSuuuuiiiieie ettt e e e e e e e e e aabbb e e e e e e e eeeeesnnnns 287
56 o SR RUPPPPPPPRTRR 289
Chapter 14 - Standard Template LiDrary ... 291
Chapter ODJECLIVEScooeiiiiiiieie e e e e e e ettt e e e e e e e e eeeeesannns 293
Class TEMPIALE CONCEPLSuuuiiiie ettt e e e e e e et e e e e e e e eeeeernnnes 295
Standard Template Library (STL) OVEIVIEWcccuuuuuuiiiiiieeeieeeieiiiiiaaaa e e eeeeeiinn s 297
(@] 01 7= 11 1] 65T PPRRRPPPPPPRRPRR 299
1] o1 (0] £ PP PP PPPTRTPPI 301
[EEIAOT SYNLAX ...ttt ettt e e ettt e e e e et e e e e e sb e e e e e nan e e e eennanns 303
Non-Mutating Sequential Algorthmsuuuiiiii e 305
Mutating Sequential AIGOItNMSooiiii e 307
SOrtNG AIGOIENIMS .t e e e e e e e e e e as 309
NUMENC AIGOIENIMS ... e e e e e e et e e e e e e e e eeenennnes 311
= U (o T o1 O = 1S PRSP 313
S]] 010 [O = PSR 315
56 o SR UUPPPPPPTTRRR 317
Chapter 15 - STL CONTAINEIScoiiiiieeeiiiiie ettt e e e e e e e e e e e e e e e eeeseean s 319
Chapter ODJECLIVEScooeiiiiiiiie e e e e ettt e e e e e e e e e eeeesnnnes 321
(O] o] r= 1] g 1= o 04 F= 11T PP RRUPPPPPURRRRR 323
Container Class AlgOrtNMS ..o e eeeeeaees 325
VECTON ClASS ...ttt ettt e e e e e e e e e et et bbb e e e e e eeeeaeeeennes 327
Additional vector Class MethOdSooo i 329
(0 cTo U O = PRSP 331
1S O = PP UPPPPPPPPTTRR 333
Set and MUILISEE ClASSESciieiiiiieiiiteiie et e e e e e s 335
map and MUIIMAP CIASSES.......cooi i eeeeaaaees 337
56 o SR UUPPPPPPPRTRR 339
Appendix A: ReferenCe SNEETS........coouiiiiiiiii e 341
Constants, References, and POINTEISoiiii oo 343
701U 17 @ U1 | PSRRI 345
LTS3 o] 1] (] PSSP 347
The Complete Report/Document HIEIarChyccoooeeeeiiiiiiiiiiiiiiieee e 349

©2011 by ITCourseware, LLC 2.1.2 Page vii

C++ PROGRAMMING

APPENdIX B: TEMPIALEScoeviiiiiiiee et e e e e e e e e eeaa s 351
Yot =] o = g o 1P 353
DesSigNINg N AITAY CIASSuuuuiiiii it e e e e e e e ea b e e e e e e e eeeeenennns 355
(@0 [(oo (o T- 1 N ¢ = YOS PPPRPT 357
(@00 [N (o] g 101V 4 =Y PR SUPPPPPPRPPRRT 359
] 0] 0] = LSRR 361
TEMPIAE SYNTAX ...ttt e e ettt e e et e e e e e e e e e e e e estann e e e aeaeas 363
USING TEMPIALES ...ttt e e e e e e e e e e e e attb e e e e e e e eeeeesnnnns 365
Using Classes With TEMPIALEScooiiiiiiiiiiiiie e eeeeees 367
Additional TEMPIALE FEATUIEScciiiiiiieieeiiiiie et e e e e e eeeeenes 369
Standard TeMPIAte LIDFAryooooeiiiiiii e 371
56 o SR SUPPPPPPRTRR 373

Appendix C: Sample ProbIems ... 377
Banking System - Problem DeSCrPtioNciii i 379
Library Card Catalog - Problem DesSCrpLioNoooiiiiiiiiiieieeeeeeeeeeiici e 381
Diagrams for Banking and Library Problems............coouiiiiii e 383
Object Diagram - BanKiNgcoouuiiiiiiiieee et 385
Event Trace Diagram - Bankingccooiiiiiiiiiiiee it eeeeeeeeeens 387
Object Diagram - LIDIary ... 389
Event Trace Diagram - LIDIAIYooooiiiiiiiiiiie e e e e eeeaees 391

Appendix D: Other C++ FEALUIEScooi e 393
NAIMESPACESeiiiiieeee ettt ettt e e et e e e et et et e e et e e et e e et e e eanaeeenas 395
The static_cast and reinterpret_Cast OPEratorcooeeiiiiieiiiiiiiiiee e 397
The dynamiC_Cast OPEIATONuuueiii it e e et aeeeeeeas 399
The CONSE_CASt OPEIALONcieeiiiiiiiii e e e e e et b e e e e e eeeas 401
mutable Data MemMDEIS ... 403
The DOOI DALALYPEuiiie e e e et e e e e e eees 405
NEW OPEIAtOr FAIUIEevveiiiiiie e e et e e e e e e e e e e eesaa s 407

0 L= PSSP 409

Page viii © 2011 by ITCourseware, LLC 2.1.2

CHAPTER 2

CLASSES

Chapter 2 - Classes

© 2011 bylTCourseware, LLC 2.1.2

17

C++ PROGRAMMING

Notes

User Requirements for the Application

1. Quality Assurance personnel need to be able to record bugs they find when testing
products under development. Information such as when the bug was found, the severity of
the bug, and a description of the bug, need to be captured.

2. As developers fix bugs, they'll need to enter their fixes into the system. The information
captured for the fix includes the developer that fixed the bug, which bug was fixed, and the
date of the fix.

3. The QA organization currently has an inefficient manual system of tracking memos and
status reports. They would like to automate this by entering memos and status reports
on-line and having them automatically routed and tracked. In addition to the text, these
memos and reports also have a date and time of creation.

4. There needs to be support for administrative functions such as these: printing out the list of
bugs, fixes, and status reports; archiving old information; and searching for specific reports
andfixes.

Your role will be to create the tools that someone else will use to build this application.

Scenario

Bug reports and bug fixes will need to have a date associated with them. Our first step is to
develop a Date type.

We need to implement our Date type so that it can be used with operations that we provide.
Furthermore, any code using our Date type should not be allowed to directly access its
internal details.

What data should our Date type have?

18 ©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Chapter Objectives

o Define a class with data and methods.

. Define what an object is and be able to declare one.
o Describe what a data member is.

o Describe what a method is and how to invoke it.

. Describe what a namespace is.

. Use access specifiers to enforce encapsulation.

© 2011 bylTCourseware, LLC 2.1.2

19

C++ PROGRAMMING

Notes

Let's create the Date structure and amain () to test it out:
Date.cpp

struct Date {
int day;
int month;
int vyear;

void main() {
Date today;
today.day = 2;
today.year = 1998;
today.month = 10;
today.day = today.day + 1;

Remember, you need the semicolon after a struct definition because you could make a
variable of that type, for instance:

struct Date {
int day;
int month;
int vyear;

} globaldate;

20 ©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Creating a Data Structure

° A struct's data members describe the individual features of a
complex type of data.

struct Date {
int day;
int month;
int year;

Y

m| Members of the structure can be built-in types or other
structures.

. Once you've defined a struct, you can declare variables
representing distinct instances of the struct's type.

Date today, tomorrow;
° Use dot notation to access members of the structure.
today.day = 2;
today.year = 1998;
today.month = 10;

today.day = today.day + 1;

. What functions are we going to need to service this data structure?

© 2011 bylTCourseware, LLC 2.1.2 21

C++ PROGRAMMING

Notes

Let's add in a set () method with its code:
Date.cpp

struct Date {
int day;
int month;
int vyear;
void set(int m, int d, int y):;

void Date::set(int m, int d, int y)

day = d4;
month = m;
yYear = Yy;

void main()

Date today;
today.set(10,2,1998);
today.day++;

22

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Methods

. structs have always been part of the C language.
. C++ adds the ability to define functions within a struct.
. To call these functions, use dot notation, just like structure data.

Date today;
today.set (10, 2, 1998);

. A function defined together with its data is a method.

. Methods are also called member functions, operations, or
messages, depending on a programmer's background.

m| "Member function” is often used by people with a C/C++
background.
m| "Method" or "message"” is more common from people with a

pure OO background.

. When writing the implementation of the method, you must specify
which structure the method belongs to.

m| The name of a method is preceded by the name of the
structure, plus the scope operator (: :).

void Date::set(int m, int 4, int y)

- This is the set () method for Date (other structures
might also have set () methods).

© 2011 bylTCourseware, LLC 2.1.2

23

C++ PROGRAMMING

Notes

Both of these main () functions modify today's day, month, and year.

void main()

{

Date today;

today.day = 2;

today.year = 1998;
today.month = 10;
today.day = today.day + 1;

void main()

Date today;

today.set (10, 2, 1998);
today.day++;

24

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Object Scope

. Methods always run in the context of an invoking object.

Date today;
today.set (10, 2, 1998);

m| set () is called within the context of the Date object today.

O Within Date's set () method, day = d sets today's day
member to 2.

void Date::set(int m, int d, int vy)

{

day = d;
month = m;
year =Y,

}

. Within any Date member function, there will always be available a
day, month, and year belonging to the invoking object.

Date tomorrow;
tomorrow.set (10,3,1998) ;

O In this case, the set () method sets tomorrow's day,
month, and year.

© 2011 bylTCourseware, LLC 2.1.2 25

C++ PROGRAMMING

Notes

Now, let's add a display () method with its code. We must include iostream and the
information about the std namespace:

Date.cpp

#include <iostream>
using namespace std;

struct Date {
int day;
int month;
int vyear;
void set(int m, int d, int vy);
void display(void);

Y

void Date::set(int m, int d, int v)

{
day = d;
month = m;
year = Yy,

}

void Date::display(void)

{
cout << month << '/';
cout << day << '/';
cout << year << endl;

}

void main/()

{
Date today;
today.set (10, 3, 1998);
today.display();
today.day++;
today.display();

}

26 ©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

C++ Input and Output

. C++ 1/0 is done through streams, which provide you with a
consistent interface to consoles, files, etc.

m| cout is an output stream connected to the program's
standard output destination.

m| cin is an input stream connected to the program's standard
input source.

m| cerr IS an output stream connected to the program's
standard error destination.

. Use the << operator to send data to an output stream.

cout << "Hello, world!\n";
cerr << "Can't find my file!" << endl;

m| endl sends a newline to the output stream, and then flushes
the stream.

. Use the >> operator to get data from an input stream.
int 1i;
cin >> 1i;

. At least for testing purposes, most of your classes, or structures,
will need an easy way to be output, such as a display () method.

© 2011 bylTCourseware, LLC 2.1.2

27

C++ PROGRAMMING

Notes

The Evolution of Header Files

Older style C and C++ header files have a . h extension. These are NOT the same as the new
header files without the extensions. The main difference is the use of namespaces in the new
C++ headerfiles.

Older compilers do not understand the use of namespaces. So newer compilers are
distributed with two sets of header files.

You should NOT mix the usage of old and new header files.

Examples:

C++ header files no longer have the . h extension.

Old C++ header files New C++ header files
iostream.h lostream
fstream.h fstream
limits.h limits

C header files no longer have the . h extension, and start with the letter c.

Old C header files New C header files
stdio.h cstdio
stdlib.h cstdlib
string.h cstring

28 ©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Namespaces

. All of the classes that are part of the standard C++ library are in a
namespace called std.

m| Namespaces are one of the features that C++ uses for
modularity.

. Including a header file makes all the constructs in the file available.

O A statement in the format of using namespace followed by
the namespace name causes all of the parts of that
namespace to be integrated into the global namespace.

using namespace std;

- It may be desirable to only include those that are going
to be used.

m| In this course, we will provide a general using statement for
simplicity's sake.

O To use cout, cin, and endl without the std: : notation, do
the following:

#include <iostream>
#include <fstream>
using std: :cout;
using std::cin;
using std::endl;

m| Without the using line, the compiler wouldn't recognize
standard classes such as ostream, the data type for cout
and cerr.

© 2011 bylTCourseware, LLC 2.1.2 29

C++ PROGRAMMING

Notes

The built-in types that you use, such as f1oat, are abstract data types. Instead of having
methods to modify their data, you have operators such as =,+, and -.

float f£;
f = 3.14;
f = f + 6.8;

A float is abstract because you, as a user of a f1oat, don't care that it is stored in IEEE
format.

30 ©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Data Abstraction

. When you separate the way you access and modify data from the
way the data is stored, you're using data abstraction.

m| This usually means that the user of a data structure cannot (or
should not) directly access its data.

m| Methods are provided to get and set the data values.
. This separates user code from implementation code.

m| User code is any code that is not part of the data structure.

m| Implementation code is any method defined within the
structure.
. If only the implementation code has access to the data, we have

achieved data abstraction.

° Data abstraction makes maintenance easier because the data and
the code that can modify it are grouped together.

© 2011 bylTCourseware, LLC 2.1.2 31

C++ PROGRAMMING

Notes

We often speak of user code. This is any code that is not part of your structure. For example,
themain () function you wrote uses your Date structure.

The keywords public and private can appear in any order and as many times as desired.
Forexample:

struct Date {
public:
void set(int m, int d, int vy);
private:
int day;
int month;
public:
void display(void) ;
private:
int vyear;

Y

Investigate:

Given that C++ is a superset of C, can you think of any ways of getting around private?
(Keeping in mind that it's a bad idea!)

32 ©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Enforcing Data Encapsulation

. You encapsulate data within a structure by restricting which
methods have access to it.

. C++ provides access specifiers to identify which methods in an
application can access the various parts of a structure.

o The public and private access specifiers enforce data
encapsulation.

struct Date {
private:
int day;
int month;
int year;
public:
void set (int m, int d, int vy);
void display(void) ;
}i

o Members of a structure declared to be public can be used from
any code in an application.

. Members that are declared private can only be used by
methods within this structure (called member functions).

O So public member functions are used to access private
data!

© 2011 bylTCourseware, LLC 2.1.2

33

C++ PROGRAMMING

Notes

Date.h

#ifndef _DATE_H_
#define _DATE_H_ 1

struct Date {

public:
void set(int m, int d, int vy);
void display(void) ;

private:
int day;
int month;
int year;
Y

#endif // #ifndef _DATE_H_

Date.cpp

#include <iostream>
using namespace std;

#include "Date.h"

void Date::set(int m, int d, int vy)
{

day = d;
month = m;
year = y;

}

void Date: :display (void)

{
cout << month << '/';
cout << day << '/';
cout << year << endl;

}

main.cpp
#include "Date.h"

void main ()
{
Date today;

today.set (10, 3, 1998);
today.display () ;
today.set (10, 6, 1998);
today.display ()

i

34

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

[

File Organization

Files are divided up for organization and compile efficiency.
Structures like Date are often put into two files:
mi The header which has the declaration.

m| The source file which has the code for the methods (the
definition).

Date.h — the structure declaration.

Date.cpp — the structure definition (implementation code).
main.cpp — the application (user code).

Divide Date.cpp into Date.h, Date.cpp, and main. cpp.

O Don't forget! #include "Date.h" in Date.cpp and
main.cpp.

© 2011 bylTCourseware, LLC 2.1.2

35

C++ PROGRAMMING

Notes

Notation for classes:

Name
attributes

methods

Forexample:

Date

day
month
year

set
display

Either one, or both, of the bottom two compartments are optional when drawing a Class

Diagram.

36

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Classes in C++

. Class is the OO term for a data type that uses data encapsulation
and data abstraction.

. The C++ keyword class, like struct, declares the data and
methods of a class.

m| Semantically, the only difference between a struct and a
class is that a struct's members are public by default,
and a class's members are private by default.

. Use a class when creating a data type that encapsulates an
interface and its implementation.

° Use struct when a structure in the "traditional C" sense is
needed — typically only for data.

. Let's turn our Date into a class.
From:
struct Date {
)
To:

class Date {

© 2011 bylTCourseware, LLC 2.1.2 37

C++ PROGRAMMING

Notes

Notation for objects:

name:Type

attribute=value

Forinstance:

today:Date

day=5
month =10
year = 1998

ind:Date

day=4
month=7
year=1776

The second compartment s optional when drawing Object Diagrams.

38

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Objects

° An object is an instance of a class; so, when you make a variable
of type Date, you're making a Date object.

Date today;
today.set (10, 2, 1998);

m| In this case, today is an object of type Date; a Date object.
° Each Date object has its own day, month, and year values.

Date ind;
ind.set (7,4,1776);

m| Dates in different memory locations are different Date
objects.

© 2011 bylTCourseware, LLC 2.1.2 39

C++ PROGRAMMING

Notes

40

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

this Pointer
. For normal methods, the this pointer is a pointer to the invoking
object.

. When a method is called, an additional parameter, the this
pointer, is passed.

m| The call works like a standard C function, but the this pointe
is hidden and never declared in the method header.

m| The this pointer gives access to the object's data.
- A method call such as christmas.set (12,25,2001)

would cause the header of the effective call to look like
this (with this pointing to christmas):

m| When a normal function is called, nothing special is added.

r

void set (Date* this, int month, int day, int year)

© 2011 bylTCourseware, LLC 2.1.2

41

C++ PROGRAMMING

Notes

42

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 2 CLASSES

Labs

1. Add a new method called increment () to your Date class that adds one day
to its Date object. Code for the simplest case right now (ignore leap years, ends
of months, etc.).

2. Add a decrement () method to your Date class too. Again, code for the
simplest case.

3. Write code inyourmain () function to test your new methods. Can you use them
together to easily test each other?

4, Create a Time class that keeps track of the hour and the minute. Write a
set () method that takes as its arguments an hour and a minute.

5. Add a display () method to your Time class.

6. Look up setw (), cout.width(), and cout.fill () inthe Reference
Sheets appendix. Use those functionalities of C++ I/O to make sure your Time
class displays 12 : 05 correctly.

7. (Optional) Ayearis aleap year when it is divisible by 4 but not divisible by 100
(exceptwheniitis divisible by 400). There are 31 days in January, March, May,
July, August, October, and December.

Give your Date class data sanity checking, and make sure your increment ()
and decrement () methods work correctly.

8. (Optional) Add data sanity checking to your Time class now. How are you going
to differentiate betweena.m./p.m.?

0. (Optional) Leap year doesn't apply to dates before September 1752 (that's when
it started). Make sure your Date class doesn't try to apply leap year rules before
then. Also, 9/3/1752 through 9/13/1752 don't exist; make sure your Date class
won'tallow them to be used.

© 2011 bylTCourseware, LLC 2.1.2 43

C++ PROGRAMMING

Notes

44

©2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Chapter 11 - Overloaded Functions

© 2011 by ITCourseware, LLC 2.1.2 227

C++ PROGRAMMING

Notes

Scenario

Currently, once Report, Bugreport, and ExternalBugreport objects are created,
there is no good way to set their data to different values. We would like to be able to do this
with a set () method like we have for Time and Date. A Report set () method would
probably need to set rep_date and rep_time with new Dates and Times. So we'll need
a set () method in Date that takes another Date, and a set () method in Time that takes
another Time.

228 © 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Chapter Objectives

o Describe what an overloaded function is.

. Know what conditions are required for overloading.
. Describe how const affects overloading.

. Declare and use default arguments.

© 2011 by ITCourseware, LLC 2.1.2 229

C++ PROGRAMMING

Notes

230

© 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Function Overloading

. Function overloading means two functions have the same name but
take different arguments.

O In this case, let's create a set () method for the Date class
that takes a constant reference to a Date object.

Date.h
class Date {

void set (int m, int d, int vy);
void set (const Date &dt);

Y

m| The code will simply copy the values from the Date passed.
Date.cpp

void Date::set (const Date &dt)
{

day = dt.day;

month = dt.month;

year = dt.year;

© 2011 by ITCourseware, LLC 2.1.2 231

C++ PROGRAMMING

Notes

232

© 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Using Overloaded Functions

. Using an overloaded function is just like using any other function.

m| The only difference is the number and types of arguments
you pass in.

m| The compiler takes the arguments you have given to it, and
tries to match it to a function prototype.

- If it doesn't find a function that matches exactly, the
compiler will try implicit casting with the available
methods.

m| This means that you can't have two overloaded functions with
the same name that take the same arguments.

- The number and type of the arguments is the only way
the compiler knows they are different.

. We can use Date's overloaded set () method to copy a Date
object to an existing date object.

m| We couldn't do this with the copy constructor, because
constructors create an object, and we have already created
one.

volid main ()

{

Date ind(7, 4, 1776), ind_copy;
ind.displavy () ;
ind_copy.display () ;

ind copy.set(ind);

... 1ind_copy.display/() ;

}

© 2011 by ITCourseware, LLC 2.1.2 233

C++ PROGRAMMING

Notes

234

© 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Rules for Overloading

. You can overload based on the number of arguments:
void a_function(int a, int b);
is different from
void a_function(int a, int b, int c);

m| The compiler determines which one you mean by how many
arguments you pass it.

. You can overload based on the types of the arguments.
void b_function(int a);
is different from
void b_function(Date 4d) ;

m| The compiler determines which one you are calling by the
types of the arguments you pass it.

. You cannot overload based on the types of the return values.
int c_function (void) ;
Is the same as
float c_function(void) ;

m| The compiler determines which function to call before it
inspects return types.

m| This results in a compile error.

© 2011 by ITCourseware, LLC 2.1.2 235

C++ PROGRAMMING

Notes

236

© 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Overloading Based on Constness

° You can overload based on whether a member function is const
or not.

void Date: :display (void) ;
would be different from
void Date: :display(void) const;

m| It calls the const version if you invoke the method on a
const object.

m| This allows slightly different behavior based on whether the
invoking object is const or not.

- This concept is especially useful with overloaded
operators, which we'll cover later.

. One issue worth noting here: During lab, you changed your
Document class's virtual void display () method to be
const.

m| Because you can overload based on const, you must
change derived class's display method to be const also.

- Otherwise, you're talking about two different methods!

- Since display () is pure virtual in the base class, it
must be overridden in the derived classes.

- Therefore, unless you make it const in the derived
classes, all the derived classes are still abstract!

© 2011 by ITCourseware, LLC 2.1.2 237

C++ PROGRAMMING

Notes

Date.h

#ifndef _DATE H
#define _DATE H 1

class Date {
public:
Date (void) ; // default ctor
~Date(void); // dtor
Date(const Date& d);
Date(int m, int d, int y=1970);

void set(int m, int d, int vy);
void set(const Date &dt);

void display(void) const;

void increment (void) ;

void decrement (void) ;
private:

int day;

int month;

int vyear;

Y

#endif // #ifndef _DATE H

No type checking is done by the compiler to determine which arguments have been provided and which
arguments should use the defaults. When the function is defined/declared, any default arguments must be

specified from right to left. When the function is invoked, any missing arguments are assumed to be the
right-most arguments. For Example:

class Date {
Date(int m=1, int d=1, int y=1970);
Y
main ()
{
Date somedate(1l1);

}

The object somedate is using the default arguments for setting the day and year.

238 © 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Y

Default Arguments

. There are times when you want one overloaded function to be just
like another, only not specifying one of the arguments.

m| For instance, we could have a two-int constructor for Date
that took a month and day, with the year set to a default value.
Date::Date(int m, int d):
month(m), day(d), year(1970) { }
m| But this causes redundant code.
. In C++, you can specify default values for arguments in the

declaration (class definition).
class Date {

public:

Date(int m, int d, int y=1970) ;

No code changes are necessary, if the user code passes in
two ints, the third (v) will be assigned the default value.

Default argument values must be specified starting with the
last argument and working left.

- You cannot skip an argument.
Date(int m=1, int d=1, int y=1970); // ok

Date(int m=1, int d, int y=1970); // illegal
Date(int m=1, int d=1, int y); // illegal

© 2011 by ITCourseware, LLC 2.1.2 239

C++ PROGRAMMING

Notes

main.cpp

#include "Date.h"

main ()

{

Date today(12,20);
today.display();
}

Investigate:

Note the ambiguity in the following code:
inv_1.cpp

#include <iostream>

using namespace std ;

void print_number (float £1)

{

cout << fl << endl;

void print_number (double dbl)
{

cout << dbl << endl;

void main(void)
{

int x=20;

print number (x);
}

The integer x can be converted to either a f1oat ora double.
How can the bold line be modified to eliminate the ambiguity?

240 © 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Invoking Functions with Default Arguments

. Beware of the potential for ambiguities in calling functions that have
default arguments.

m| If you have overloaded a function name and you're using
default arguments, you can get into trouble.

class Date {

public:
Date(int m, int d, int yv=1998);
Date(int m, int 4d);

};
void main()
{

Date today (10, 25); // Which one is
// called?

}

m| The answer is neither; the above will result in a compile error
because the compiler doesn't know what you mean.

. Otherwise, call the functions or methods normally, omitting any
arguments when you want to use their default value.

© 2011 by ITCourseware, LLC 2.1.2 241

C++ PROGRAMMING

Notes

242

© 2011 by ITCourseware, LLC 2.1.2

CHAPTER 11 OVERLOADED FUNCTIONS

Labs
1. Write a set () method for Time that takes a Time object as its argument.
2. Add a set () method to your String class that takes a String object. Why

don't we need to overload the set () method with one that takes a char array?
Be careful with this function, there are memory issues involved. . .

3. Create two set () methods for Report, one that takes a Report object as its
only argument, and another that takes three arguments: a Date object, a Time
object, and a String object.

4, Add two set () methods to Bugreport, one that takes a Bugreport object,
and one that takes a Date object, a Time object, a String object, and one int
(the severity).

5. Make two set () methods for the Bugfix class, one whose argumentis a

Bugfix object, the other taking three arguments: the fix date, the author of the fix,
and a pointer to the Bugreport object that shows which bug was fixed.

6. Write two set () methods for ExternalBugreport, one that takes an
ExternalBugreport object, another that takes a Date object, a Time object,
a String object, an int (severity), two more String objects, and a status.

© 2011 by ITCourseware, LLC 2.1.2 243

C++ PROGRAMMING

Notes

244

© 2011 by ITCourseware, LLC 2.1.2

