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CHAPTER 1 - COURSE INTRODUCTION
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COURSE OBJECTIVES

%  Develop the programming skills required to write applicationsthat run on the
UNIX operating system.

%  Write portable applications using UNIX standards.

%  Develop the basic skillsrequired to write network programs using the
Berkeley Sockets interface to the TCP/IP protocols.

Page 10 Rev3.1.2 ©2012 ITCourseware, LLC



CHAPTER 1 COURSE INTRODUCTION

Thiscourseisintended for experienced C programmerswith user level-skillsin the UNIX
environment. Many programswill bewritten during theclass. Thelecturetopicsand lab exercises
concentrate on UNIX system services, with lessemphasison appli cation-specific subjects. Thecourseis
intended for application devel operswho will be using system services, asopposed to operating system
"hackers’ (likedriver writersand other rare beasts), who create the services.

The particular applications that you will be requested to design, write, and work on during this class
areintended to demonstrate the use of various system and library services provided in UNIX
programming environments. The example programsand sol utionsto the exerciseshopefully will provide
some guidance when you get back to work and begin devel opment onreal projects.

A caveat: Theexamplesand lab solutionsin thiscourse frequently neglect to check error returnsfrom
system callsandlibrary calls, becausethe primary intention of the programsin thiscourseistoteachthe
conceptsand featuresavailableto UNIX programmers, and professional error checking code often reduces
theclarity of themain point of an example. However, UNIX-specific error handling methodsareexplicitly
discussed inthe course.

Wewill spend sometime discussing application source code portability and how standards support that
god.

©2012 ITCourseware, LLC Rev3.1.2 Page11
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COURSE OVERVIEW

%  Audience: Thisisaprogramming course designed for software devel opment
professionals.

%  Prerequisites: C programming experience. User-level skillsinthe UNIX
environment, such asfile manipulation, editing, and use of utilitiesarealso
necessary.

%  Sudent Materials:
> Student workbook

%  Classroom Environment:

> UNIX software devel opment system with one terminal per student.

> UNIX and networking references.

Page 12 Rev3.1.2 ©2012 ITCourseware, LLC
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USING THE WORKBOOK

Thisworkbook designisbased on apage-pair, consisting of aTopic page and a Support page. When you
lay theworkbook openflat, the Topic pageison theleft and the Support pageison theright. The Topic
page containsthe pointsto bediscussed in class. The Support page has code examples, diagrams, screen
shotsand additional information. Hands On sectionsprovide opportunitiesfor practical application of key
concepts. Try It and Investigate sectionshelpdirect individual discovery.

In addition, thereisan index for quick look-up. Printed |ab solutionsarein the back of the book aswell as

on-lineif you need alittle help.

The Topic page provides
the main topics for
classroom

JAVA SERVLETS

THE SERVLET LIFE CYCLE

#  The servlet container controls the life cycle of the servlet.

> ‘When the first request is received, the container loads the servlet class

Topics are organized into
first (%), second
(>) and third (=)

bntainer uses a separate thread to call

he container calls the destroy ()

As with Java’s finalize () method, don’t count on this being
called.

* Override one of the init () methods for one-time initializations, instead of
using a constructor.

> The simplest form takes no parameters.
public void init () {...}

> If you need to know container-specific configuration information, use
the other version.

public void init (ServletConfig config) {...

Whenever you use the ServletConfig approach, always call the
superclass method, which performs additional initializations.

super.init (config) ;

The Support page has
additional
information,

CHAPTER 2 SERVLET BAsICS

Code examples are ina
fixed font and

shaded. The on-

line file name is

Hands On:

Addan init () methodto your 7odayservlet that initia
along with the current date:

Todayjava

public class Today extends GenericServlet ({
private Date bornOn;
public void service(ServletReques

request,
ServletResponse response) throws ServletException, IOException
{

n
vlet was born on " + bornOn.toString()):;
+ today.toString());

Callout boxes point out
important parts
ofthe example

The init () methodis
=+ called when the servletis
loaded into the container.

Page 16 Rev2.0.0 ©2002ITCourseware, LLC
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CHAPTER 2 - UNIX STANDARDS

\
OBJECTIVES

%  Writeportable applicationsusing
industry standards.

%  Explain the concepts of standards
and open systems.

%  Relatethe history of the UNIX
operating system to modern-day
industry standards.

%  Differentiatebetweenlibrary-and
system-level functions, and when
each are used.

. /
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BRIEF HISTORY OF UNIX

%  Historically, UNIX was used for research in universities and government.

>

UNIX was distributed in source code format for many years, so many
modifications were made by many different organizations.

%  UNIX has been ported to many hardware platforms by vendors who provide
"vendor added value" extensions or modifications.

%  Inthe 1980s, UNIX became commercially popular for several reasons:

>

Customer demand for the benefits of open systems:

Applicationportability

Vendor independence

Connectivity/interoperability in multi-vendor environments
User portability

New workstation hardware could be brought to market more quickly with
an existing operating system.

Major vendors (such as Sun, Digital, HP, IBM) implemented UNI X-based
product lines.

UNIX providesexcellent networking capabilities.

Page 18
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CHAPTER 2 UNIX STANDARDS

Many booksgo into detail onthe history of UNIX and thereasonsfor itscommercia popularity. For our
purposes as application devel opers, we need to know the aspects of UNIX history that can affect
application programming interfaces (APl), such asthe differencesin system call parametersand
function return codesin different versionsof UNIX (i.e., Berkeley vs. SystemV).

©20121TCourseware,LLC Rev3.1.2 Page 19
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AT&T AND BERKELEY UNIX SYSTEMS

%  UNIX wasoriginaly written at Bell Laboratoriesin 1969. Inthe mid-1970s, the
University of Californiaat Berkeley began making additions and enhancements
to UNIX. In the early 1980s, AT& T began offering support for AT& T System

[T UNIX.
Simplified UNIX Operating System History
Bell Labs
First Edition
through
Sixth Edition
/ Berkeley Software
AT&T / USL Distribution (BSD)
PWB
BSD
2 BSD
3BSD
System III #OBSD
System V 4.1 BSD
System V Release 2 Sun OS 42 BSD
System V Release 3 / 43 BSD
System V Release 4 OSF /1

SUS (Single UNIX Specification
UNIX 95 / UNIX 98
The Open Group

Page 20 Rev3.1.2 ©20121TCourseware,LLC



CHAPTER 2 UNIX STANDARDS

UNIX wasoriginally designed and written mostly by Ken Thompson, acomputer science researcher,
for the purpose of doing computer science research! AT& T provided UNIX source code at alow cost
to many universities, including UCB. Berkeley UNIX built onthe Sixth Edition, adding, over theyears,
many utilitiessuch asvi and csh. Much research and development wasdonein the areas of file systemsand
networking. Again, the history iswell documented in severa books, such asLeffler, et a., TheDesignand

| mplementation of the 4.3BSD UNI X Operating System, Reading, MA: Addison-Wesl ey Publishing
Company, Inc., 1989.

AT&T, in 1982, merged several internal versions of UNIX and began licensing UNIX to vendors
such asHewlett-Packard. In 1985, AT& T began shipping UNIX System V, and committed to support it
and maintain backward compatibility in future versionsof UNIX.

Through the 1980s and early 1990s, as UNIX became critical to the strategies of more and more
commercia computer companies, much activity involved controlling UNIX and attempting to use that
control asabus nessadvantage. However, influencessuch asthe"threat” of NT and the continuing pressure
for compatibly from theworld of customershel ped bring competing vendorstogether in severd different
inititatives

Thediagram onthefacing pageisovers mplified with respect to the number of actual versionsand variants
of UNIX and itsrelatives, and with respect to the cross-influencing that the various versionshave had on
each other.
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SOME MAJOR YVENDORS

%  SunOS from Sun Microsystems was based on Berkeley UNIX.

> SunOS merged with System V.3 to create UNIX System V Release 4
(SVR4 or SystemV.4).

> Solaris 1.0 was based on SUnOS; Solaris 2.0 and later are based on
System V.4.

%  HP-UX from Hewlett-Packard followed compliance with System V.3 and has all
major BSD features.

> HP-UX 10 was based on SVRA4.
%  AIX from IBM was based on System V.3 and incorporated many BSD features.

%  UNIX System V Release 4 (SVR4) from UNIX System Laboratoriesisthe
merger of System V.3, SUnOS, 4.3BSD, and XENIX.

%  OSF/1 from Open Software Foundation was derived from Mach, an OS
developed at Carnegie Méellon University, based on 4.2BSD.

> OSF/1 was intended to be an "open" operating system: not controlled by
any single vendor.

* Ultrix from DEC was BSD-based.
> Later Digital UNIX was based on OSF/1.

%  Almost all vendors now support versions of the Single UNIX Specification from
The Open Group.
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WHAT IS A STANDARD?

% A specification isadocument that specifiesacertain technological area.

> It tells what a software system does and how to use it as an application
programme.

> Specifications are produced by vendors, consortia, or users.
» A vendor programming reference manual for asystem is a specification.
% A defacto standard is a specification that is widely used.

%  Aformal standard isaspecification that is produced through aformal process
by aformal standards setting body, such asANSI and | EEE.
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A specification of an APl isprovided to programmers so that they can write applications. But if acompany
spendstime and money to devel op an application according to avendor-dependent specification, then that
gpplicationwill runonly onthat vendor'ssystem.

If aspecification is made publicly available by auniversity or agovernment agency, or licensed by a
vendor, and different system providersimplement systems according to that specification, thenit may
be called adefacto standard and applicationswritten to use that specification will run on morethan one
vendor'ssystem. Thespecificationisstill controlled by thesingleprovider.

Formal standards allow companiesto "leverage their investment™ in applications and programmers.
Thisisbecause applications can be ported to different vendor platformswithout rewriting code, and
programmers can be productiveimmediately on new platformswithout being retrained. Also, aformal
standard may be modified through processesthat solicit input from the people who are affected by
evolution of the standard. MS-DOS may be astandard, but the evolution of revisonstoMS-DOS are
controlled by one company.

A standard that evolvesthrough input from users of the standard (systems providers, application
developers, end users) iscalled an open standard. System implementations based on open standards are
open systems.
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WHAT Is POSIX?

%  POSIX.1 definestheinterface between application programs and the services
provided by the operating system.

%  POSIX isan API for basic operating system functions.

%  POSIX ishbased on historical implementations of UNIX System V and Berkeley
UNIX, but it isnot an operating system: POSIX isa specification.

%  Some of the main goals of POSIX are:

> Source code application portability — the ability to port programs from
systemto system.

> Contract specification — the interface contract between the application
and the operating system.

. No implementation details are specified for either the system or the
application.

> Keep the standard as small as possible.

> K eep to aminimum the changes required for existing UNIX programsto
meet the standard.
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POSIX.1 specifiesonly asubset of the features availablein real UNIX systems.

POSIX library routinesare combined with other system libraries. Careful study of vendor documentation
reveal snon-standard extensions, features, and incompatibilitieswith standard specifications. You can
certainly use non-standard vendor features, but be aware that you are doing so and design your programs
for the best chances of portability (layers, wrappers, preprocessor logic, tc.).
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OTHER INDUSTRY SPECIFICATIONS AND STANDARDS

*

SystemV Interface Definition (SVID)

»  Thedescription of UNIX SystemV, originally produced by AT&T, but
now owned by The Open Group.

X/Open Portability Guide (XPG)

> Specifiesa Common Applications Environment (CAE) intended to ensure
application portability and connectivity. The CAE isnow known as
"Open Group Technical Standards."

POSIX

» A collection of |EEE standards that specify interfaces between programs
(or users) and the operating system.

Standard C

»  Thedefinition of the standardized C language, defined by ANSI;
sometimescalled"ANSI C."

The Open Group (www.opengroup.org) offers product branding.

> Products that have been tested and guaranteed to conform to industry-
standard specifications (such as X/Open and POSIX) can receive the
Open Brand.

»  Vendor products that have been registered with The Open Group for
branding are listed on the website.

> Conformanceto the Single UNIX Specification isrequired for the UNIX
95 and UNIX 98 brands.
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The SVID waswritten by AT& T in the 1980s as the definitive specification of the interfaces between
applicationsand the UNIX SystemV operating system. Companiesthat licensed UNIX fromAT& T to
resell (such asHP and IBM) could claim that their major-vendor-enhanced version of UNIX was
SVID-compliant by running the System V Verification Suite (SVVS). The SVID hashad astrong influence
onthe POSI X specifications. The SVID went with USL whenit wassold to Novell, and was subsequently
transferred to X/Open (see below).

X/Open Company, Ltd. wasfounded by several European companiesin 1984.
Member companiesof X/Open provideinput to the XPG CAE specifications.
Software developed by systemsvendors, independent software developers, or end
user organizationswill bemorelikely to be portable and interoperableif it complies
with X/Open guiddines. X/Openishot astandards-setting organization. "Itisajoint
initiative by membersof the businesscomunity tointegrate evolving standardsintoa
common, beneficia and continuing strategy. — X/Open Portability Guide (December
1988)

POSI X islanguageindependent — it does not require the use of Standard C, but effortswere madeto
ensure that the runtime library routines specified by POSIX and ANSI are compatibile.

PASC isthe | EEE's Portable A pplication Standards Committee. It is chartered with defining standard
application serviceinterfaces— most notably thosein the POSI X family. PASC wasformerly known asthe
Technica Committeeon Operating Systems.

X/Open and OSF became The Open Group in 1996.
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LIBRARY- VS. SYSTEM-LEVEL FUNCTIONS

%  Library-level functions are used to create portable C applications.

»  Thesefunctions are usually documented in Section 3 of the online manual
pages.

> malloc(), fopen(), and printf() are examples of standard or library-level
functions.

> Library-level functions call system-level functionsto do their work.

%  System-level functions provide low-level services, such asfile operations,
memory manipulation, and process management.

»  Thesefunctions are usually documented in Section 2 of the online manual
pages.

> System calls are direct entry pointsinto the operating system.

%  Bothlibrary callsand system calls are specified by standards, such as POSI X
and SUS.
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errno.c

/* errno.c
* This program demonstrates the use of malloc and errno.
k¥

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

void main (void) {
char *buf; /* Pointer to be used for malloc */
int £d; /* File descriptor */

/* Use malloc to dynamically allocate 80 characters */
buf = (char *) malloc (80 * (sizeof (char)));

strcpy (buf, "This is in the malloc’d buffer\n");
printf ("%s", buf);

/* Use free to release the memory back to the system */
free (buf) ;

/* Attempt to open a non-existent file to demo errno */
fd = open ("NOT-HERE", O_RDONLY) ;
if (fd == -1) {
switch (errno) {
case ENOENT:
printf ("File NOT-HERE does not exist\n");
break;
default:
perror ("open") ;
break;

}

else
close(fd); /* Just in case it DOES exist! */
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LABS

(1) Writeaprogram that callsthe getlogin() function to determineyour login name, then calls
getpwnam() toget apointer toapasswd structure. Fromthepasswd structure, display your initial
workingdirectory andyourinitial shell.

(Solution: getlogin.c)

(2] Under someconditionsgetlogin() will returnnull. Thiswill happenif thecalling processisnot
attachedtoaterminal that auser loggedinto (such asadaemon).

Writeaprogram to use the getuid() then the getpwuid() functionsto retrieve the password
structurefor the user ID of the calling process.
(Solution: getlogin2.c)

(3] Write afunction to use getcwd() to get the current working directory of the process and
displayit. Thegetcwd() functionwantsapointer toacharacter buffer toholdthestring that
identifiesthecurrentworkingdirectory, andthesizeof thebuffer. If thesizepassedtogetcwd() is
lessthanthenumber of charactersinthedirectory pathnameasdetermined by getcwd(), then
getcwd() fails. Theproblemhereisthat themaximum pathlengthall owabl eisimplementation-
dependent, sothepurposeof thisexerciseistodemonstratewhat you must go through sometimes
for portability.

Suggested algorithm: Usemalloc() to obtainapointer toabuffer whosesizeisaninitia guess. Call
getcwd() withthebuffer anditssize, and check thereturnfromgetcwd(). If itfails,doaswitchon
theglobal err novariabletomakesurethat thereasonfor thefailurewasERANGE, whichmeans
that thelength of the pathnamefound by getcwd() isbeyondtherangeof thesizeof thebuffer. I f
that isthecase, increasethesizeof thebuffer, thentry getcwd() again. User ealloc() toincreasethe
sizeof thebuffer.

(Solution: getcwd.c)

®  Readthemanual entriesforgetpwent(), setpwent(), andendpwent(). How dothesefunctions
work?Discussre-entrancy issues, such asinathreaded application.
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Theonlinereference manual is separated into several sectionsthat cover both UNIX commandsand C
functions. Topicsare often found in more than one section of themanual. It may bethat thetopic relatesto
oneor moreareasof UNIX or C, or theremay be UNIX commands and C functionsthat havethe same
name.

To look up atopicin aparticular section, enter the section number before the topic:

man 3 printf

To searchfor atopicinthemanual usethe-k option. -k means"keyword.”

man -k printf

Although vendorsvary on this, the UNIX manual typically isdivided into topical sectionsasfollows:

Sectionl Commands Section5 Miscellaneous Facilities
Section2 SystemCalls Section6 Games

Section3 Library Cals Section 7 Filesand Devices
Section4 File Formats Section8 SystemAdministration
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CHAPTER 8 - SIGNALS

\
OBJECTIVES

%  Understand the concepts and uses
of signalsin UNIX.

%  Write programsto handle signals.

%  Know the effects of signalson
system calls.
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WHAT IS A SIGNAL?

%  ThePOSIX.1 standard saysasignal is, "amechanism by which a process may
be notified of, or affected by, an event occurring in the system."”

%  Anevent occurs and generates asignal.

%  Thesigna isdelivered, and the appropriate action is taken by the processin
response to the signal.

%  Between the generation and the delivery, the signal is pending.

%  Typica eventsthat generate signalsare:
»  Theuser pressestheinterrupt key on the keyboard.
»  Anaarmtimer has expired and the system needs to notify the process that

started the timer.

» A usertypesthekill(1) command, identifying aprocessto bekilled.
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Signals are sometimes compared to hardware interrupts because, from the receiving process' point of
view, asignal isan asynchronousinterruption. Some signals may come at any random time (such as
when auser causesthe event), or they may comein responseto something the processitself does, suchasa
floating point error caused by attempted division by zero.

In this chapter, we will study signals as specified by POSIX.1, with brief looks at typical vendor
extensionsto POSI X signals.

Some examples of what signals are used for:
= Cleaningupif aprocessistoldto terminate.

= Sdf-imposed timeoutson aprocess so that it doesn't wait forever on something that might not happen,
suchaswaiting for inpuit.

= Synchronizing processesby sending signalsback and forth.
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TYPES OF SIGNALS

%  Eachsignal hasaname, defined in signal.h.

%  Thetwo general types of eventsthat cause signals are either errors or
asynchronous events.
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SIGNALS

The standard signals supported by every POSIX.1 system are:

Name Event
SIGABRT Abnormal termination; see abort()
SIGALRM | Timeout; see alarm()
SIGFPE Arithmetic Exception
SIGHUP Hangup [see termio(7)]
SIGILL Illegal Instruction
SIGINT Interrupt [see termio(7)]
SIGKILL Killed
SIGPIPE Broken Pipe
SIGQUIT Quit [see termio(7)]
SIGSEGV Segmentation Fault
SIGTERM | Terminated
SIGUSR1 User Signal 1
SIGUSR2 User Signal 2

The default action for all signalsin the above table istermination of the process.

POSIX.1 a'so supports job control signals on systemsthat can do job control:

Name Event
SIGCHLD | Child process stopped or terminated
SIGCONT | Continue stopped process
SIGSTOP Stop
SIGTSTP User stop requested from tty
SIGTIN Background tty read attempted
SIGTTOU Background tty write attempted

Vendor implementations provide other signals provided by Berkeley and SVRA4.
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SIGNAL ACTIONS

% A process has three choices on how to handle signals that are delivered to it.
%  Thetype of action chosenison aper signa basis. The actionsare:

»  Takethe default action for the signal, which for most signalsisto
terminate the process.

> Ignorethe signal.

> Catchthesignal.

. This meansto tell the system (ahead of time) to execute a process-
supplied, signal-handling function upon receipt of the signal.

%  Note: SIGKILL and SIGSTOP cannot beignored or caught.
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If aprocess does not advise the system how it wants to handle a specific signal, then the default action
associated with that signal will betakenif and when that signal isgenerated for the process. Thedefault
actionsfor sgnasarelistedinthereferencemanual, signal (5).

If the process advises the system that it wishesto ignore the signal, then the signal will be discarded if
it gets generated for that process.

Catchingsignalsiswhereall theactionis. Inthiscase, when asignal isddliveredto aprocess, afunction of
theprocess choosingiscalled. Sincesignalsare asynchronous, they can come between any two instructions
being executed by the process. Theflow of control isinterrupted, and the signal-handling functioniscalled
by the system, just like any other C function. Aninteger parameter containing thesigna number ispassedto
thefunction. If thefunction returns after it executes, then theflow of control inthe processwill pick up
whereit left off.
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BLOCKING SIGNALS FROM DELIVERY

% A process can choose to temporarily block signals from delivery.
%  Every process has a signal mask, the set of signals that are currently blocked.

% If an event causes a blocked signal to be generated, the signal iscalled a
pending signal.

» A pendingsigna will bedelivered after it isunblocked.
%  Each process starts out with asignal mask inherited from its parents.

%  Blockingasigna andignoring asignal are not the same.
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There may be times when a process does not wish to be interrupted by one or more specific signals.
Such atimeis often known as a critical section. The process can block signals from being delivered
during critical sections, then unblock and receive signalsthat may have arrived during that time.

A blocked signal is one that the process has notified the system not to deliver, if such asignal wasto
occur. If suchasigna doesactually occur, thenit will beadded to the process set of pending signals.

Notethat ablocked signal isnot anignored signal. Anignored signa will never bedelivered.
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THE SIGACTION() FUNCTION

%  Thesigaction() function allowsthe calling process to examine and/or specify
the action to be associated with a specific signal.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact) ;

%  Thesigargument isthe signal for which an action is being specified.

%  Theact argument isthe address of asigaction structure that describes the
actions to be taken for sig.

%  Theoact (old action) argument is the address of asigaction structure that will
be filled with the previous action for sig.
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Thesigaction structurelookslikethis:

struct sigaction {

void (*sa_handler) (int) ; /* Signal handler function &y
sigset_t sa_mask; /* Extra signals to be blocked */
int sa_flags; /* Flags to modify delivery */

/* Possibly additional implementation-dependent members */

W g
sa_handler isoneof:

1. SIG_DFL forthedefault action.
2. SIG_IGNtoignorethissignal.
3. A pointer to asignal-handling function to catch thesignal.

sa_mask isaset of signalsto be blocked during execution of the signal-handling function. Thisset isadded
totheprocess current signal mask, the set of signalsthat are currently blocked, for theduration of the
signal-handler execution. Also, thefirst parameter tothesigaction() function cal, sig, isaddedtothesigna
mask for theduration of thesigna-handler.

sa_flagsisaset of flagsthat can modify how the signal isdelivered. One such non-POSIX flag,
SA_RESTART, affectswhether interrupted system callsarerestarted.

Inthesigaction() function call, if oact isNULL thenitisignored. If act isSNULL, then the current
action for the signal isreturned in oact.

©2012 ITCourseware, LLC Rev3.1.2 Page 139



ADVANCED UNIX PROGRAMMING

SIGNAL SETS AND OPERATIONS

*

The two primary data structures used in POSI X.1 signal handling are the
sigaction structure and signal sets of type sigset _t.

The sa_mask member of the sigaction structureisasignal set.
Signal sets are manipulated with the following five functions:

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int sig);

int sigdelset(sigset_t *set, int sig);

int sigismember (const sigset_t *set, int sig);

These five functions do not affect the process signal mask or any actions on any
signals.

»  They ssimply manipulate signal set data structures.

NOTE: A sigset_t data structure must be initialized with either sigemptyset() or
sigfillset() before applying any other operation to it.
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Given asignal set declaration in a program:

sigset_t set;

Thecall sgemptyset(& set) initializesthe set sothat all signalsareexcluded.
Thecall sdfillset(& set) initidizesthe set sothat all Signalsareincluded.

Thecall sigaddset(& set, SIGQUIT) addsthe SIGQUI T signal tothe set.
Thecall sigdeset(&set, SIGQUIT) deletesthe SIGQUI T signal from the set.
Thecall sigismember (& set, SIGQUIT) returns1if SIGQUI T isinthe set, else0.

These library functions that manipulate the bitsin asigset_t structure are called sigsetops, and are
typically documented in sigsetops(3).
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AN EXAMPLE

*

We have reached the point where we can show an example program that uses
POSIX signals.

In this example, we call the alar m() function to send aSIGALRM signal to the
process after afew seconds.

From the alar m() manual page:

#include <unistd.h>
unsigned alarm(unsigned sec) ;

> alarm() instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed.

»  Alarmrequests are not stacked; successive callsreset the alarm clock of
the calling process.

> If secis O, any previously-made alarm request is canceled. fork() setsthe
alarm clock of a new processto 0.

. The exec family of routines |eavesthe process current alarm value
unchanged, so the new program will inherit the prior alarm clock.

pause() isused to wait for asignal:

#include <unistd.h>
int pause(void) ;

> pause() will return when asignal handler executes and returns.
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aarmer.c
#include <unistd.h>
#include <signal.h>

void alarm handler (int) ;
main(int argc, char *argvl[]) {
int seconds;

struct sigaction sigact;

if (argc >= 2) seconds = atoi(argv[l]);
else seconds = 3;

sigact.sa_handler = alarm handler; /* Point to the handler */

sigemptyset (&sigact.sa_mask) ; /* No signals will be
blocked */
sigact.sa_flags = 0; /* No additional flags */
sigaction (SIGALRM, &sigact, NULL); /* Set the action for
SIGALRM */
alarm(seconds) ; /* Start the process alarm clock */
pause () ; /* Wait for a signal */

void alarm_handler (int signo) {
printf ("Alarm went off! (Signal #%d)\n", signo);
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SENDING A SIGNAL TO ANOTHER PROCESS

% A process can send asignal to another process or group of processes with the
Kill() function.

#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int sig);

%  The process must have permission to send the signal to the process identified by
pid.

%  Rulesfor permissions are:
»  Thesuperuser can send asignal to any process.

> If thereal or effective user ID of the sender is equal to thereal or
effective ID of the receiver, then the signal can be sent.
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EXAMPLE

sync_child.c

#include <unistd.h>
#include <signal .h>
#include <stdio.h>

void handler (int) ;
main (int argc, char *argv[]) {
struct sigaction sigact;

sigset_t suspend;

/*— Set up to call handler on SIGUSR1 —*/

sigact.sa_handler = handler; /* Point to the handler */
sigemptyset (&sigact.sa_mask) ; /* Block no add’l signals in handler */
sigact.sa_flags = 0; /* No flags */

sigaction (SIGUSR1, &sigact, NULL); /* Set the action for SIGUSR1 */
sigemptyset (&suspend) ; /* Set up to wait for SIGUSR1 */

/*— Assume the child did some real work here, then wanted to let
the parent know it was done with phase 1. —*/

fprintf (stderr, "Child sending SIGUSR1 once ...\n");

if (kill (getppid(), SIGUSR1) == -1) {
perror ("first kill to parent failed") ;
exit(-1);

}
fprintf (stderr, "Child sent SIGUSR1 once.\n") ;

fprintf (stderr, "Child waiting for parent\n") ;
sigsuspend (&suspend) ;

/*— Now the child does phase 2 then alerts the parent —*/

fprintf (stderr, "Child sending SIGUSRI1 twice.\n") ;

if (kill (getppid(), SIGUSR1) == -1) {
perror ("second kill to parent failed") ;
exit(-1);

}
fprintf (stderr, "Child sent SIGUSR1 twice.\n") ;

}
void handler (int signo) {
fprintf (stderr, "Child received %d\n", signo) ;
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sync_parent.c

#include <unistd.h>
#include <signal.h>
#include <stdio.h>

void handler (int) ;
int count_usrl = 0;

main (int argc, char *argvl[]) {
struct sigaction sigact;
sigset_t hold_off, suspend;
int cpid;
int child _sig_sent;

child_sig_sent = 0; /* We have not sent sig. to child */

/*— Set up to call handler on SIGUSR1l —*/

sigact.sa_handler = handler; /* Point to the handler */

sigemptyset (&sigact.sa_mask) ; /* No add’1l signals will be blocked */
sigact.sa_flags = 0; /* No additional flags */

sigaction (SIGUSR1, &sigact, NULL) ; /* Set the action for SIGUSR1 */

/*— Set up and block SIGUSR1 from child till we’re ready —*/

sigemptyset (&hold_off) ; /* Empty the hold_off mask */

sigaddset (&hold_off, SIGUSR1) ; /* Add to mask to block SIGUSR1 */

sigprocmask (SIG_BLOCK, &hold_off, NULL); /* Block SIGUSR1 till we’re ready (at
sigsuspend call) */

sigemptyset (&suspend) ; /* Set up to wait for SIGUSR1 */
if ((cpid = fork()) == -1) {
perror ("child fork failed") ;
exit(-1);
}
if (cpid == 0) {
execl ("sync_child", "sync_child", (char *)0);
perror ("exec of sync_child failed") ;
exit(-1);

}

while (count_usrl < 2)

if (count_usrl == 1 && child_sig_sent++ == 0)

kill (cpid, SIGUSR1) ; /* Tell child to start phase 2 */
else

sigsuspend (&suspend) ; /* Wait for SIGUSR1 from child */

}
void handler (int signo) {
count_usrl++;
fprintf (stderr, "Parent received %d, count_usrl %d\n", signo, count_usrl) ;
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BLOCKING SIGNALS WITH SIGPROCMASKI()

%  Thesigprocmask() function is used to change or examine the signal mask of the
calling process.

#include <signal.h>

int sigprocmask (int value, const sigset_t *set,
sigset_t *oset) ;

%  Recall that the signal mask isthe set of signalsthat are currently blocked from
being delivered to the process.
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#include <signal.h>
int sigprocmask(int value, const sigset_t *set, sigset_t *oset);

If value==SIG_BLOCK

The set pointed to by set isadded to the current signal mask.

If vllue==SIG_UNBLOCK

The set pointed to by set isremoved from the current signal mask.

If vllue==SIG_SETMASK

The current signal mask isreplaced by the set pointed to by set.

If osetisnot NUL L, the previous mask is stored in the space pointed to by oset.

If setisNUL L, then valueisnot significant and the process signal mask isunchanged; thus, thecall canbe
used toinquireabout currently-blocked signals.
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SCHEDULING AND WAITING FOR SIGNALS

%  Thesigsuspend() function is used to atomically unblock one or more signals,
then wait for asignal.

#include <signal.h>
int sigsuspend(const sigset_t *set) ;

%  Thepower of sigsuspend() isthat it removes race condition gaps that might
result in suspending a process forever.
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#include <signal.h>
int sigsuspend(const sigset_t *set);

sigsuspend() replacesthe process signal mask with the set of signals pointed to by set and then suspends
theprocessuntil delivery of asigna whoseactioniseither to executeasignal catching function or to
terminatethe process. If the actionisto terminate the process, sigsuspend() doesnot return. If theactionis
to executeasigna catching function, sigsuspend() returnsafter thesignal catching function returns. On
return, the signal mask isrestored to the set that existed beforethe call to sigsuspend().

Thesigsuspend() function isused to:

1. Unblock one or more blocked signalsand then
2. Pause to wait for asignal to arrive.

It doesthisin one atomic step so that blocked signals can't arrive between the time they get unblocked
and the time the process pauses.

Consider thissituation:
... code being executed with blocked signals. ...

/* Unblock signals */
sigprocmask (SIG_UNBLOCK, &set_with_signals_to_unblock, NULL) ;

/* = SIGNAL IS DELIVERED HERE !!! *x/

/% (either it was pending or it */
/% got generated right now) =
pause () ; /* pause and wait forever for

a signal that already came
and has been handled */

If we replace the sigpr ocmask () and the pause() with asingle sigsuspend(), then the gap is closed:

... code being executed with blocked signals. ...

/* Unblock and pause for signals */
sigsuspend (&temporary_ sigmask) ;
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RESTARTING SYSTEM CALLS (SVRA4)

When asignal arrives, your code isinterrupted after an instruction.
If theactionis SIG_DFL, your process usually terminates.
If the action isto catch it, your handler executes.

After your handler finishes, your code resumes at the next instruction.

* 0 %k %k k¥

What happensif asignal arrives during execution of a system call, such asa
lengthy 1/0O operation?
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Originally UNIX systemswould terminate system callsthat were interrupted by asignal, and return a
-1totheprocesswitherrno==EINTR. Thiswasdesigned to let programsbeinterrupted from blocked I/
Ocadlls. If aprogramwished to restart the systemcall, it had to test for EINTR and restart it.

Following isan example code fragment that manually restartsasystem call:

sigact.sa_handler = handler;
sigemptyset (&sigact.sa_mask) ;
sigact.sa_flags = 0;

start read:
1f (read (device, buf, count) == -1) /* Assume read 1s blocked */
if (errno == EINTR)
goto start_read;

Some versions of UNIX provide a mechanism that allows system callsto be restarted after a caught
signal arrives and the handler returns. POSI X.1 doesn't provide or require this mechanism, but it
alowsit. On SVR4, thefollowing codefragment isequival ent to the one above:

sigact.sa_handler = handler;
sigemptyset (&sigact.sa_mask) ;
sigact.sa_flags = SA_RESTART; /* Set sys call restart flag*/

1f (read (device, buf, count) == -1)
/* Assume read is blocked */
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SIGNALS AND REENTRANCY

% Do not call non-reentrant functionsin asignal handler.

%  What happensif a non-reentrant function in your program isinterrupted by a
signal, and then you call the same function in your handler?

%  Some reasons why afunction may be non-reentrant include:
> It uses static data structures.
> It calls malloc() or free().
> It uses standard 1/0.

%  Alsobeawarethat any functions called in asignal handler might overwrite the
valuein errno.

> It is advisable to save the value of errno at the beginning of the handler
and replace it at the end.
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LABS

(1) Writeaprogram that prints"Go ahead, interrupt me" once asecond, and terminates after the

keyboard SIGINT generator key is pressed twice.
(Solution: sigint.c)

(2] Modify the program in @ above so that it changesits message to "OK , once more" after the

first interrupt, but still terminates after the second interrupt.
(Solution: sigint2.c)

® Write aparent program that sets up asignal handler to catch SIGUSR1, then startsachild

program. Havethechildsend SIGUSR1twiceinarow totheparent. Intheparent'ssignal handler,
printamessagewhenasignal arrives. Doestheparent catchbothsignals?

Changethe second signal sent by the child to be SIGUSR2, and update the parent to catch both
SIGUSR1and SIGUSR2withthesamehandler. Also, intheparent'shandler, print out thesignal
number. Areboth signal scaught thistime?What'sthedifference?

(Solutions: parentsigs.c, childsigs.c)

(4] Modify the examples sync_parent.c and sync_child.c so that the parent forks two children who
will communicatewiththeparent similar totheexamplewithonly onechild. Onechilduses
SIGUSR1, theother SIGUSR2. Haveeach programloopto keepthingsgoingfor awhile. Use
somesleepsto slow it down so you can seetheaction, thenremovethesleepsto speed it up to see
if itworksat speed.

Thisisaform of simple IPC; athough no datais being sent between processes, they are
communicatingand controlling each other.
(Solutions: syncparent.c, syncchildl.c, syncchild2.c)

® Writeaprogram that catches SIGINT and returnsfrom the signal handler (as opposed to
exitingtheprogramwithinthehandler). After settingupthehandler withsigaction(), user ead() to
readfromthestandardinput keyboard. Inyour code, check errnoonanerror returnfromr ead()
toseeifitisEINTR, andif souseperr or () to printamessagebeforedying.

Modify theprogramtorestartthereadif itisinterruptedby SIGINT. Modify theprogramtouse
theSA_RESTART flagtoautomatically restarttheread.

Test each of theseversionsby pressing the keyboard SIGINT generation key.
(Solution: reader.c)
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CHAPTER 9 - INTRODUCTION TO PTHREADS

OBJECTIVES

%  Explainthedifferencesbetween
processes and threads.

%  Describe user-space threads versus
kernel threads.

%  Decide when to thread an application,
and whether to use a process model
or a thread model to do so.

%  Write programsthat create, manage,
and terminate Pthreads.

\ /

©2012 ITCourseware, LLC Rev3.1.2 Page 159



ADVANCED UNIX PROGRAMMING

PROCESSES AND THREADS

% A processisan environment, or context, in which a program executes.
» A program consists of a sequential flow of execution within a process.

»  fork() creates a new child process, and the program in the new process
begins execution on return from the fork call.

»  Theparent and child share nothing, though the child inherits much.

% A thread isalso an execution context for code instructions, and multiple threads
may exist within asingle process.

» A new thread is created with pthread_create; execution starts with acall
to the function specified as a pthread_create parameter.

»  Threads within a process share process resources such as global
variables, open files, current directory, etc.

> Each thread has its own program counter and stack.
»  All threadsin a process are peers, not parent/child.

%  This course covers POSIX Threads, specified by the POSIX 1.c standard.
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We emphasi zethat aprocessisan environment, or context, withinwhich aset of instructions, a
program, executes. Strictly speaking, athread isalso acontext for instructions. One or morethreads
can exist withinaprocess, each consisting of : 1) A program counter containing the address of the next
instructionto execute, and 2) A stack containing local variables, function return addresses, and function
returnvalues.

Themain program runsin athread created automatically at program start. Itisreferred to asthemain
orinitial thread.

When peoplesay "thread,” oftenthey arereferring to theflow of instruction executionand the
applicationlogic redized by that flow, rather than the context provided by thethread. Thisbook uses
theterm for both the context and the executing code.
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CREATING THREADS

%  Create athread with pthread_create.

#include <pthread.h>

int pthread_create (
pthread_t *thread_id,
const pthread_attr_t *attr,
volid * (*start routine) (void *),
void *arg

> thread_id isthe new thread's ID, which can be used for thread
management.
> attr specifies attributes to be applied to the new thread.
> start_routineisthe function where execution begins.
> arg is passed to the function.
%  Thenew thread runs concurrently with the calling thread.

> Upon return from pthread_create, the calling thread will continue
execution concurrently with the new thread.

»  Whichthread executesfirst isindeterminate, just likewith for k().
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pl.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *); /* Prototype funcA */
int n=1, limit=15; /* Global variables */

int main(int argc, char **argv)
{
pthread_t thrA;

if (argec > 1) { limit = atoi(argv[1l]); }

pthread_create(&thrA, NULL, &funcA, NULL) ;
while (n <= limit) {

fprintf (stderr, "In main: %d\n", n++); // Global n is unprotected.
sleep(l) ;
}
pthread_exit (0) ;
}
void * funcA(void *p)
{
while (n <= limit) {
fprintf (stderr, "In thread A: %d\n", n++); // Global n is
unprotected.
sleep(l) ;
}
}
Hands On:

Makeand run pl.c, and study the output. Compilethus: ccpl.c-opl-Ipthread
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MULTI-TASKING

*

Actual behavior of multiple execution contexts, whether at the process level or at
the thread level, depends on many factors.

If the host machine has only one processor (CPU) then only one context can be
running at any time; some call this concurrent processing.

> OS scheduling algorithms determine how to share the single CPU
amongst multiple contexts (time sharing, round robin, FIFO, priority
schemes, etc.)

> Stopping a context and starting a different one is called context switching,
whichtakestime.

If the host has multiple CPUs, simultaneous processing is possible; some call
this parallel processing.

»  The OStill allocates processor time based on scheduling algorithms, but
multiple sequences of code execute simultaneoudly.

> Context switching per CPU still must occur.
»  TheOS (kerndl), uses a CPU when it needsto run.

> Symmetric multi-processing (SMP) means the kernel and user
applications can all run on any CPU.

Partitioning an application into processes or threads can improve performance
of single-CPU concurrency.

»  When an application task running in a process or athread blocks, that
context stops executing.

»  Tasksthat are independent of the blocked task can keep working if they
run in a separate context.
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The POSIX standard providesfor portability, so that programs using Pthreadswill run on uniprocessor or
multiprocessor systems. Somethreaded programs should run faster on amultiprocessor system because

logically independent tasks can be executed s multaneously, however they will il run successfully ona
uniprocessor system.
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OVERVIEW OF THREAD ARCHICTURES

%  ThePOSIX Pthreads standard allows for several different underlying
Implementations.

%  User-space threads run within a process such that the kernel doesn't know about
the multiple threads in the process.

»  Threads within the process are scheduled and managed by athread library
linked with the process.

»  Theprocessisthe only execution context the kernel sees, thus
simultaneous thread execution is not possible.

> If athread blocks, the entire process blocks and loses the CPU.
%  Kernel threads are OS entitiesin which asingle thread can execute.

»  Thekernel schedules and runs threads as independent execution contexts
within a process.

»  Threadsin aprocess may runin parallel on multiple processors.
> If athread in a process blocks, other threads in the process may still run.
%  Current Unix and Linux versionsimplement kernel threads.

> Solaris, HP-UX (as of 10.30), Linux (as of 2.2).
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Pthreadson Linux

Up until version 2.6, Linux threads (known as LinuxThreads) were created using the Linux cloneintrinsic,
whichisasocalled by fork(). Bothfork() and pthread_createwerewrappersaround clone (fork() till
is). clonecreatesnew processes, so threadswere not actually threads-within-a-process, rather each
thread ran in agenuine Linux process— they all actualy show upin ps, including aseparate manager
thread. Thiscaused many compatibility problemswith POSI X threads, and it madelarge-scale Pthreaded
gpplicationsproblematic on Linux.

Inthe Linux devel opment version 2.5, LinuxThreadswere replaced by the Native POSI X ThreadsLibrary,
NPTL, whichisnow part of version 2.6. TheNPTL createsthreads asthread contextswithin aprocess.
NPTL threadsarefaster and more efficient than LinuxThreads, and POSI X compatibility problemshave
been resolved.
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PROCESSES VERSUS THREADS

%  Beforedeciding whether to design concurrency into your application with
processes or threads, first determineif the application will benefit from
concurrency, i.e., will it perform faster or be easier to design and support.

»  Arethereindependent compute-intensive tasks that can be organized to
runinparalel?

. Tasks are independent if they can run in any order, with possible
Interleaved executionthroughtime-sharing.

»  Arethere asynchronous requirements such as 1/0O requests that block, or
network interrupts that occur randomly and must be processed?

> If an application consists of sequential tasks that each depend on the
completion of the previous task, then concurrency doesn't make sense.

%  Benefitsof programming an application using Pthreads instead of creating
multiple processes:

> Creation — Less system overhead is required to create athread than a
process, because fork duplication requirements are avoided.

> Running — Switching contexts between threads is faster, because the
thread context is small (P-counter, stack, minimal other stuff) and the
enclosing process doesn't change.

> Sharing data— Sharing data between threads does not require IPC
mechanisms, which use time consuming kernel calls.

. However, to avoid data corruption and logic errors, threads must
coordinate data access twith Pthreads synchronization mechanisms,
which must be programmed very carefully.
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Recall that thefor k() operation createsanew processthat isaduplicate of the parent. In additionto
allocating kernel structuresfor the new process, the kernel copiesthe parent's address space, environment,
filedescriptor table, and severd other attributesthat areinherited by the child. Mechanismsexist to reduce
the overhead of forking, such ascopy-on-writeand the Linux cloneimplementation, however itisstill faster
to create anew thread context within aprocessthanit isto create an entirely new process.

Switching contexts between threads al so takes | ess overhead than switching process contexts because most
of theattributes of aprocessare shared between the threadsin the process, so asmaller number of changes
must occur to stop onethread and start another.
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THE PTHREADS API

%  ThePthreadsAPI isalargelibrary of Clanguage functions.
%  These functions can be grouped into several categories.
. Creating, destroying, and managing execution of threads.
. Creating, initializing, and managing thread attribute obj ects.
. Synchronizing threads with mutexes and condition variables.
. Signal handling.

%  Not all implementations support every function, and someimplementations
provide non-standard thread facilities, so be aware of portability issues.

%  Asinintroductory treatment of Pthreadsin this course, we will concentrate on
creating, managing, and synchronizing threads.

»  Wewill not cover scheduling policies, execution priorities, or signal
handling.

> Because of complexity, debugging challenges, and the difficulty of
proving correct execution, many threads experts believe threaded
programs should be designed to accept scheduling and priority defaults,
and not use signals.
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pthread_atfork()
pthread_cancel ()
pthread_cleanup_pop ()
pthread_cleanup_push()
pthread_create()
pthread_detach()
pthread_equal ()
pthread_exit ()
pthread_getschedparam/()
pthread_getspecific()
pthread_join()
pthread_key create()
pthread_key delete()
pthread_kill ()
pthread_once ()
pthread_self ()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setschedparam/()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel ()

pthread_attr_destroy ()
pthread_attr_getdetachstate()
pthread_attr_getschedparam()
pthread_attr_getstackaddr ()
pthread_attr_getstacksize()
pthread_attr_init ()
pthread_attr_setdetachstate()
pthread_attr_setschedparam()
pthread_attr_setstackaddr ()
pthread_attr_setstacksize()

pthread_cond_broadcast ()
pthread_cond_destroy ()
pthread_cond_init ()
pthread_cond_signal ()
pthread_cond_timedwait ()
pthread_cond_wait ()

Hereareal thefunctionsinthe standard Posix Pthreadslibrary. We cover several of themininthiscourse.

pthread_ condattr_destroy ()
pthread_ condattr_getpshared()
pthread_condattr_init ()
pthread_ condattr_setpshared()

pthread _mutex_destroy ()
pthread_mutex_init ()
pthread_mutex_lock()
pthread mutex_ trylock()
pthread _mutex _unlock()

pthread _mutexattr_destroy ()
pthread mutexattr_getpshared()
pthread_mutexattr_init ()
pthread mutexattr_setpshared()
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THREAD TERMINATION

%  Therearesevera different waysfor athread to terminate:
1. It can call pthread_exit.
pthread_exit (void *status)
2. It can return from its start routine.
3. Another thread can kill it with pthread_cancel.
4, All threadsin a process terminate if the process terminates.

%  Inmost applications, threads that explicitly terminate themselves should do so
by calling pthread_exit.

»  Anoptional status can be passed to pthread_exit, which is retrievable by
threadsthat join the terminated thread.

> If main callspthread_exit, then the main process thread will terminate but
other threadswill keep running.

> If any thread calls exit (or if main runsinto its closing brace) then the
process terminates.
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JOINING THREADS

% A thread can wait for another thread to complete by joining it.
pthread_join(pthread_t id, **void status) ;

%  Thethread that calspthread join will be suspended until the thread identified
by id (thejoined thread) terminates or gets cancelled.

%  statuswill contain the value that the joined thread passed to pthread_exit.

%  If thejoined thread has already terminated, then pthread_join will return
immediately.
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Why would athread join another thread, that is, suspenditself until another thread finishes?Isn't paralelism
thepoint of threads?

Oneexampleisan applicationthat must, at startup, establish connectionswith severa serversbeforethe
application can proceed. The application might be designed so the main thread startsathread per server to
establish the connection to that server, then waitson each thread, one after another, with pthread_join.
Thisschemewill establishthe server connectionsin parale, which should befaster than havingasingle
thread establishthem al sequentidly.

If you think about it, you will seethat essentialy, themain thread chillsuntil thedowest connection
completes, during whichtimeal thefaster connectionswill have happenedin parale sotimewill besaved.

Note:
Remember, pthread_join will returnimmediately if the thread hasalready terminated.
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DETACHING THREADS

%  Based on creation attributes, athread is created as either joinable or detached.
pthread_attr_t attril; /* Create attribute object. */
pthread_attr_init(&attrl); /* Initialize object to defaults */
pthread_attr_setdetachstate (&attrl, PTHREAD CREATE DETACHED) ;
pthread_create (&thr, &attrl, func, NULL) ;

% A detached thread cannot be joined.

%  You create athread as detached so the system will recover resources when the
threadterminates.

»  When ajoinable thread terminates, the system does not release its thread

have.

> Unless the application design requires athread to be joined, then it should be
created as detached.

% A thread can detach another thread while the other thread is still running, or after it
hasterminated.

int pthread_detach (pthread_t id) ;
% A thread can detach itself with pthread detach and pthread_self.

pthread_detach (pthread _self ()) ;
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detach.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *); /* Prototype funcA */
int n=0, 1imit=20000; /* Global variables */

int main(int argc, char **argv)
{
pthread_t thrA;
pthread_attr_t attr;

int r;
if (argc > 1) { limit = atoi(argv[l]); }
pthread_attr_init (&attr) ; /* Initialize object to defaults */

pthread attr_setdetachstate(&attr, PTHREAD_ CREATE_DETACHED) ;

while (n <= limit) {

if ( (r=pthread_create(&thrA, &attr, &funcA, NULL)) != 0 ) {
fprintf (stderr, "%d %s\n", n, strerror(r));
exit (0) ;
}
// pthread_detach (thra) ; // Alternate way of detaching a thread

printf ("In main: %d\n", n++);

}
pthread_exit (0) ;

}

void * funcA(void *p)

{
printf ("In thread: %d\n", n);
sleep(1l) ;

}

Hands On:

1. Examinedetach.c, then make and run it, passing in the number of threadsto create asacommand line
argument. Runit repeatedly to createincreasingly larger numbersof threads. How many simultaneous
threads can you create?

2. OnLinux, theulimit parameter for stack size (whichisshownwith ulimit -sand modified with ulimit -s
size) affectsthe number of simultaneousthreadsaprocess can cregate, because each thread isallocated a
stack. Theulimit stack sizevaueisshownin 1024-byteunits. Try reducing it alittle at atime and see how
many threadsyou can create. Note that you cannot increaseaulimit value other than by logging out and
back in (unlessyou'rethe superuser). Also beawarethat if you makethe stack sizetoo small you may have
problemsrunning utilitiessuch aslsandvi.
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PASSING ARGUMENTS TO THREADS

%  Thefourth parameter to pthread createis an optional argument passed to the
new thread.

int pthread_create (
pthread_t *thread_id,
const pthread_attr_t *attr,
void * (*start routine) (void *),
void *arg

I
%  Theargument is a pointer, cast to (void *).

%  Becareful not to inadvertently modify "pointed to" values after passing the
pointer to a new thread.

%  You can effectively pass multiple arguments by passing a pointer to a structure.
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Thefollowing example program showsthe syntactical mechanicsof passing anargumentinthe
pthread createcal, andtheretrieval inthefunction. However, the program hasaserious problem
becausethe main argument might return and continue executing beforethr A startsup.

badarg.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

funcA (void *);
funcB (void *);

void *
void *
int main(int argc, char **argv)
{
pthread_t thra,
int arg;

thrB;

arg=1;

pthread_create (&thrA, NULL, &funcA, (void *)
arg=2; /* UH OH! thrA might get a 2
pthread_create (&thrB, NULL, &funcB, (void *)
pthread_exit (0) ;

void * funcA(void *p)
{
int *v = p;
printf ("In thread A:
pthread_exit (0) ;

gd\n", *v);

void * funcB(void *p)
{
int *v = p;
printf ("In thread B:
pthread_exit (0) ;

sd\n", *v);

Hands On:
Examinethen run the shell script badarg.sh.

&arg) ;

&arg) ;

©2012 ITCourseware,LLC Rev3.1.2

Page 179



ADVANCED UNIX PROGRAMMING

LABS

o

Addasecond functionnamedfuncB topl.c, and havemain createtwothreads. funcB should be

justlikefuncA except for thefprintf. Makeand runthenew program.
(Solution: p2.c)

Removethesleep callsinyour programfrom|ab @. Testit several times, changingthelimitvalue

eachtimetolarger numbers, evenupto5000. Redirect theoutput (stderr) toafileeachtime, if
youwish, for easy perusal. L ook at thesequenceinwhichthethreadsrun.
(Solution: p3.c; Run: p32>ouitfile)

M odify detach.c sothat thethreadsarejoinable, then seehow many you cancreate. OnLinux,
manipulateulimit -s.
(Solution: joinable.c)

Correct badarg.c sothat passed val uesarenot susceptibleto erroneousmodification.
(Solution: badargfix.c)
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