
Advanced UNIX
Programming

Student Workbook

Page ii Rev 3.1.2 © 2012 ITCourseware, LLC

Advanced UNIX Programming

Advanced UNIX Programming

Jeff Howell

Published by ITCourseware, LLC, 7245 South Havana Street, Suite 100, Centennial, CO 80112

Contributing Authors: Channing Lovely and Danielle Waleri

Editor: Jan Waleri

Editorial Assistant: Ginny Jaranowski

Special thanks to: Many instructors whose ideas and careful review have contributed to the quality of this
workbook and the many students who have offered comments, suggestions, criticisms, and insights.

Copyright © 2012 by ITCourseware, LLC. All rights reserved. No part of this book may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photo-copying, recording, or by an
information storage retrieval system, without permission in writing from the publisher. Inquiries should be
addressed to ITCourseware, LLC, 7245 South Havana Street, Suite 100, Centennial, Colorado, 80112.
(303) 302-5280.

All brand names, product names, trademarks, and registered trademarks are the property of their respective
owners.

© 2012 ITCourseware, LLC Rev 3.1.2 Page iii

Advanced UNIX Programming

Contents

Chapter 1 - Course Introduction ... 9

Course Objectives .. 10
Course Overview ... 12
Using the Workbook .. 13
Suggested References ... 14

Chapter 2 - UNIX Standards ... 17

Brief History of UNIX .. 18
AT&T and Berkeley UNIX Systems ... 20
Some Major Vendors ... 22
What is a Standard? ... 24
What is POSIX? .. 26
Other Industry Specifications and Standards .. 28
Library- vs. System-Level Functions ... 30
Labs ... 32

Chapter 3 - Files and Directories .. 35

Basic File Types ... 36
File Descriptors .. 38
The open() and creat() Functions .. 40
Keeping Track of Open Files .. 42
File Table Entries .. 44
The v-node Structure .. 46
The fcntl() Function ... 48
The fcntl() Function — with F_DUPFD Command .. 50
File Attributes ... 52
The access() Function ... 54
link(), unlink(), remove(), and rename() Functions .. 56
Functions to Create, Remove, and Read Directories .. 58
Labs ... 60

Page iv Rev 3.1.2 © 2012 ITCourseware, LLC

Advanced UNIX Programming

Chapter 4 - System I/O .. 63

Standard I/O vs System I/O .. 64
System I/O Calls — open() and close() ... 66
System I/O Calls — read() and write() .. 68
System I/O Calls — lseek() .. 70
File and Record Locking via fcntl() .. 72
File and Record Locking via fcntl() (cont'd) ... 74
Labs ... 76

Chapter 5 - Processes .. 79

What is a Process? ... 80
Process Creation and Termination ... 82
Process Memory Layout ... 84
Dynamic Memory Allocation ... 86
Accessing Environment Variables .. 88
Real and Effective User IDs .. 90
Labs ... 92

Chapter 6 - Process Management ... 95

The Difference Between Programs and Processes ... 96
The fork() System Function ... 98
Parent and Child ... 100
The exec() System Functions .. 102
Current Image and New Image ... 104
The wait() Functions ... 106
The waitpid() Function .. 108
Interpreter files and exec ... 110
Labs ... 112

Chapter 7 - Basic Interprocess Communication: Pipes ... 115

Interprocess Communication ... 116
Pipes .. 118
An Extended Example .. 120
FIFOs .. 122
More on FIFOs .. 124
Labs ... 126

© 2012 ITCourseware, LLC Rev 3.1.2 Page v

Advanced UNIX Programming

Chapter 8 - Signals ... 129

What is a Signal? .. 130
Types of Signals .. 132
Signal Actions ... 134
Blocking Signals from Delivery .. 136
The sigaction() Function .. 138
Signal Sets and Operations ... 140
An Example .. 142
Sending a Signal to Another Process ... 144
Example ... 146
Blocking Signals with sigprocmask() .. 148
Scheduling and Waiting for Signals .. 150
Restarting System Calls (SVR4) .. 152
Signals and Reentrancy ... 154
Labs ... 156

Chapter 9 - Introduction to Pthreads ... 159

Processes and Threads ... 160
Creating Threads .. 162
Multi-tasking .. 164
Overview of Thread Archictures .. 166
Processes versus Threads ... 168
The Pthreads API ... 170
Thread Termination ... 172
Joining Threads ... 174
Detaching Threads .. 176
Passing Arguments to Threads ... 178
Labs ... 180

Chapter 10 - Pthreads Synchronization ... 183

The Sharing Problem .. 184
Mutexes ... 186
Creating and Initializing Mutexes ... 188
Using Mutexes .. 190
Additional Synchronization Requirement .. 192
Using Condition Variables ... 194
Labs ... 200

Page vi Rev 3.1.2 © 2012 ITCourseware, LLC

Advanced UNIX Programming

Chapter 11 - Overview of Client/Server Programming with Berkeley Sockets 203

Designing Applications for a Distributed Environment ... 204
Clients and Servers ... 206
Ports and Services .. 208
Connectionless vs. Connection-Oriented Servers ... 210
Stateless vs. Stateful Servers ... 212
Concurrency Issues .. 214
Labs ... 216

Chapter 12 - The Berkeley Sockets API ... 219

Berkeley Sockets ... 220
Data Structures of the Sockets API ... 222
Socket System Calls ... 224
Socket System Calls (cont'd) .. 226
Socket Utility Functions .. 228
Labs ... 230

Chapter 13 - TCP Client Design ... 233

Algorithms Instead of Details ... 234
Client Architecture .. 236
Generic Client/Server Model — TCP ... 238
The TCP Client Algorithm ... 240
Sample Socket-based Client ... 242
Sample Socket-based Client (cont'd) .. 244
Labs ... 246

Chapter 14 - TCP Server Design .. 249

General Concepts ... 250
Iterative Servers ... 252
Concurrent Servers ... 254
Performance Considerations ... 256
An Iterative Server Design .. 258
Iterative Server Example ... 260
A Concurrent Server Design ... 262
Labs ... 264

© 2012 ITCourseware, LLC Rev 3.1.2 Page vii

Advanced UNIX Programming

Chapter 15 - System V Interprocess Communication .. 267

System V IPC .. 268
Elements Common to msg, shm, and sem Facilities .. 270
The Three System V IPC Facilities .. 272
IPC via Message Queues — msgget() ... 274
IPC via Message Queues — msgctl() .. 276
IPC via Message Queues — msgsend() and msgrecv() .. 278
IPC via Shared Memory — shmget() .. 280
IPC via Shared Memory — shmctl() ... 282
IPC via Shared Memory — shmat() and shmdt() ... 284
Coordinating the Use of Shared Memory Segments ... 286
Semaphore Sets — semget() .. 288
Semaphore Sets — semctl() ... 290
Semaphore Sets — the semop() call ... 292
Shared Memory Coordination Using Semaphores ... 294
Commands for IPC Facility Handling - ipcs and ipcrm ... 300
Labs ... 302

Appendix A - Date and Time Functions ... 305

Overview ... 306
Time Representations .. 308
Decoding Calendar Time ... 310
Shorthand Functions — asctime() and ctime() ... 312
Formatting Date and Time Strings .. 314
Process Times .. 316
The Difference Between clock() and times() .. 318
Berkeley High Resolution Timer .. 320
Labs ... 322

Appendix B - Standard I/O .. 325

Standard I/O Calls to manipulate streams .. 326
Standard I/O Calls for Character I/O .. 328
Standard I/O Calls for String I/O .. 330
Standard I/O Calls for Formatted I/O ... 332
Standard I/O Calls for Binary I/O ... 334
Labs ... 336

Page viii Rev 3.1.2 © 2012 ITCourseware, LLC

Advanced UNIX Programming

Solutions .. 339

Index .. 407

Course IntroductionChapter 1

© 2012 ITCourseware, LLC Rev 3.1.2 Page 9

Chapter 1 - Course Introduction

Advanced UNIX Programming

Page 10 Rev 3.1.2 © 2012 ITCourseware, LLC

Develop the programming skills required to write applications that run on the
UNIX operating system.

Write portable applications using UNIX standards.

Develop the basic skills required to write network programs using the
Berkeley Sockets interface to the TCP/IP protocols.

Course Objectives

Course IntroductionChapter 1

© 2012 ITCourseware, LLC Rev 3.1.2 Page 11

This course is intended for experienced C programmers with user level-skills in the UNIX
environment. Many programs will be written during the class. The lecture topics and lab exercises
concentrate on UNIX system services, with less emphasis on application-specific subjects. The course is
intended for application developers who will be using system services, as opposed to operating system
"hackers" (like driver writers and other rare beasts), who create the services.

The particular applications that you will be requested to design, write, and work on during this class
are intended to demonstrate the use of various system and library services provided in UNIX
programming environments. The example programs and solutions to the exercises hopefully will provide
some guidance when you get back to work and begin development on real projects.

A caveat: The examples and lab solutions in this course frequently neglect to check error returns from
system calls and library calls, because the primary intention of the programs in this course is to teach the
concepts and features available to UNIX programmers, and professional error checking code often reduces
the clarity of the main point of an example. However, UNIX-specific error handling methods are explicitly
discussed in the course.

We will spend some time discussing application source code portability and how standards support that
goal.

Advanced UNIX Programming

Page 12 Rev 3.1.2 © 2012 ITCourseware, LLC

Audience: This is a programming course designed for software development
professionals.

Prerequisites: C programming experience. User-level skills in the UNIX
environment, such as file manipulation, editing, and use of utilities are also
necessary.

Student Materials:

Student workbook

Classroom Environment:

UNIX software development system with one terminal per student.

UNIX and networking references.

Course Overview

Course IntroductionChapter 1

© 2012 ITCourseware, LLC Rev 3.1.2 Page 13

Using the Workbook

Chapter 2 Servlet Basics

© 2002 ITCourseware, LLC Rev 2.0.0 Page 17

Add an init() method to your Today servlet that initializes a bornOn date, then print the bornOn date

along with the current date:

Today.java

...

public class Today extends GenericServlet {

private Date bornOn;

public void service(ServletRequest request,

ServletResponse response) throws ServletException, IOException

{

...

// Write the document

out.println("This servlet was born on " + bornOn.toString());

out.println("It is now " + today.toString());

}

public void init() {

bornOn = new Date();

}

}

Hands On:

The init() method is

called when the servlet is

loaded into the container.

This workbook design is based on a page-pair, consisting of a Topic page and a Support page. When you
lay the workbook open flat, the Topic page is on the left and the Support page is on the right. The Topic
page contains the points to be discussed in class. The Support page has code examples, diagrams, screen
shots and additional information. Hands On sections provide opportunities for practical application of key
concepts. Try It and Investigate sections help direct individual discovery.

In addition, there is an index for quick look-up. Printed lab solutions are in the back of the book as well as
on-line if you need a little help.

Java Servlets

Page 16 Rev 2.0.0 © 2002 ITCourseware, LLC

� The servlet container controls the life cycle of the servlet.

� When the first request is received, the container loads the servlet class

and calls the init() method.

� For every request, the container uses a separate thread to call

the service() method.

� When the servlet is unloaded, the container calls the destroy()

method.

� As with Java’s finalize() method, don’t count on this being

called.

� Override one of the init() methods for one-time initializations, instead of

using a constructor.

� The simplest form takes no parameters.

public void init() {...}

� If you need to know container-specific configuration information, use

the other version.

public void init(ServletConfig config) {...

� Whenever you use the ServletConfig approach, always call the

superclass method, which performs additional initializations.

super.init(config);

The Servlet Life Cycle

The Topic page provides
the main topics for

classroom

The Support page has
additional

information,

Code examples are in a
fixed font and

shaded. The on-
line file name is

Screen shots show
examples of

what you

Topics are organized into
first (), second
() and third ()

Pages are numbered
sequentially

throughout the
book, making

Callout boxes point out
important parts
of the example

Advanced UNIX Programming

Page 14 Rev 3.1.2 © 2012 ITCourseware, LLC

Bovett, Daniel P. and Marco Cesati. 2006. Understanding the Linux Kernel. O'Reilly &
Associates, Sebastopol, CA. ISBN 0596005652.

Butenhof, David R. 1997. Programming with POSIX Threads. Addison-Wesley, Reading, MA.
ISBN 0201633922.

Comer, Douglas E. 2000. Internetworking with TCP/IP, Volume I. Prentice-Hall, Englewood
Cliffs, NJ. ISBN 0130183806.

Comer, Douglas E. and David L. Stevens. 1998. Internetworking with TCP/IP, Volume II.
Prentice-Hall, Englewood Cliffs, NJ. ISBN 0139738436.

Comer, Douglas E. and David L. Stevens. 2000. Internetworking with TCP/IP, Volumes III.
Prentice-Hall, Englewood Cliffs, NJ. ISBN 0130320714.

Gallmeister, Bill. 1995. POSIX.4 Programmers Guide : Programming for the Real World.
O'Reilly & Associates, Sebastopol, CA. ISBN 1565920740.

Goodheart, Berny and James Cox. 1994. The Magic Garden Explained: The Internals of UNIX
System V Release 4. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0130981389.

Harbison, Samuel P. and Guy L. Steele, Jr. 2002. C: A Reference Manual. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0133262243.

Johnson, Michael K. and Erik W. Troan. 2004. Linux Application Development. Addison-Wesley,
Reading, MA. ISBN 0321219147.

Kernighan, Brian W. and Dennis M. Ritchie. 1988 The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0131103628.

Lewine, Donald. 1991. POSIX Programmer's Guide: Writing Portable UNIX Programs. O'Reilly
& Associates, Sebastopol, CA. ISBN 0937175730.

Lewis, Bil and Daniel J. Berg. 1998. Multithreaded Programming with PThreads. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0136807291.

Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell. 1998. Pthreads Programming.
O'Reilly & Associates, Sebastopol, CA. ISBN 1565921151.

Suggested References

Course IntroductionChapter 1

© 2012 ITCourseware, LLC Rev 3.1.2 Page 15

Plauger, P.J. 1991. The Standard C Library. Prentice-Hall, Englewood Cliffs, NJ.
ISBN 0131315099.

Robbins, Kay A. and Steven Robbins. 1996. Practical UNIX Programming. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0134437063.

Rochkind, Marc J. 2004. Advanced UNIX Programming. Addison-Wesley, Reading, MA.
ISBN 0131411543.

Schimmel, Curt. 1994. UNIX Systems for Modern Architectures. Addison-Wesley, Reading, MA.
ISBN 0201633388.

Stevens, W. Richard and Stephen A. Rago. 2005. Advanced Programming in the UNIX
Environment. Addison-Wesley, Reading, MS. ISBN 0201433079.

Stevens, W. Richard, Bill Fenner, and Andrew M. Rudoff. 2003. UNIX Network Programming,
Volume I. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0131411551.

Stevens, W. Richard. 1998. UNIX Network Programming, Volumes I, II. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0130810819.

X/Open Group. 1997. Go Solo 2: The Authorized Guide to Version 2 of the Single Unix
Specification. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0135756898.

Zlotnick, F. 1991 The POSIX.1 Standard: A Programmer's Guide. Benjamin Cummings, Redwood
City, CA. ISBN 0805396055.

Advanced UNIX Programming

Page 16 Rev 3.1.2 © 2012 ITCourseware, LLC

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 17

Chapter 2 - UNIX Standards

Objectives

Write portable applications using
industry standards.

Explain the concepts of standards
and open systems.

Relate the history of the UNIX
operating system to modern-day
industry standards.

Differentiate between library- and
system-level functions, and when
each are used.

Advanced UNIX Programming

Page 18 Rev 3.1.2 © 2012 ITCourseware, LLC

Historically, UNIX was used for research in universities and government.

UNIX was distributed in source code format for many years, so many
modifications were made by many different organizations.

UNIX has been ported to many hardware platforms by vendors who provide
"vendor added value" extensions or modifications.

In the 1980s, UNIX became commercially popular for several reasons:

Customer demand for the benefits of open systems:

Application portability
Vendor independence
Connectivity/interoperability in multi-vendor environments
User portability

New workstation hardware could be brought to market more quickly with
an existing operating system.

Major vendors (such as Sun, Digital, HP, IBM) implemented UNIX-based
product lines.

UNIX provides excellent networking capabilities.

Brief History of UNIX

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 19

Many books go into detail on the history of UNIX and the reasons for its commercial popularity. For our
purposes as application developers, we need to know the aspects of UNIX history that can affect
application programming interfaces (API), such as the differences in system call parameters and
function return codes in different versions of UNIX (i.e., Berkeley vs. SystemV).

Advanced UNIX Programming

Page 20 Rev 3.1.2 © 2012 ITCourseware, LLC

UNIX was originally written at Bell Laboratories in 1969. In the mid-1970s, the
University of California at Berkeley began making additions and enhancements
to UNIX. In the early 1980s, AT&T began offering support for AT&T System
III UNIX.

AT&T and Berkeley UNIX Systems

Simplified UNIX Operating System History

Bell Labs

First Edition

through

Sixth Edition

AT&T / USL
Berkeley Software

Distribution (BSD)
PWB

System III

System V

System V Release 2

System V Release 3

System V Release 4

BSD

2 BSD

3 BSD

4.0 BSD

4.1 BSD

4.2 BSD

4.3 BSD

Sun OS

SUS (Single UNIX Specification

UNIX 95 / UNIX 98

The Open Group

OSF / 1

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 21

UNIX was originally designed and written mostly by Ken Thompson, a computer science researcher,
for the purpose of doing computer science research! AT&T provided UNIX source code at a low cost
to many universities, including UCB. Berkeley UNIX built on the Sixth Edition, adding, over the years,
many utilities such as vi and csh. Much research and development was done in the areas of file systems and
networking. Again, the history is well documented in several books, such as Leffler, et al., The Design and
Implementation of the 4.3BSD UNIX Operating System, Reading, MA: Addison-Wesley Publishing
Company, Inc., 1989.

AT&T, in 1982, merged several internal versions of UNIX and began licensing UNIX to vendors
such as Hewlett-Packard. In 1985, AT&T began shipping UNIX System V, and committed to support it
and maintain backward compatibility in future versions of UNIX.

Through the 1980s and early 1990s, as UNIX became critical to the strategies of more and more
commercial computer companies, much activity involved controlling UNIX and attempting to use that
control as a business advantage. However, influences such as the "threat" of NT and the continuing pressure
for compatibly from the world of customers helped bring competing vendors together in several different
inititatives.

The diagram on the facing page is oversimplified with respect to the number of actual versions and variants
of UNIX and its relatives, and with respect to the cross-influencing that the various versions have had on
each other.

Advanced UNIX Programming

Page 22 Rev 3.1.2 © 2012 ITCourseware, LLC

SunOS from Sun Microsystems was based on Berkeley UNIX.

SunOS merged with System V.3 to create UNIX System V Release 4
(SVR4 or System V.4).

Solaris 1.0 was based on SunOS; Solaris 2.0 and later are based on
System V.4.

HP-UX from Hewlett-Packard followed compliance with System V.3 and has all
major BSD features.

HP-UX 10 was based on SVR4.

AIX from IBM was based on System V.3 and incorporated many BSD features.

UNIX System V Release 4 (SVR4) from UNIX System Laboratories is the
merger of System V.3, SunOS, 4.3BSD, and XENIX.

OSF/1 from Open Software Foundation was derived from Mach, an OS
developed at Carnegie Mellon University, based on 4.2BSD.

OSF/1 was intended to be an "open" operating system: not controlled by
any single vendor.

Ultrix from DEC was BSD-based.

Later Digital UNIX was based on OSF/1.

Almost all vendors now support versions of the Single UNIX Specification from
The Open Group.

Some Major Vendors

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 23

Advanced UNIX Programming

Page 24 Rev 3.1.2 © 2012 ITCourseware, LLC

A specification is a document that specifies a certain technological area.

It tells what a software system does and how to use it as an application
programmer.

Specifications are produced by vendors, consortia, or users.

A vendor programming reference manual for a system is a specification.

A de facto standard is a specification that is widely used.

A formal standard is a specification that is produced through a formal process
by a formal standards setting body, such as ANSI and IEEE.

What is a Standard?

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 25

A specification of an API is provided to programmers so that they can write applications. But if a company
spends time and money to develop an application according to a vendor-dependent specification, then that
application will run only on that vendor's system.

If a specification is made publicly available by a university or a government agency, or licensed by a
vendor, and different system providers implement systems according to that specification, then it may
be called a de facto standard and applications written to use that specification will run on more than one
vendor's system. The specification is still controlled by the single provider.

Formal standards allow companies to "leverage their investment" in applications and programmers.
This is because applications can be ported to different vendor platforms without rewriting code, and
programmers can be productive immediately on new platforms without being retrained. Also, a formal
standard may be modified through processes that solicit input from the people who are affected by
evolution of the standard. MS-DOS may be a standard, but the evolution of revisions to MS-DOS are
controlled by one company.

A standard that evolves through input from users of the standard (systems providers, application
developers, end users) is called an open standard. System implementations based on open standards are
open systems.

Advanced UNIX Programming

Page 26 Rev 3.1.2 © 2012 ITCourseware, LLC

POSIX.1 defines the interface between application programs and the services
provided by the operating system.

POSIX is an API for basic operating system functions.

POSIX is based on historical implementations of UNIX System V and Berkeley
UNIX, but it is not an operating system: POSIX is a specification.

Some of the main goals of POSIX are:

Source code application portability — the ability to port programs from
system to system.

Contract specification — the interface contract between the application
and the operating system.

No implementation details are specified for either the system or the
application.

Keep the standard as small as possible.

Keep to a minimum the changes required for existing UNIX programs to
meet the standard.

What is POSIX?

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 27

POSIX.1 specifies only a subset of the features available in real UNIX systems.

POSIX library routines are combined with other system libraries. Careful study of vendor documentation
reveals non-standard extensions, features, and incompatibilities with standard specifications. You can
certainly use non-standard vendor features, but be aware that you are doing so and design your programs
for the best chances of portability (layers, wrappers, preprocessor logic, etc.).

Advanced UNIX Programming

Page 28 Rev 3.1.2 © 2012 ITCourseware, LLC

System V Interface Definition (SVID)

The description of UNIX System V, originally produced by AT&T, but
now owned by The Open Group.

X/Open Portability Guide (XPG)

Specifies a Common Applications Environment (CAE) intended to ensure
application portability and connectivity. The CAE is now known as
"Open Group Technical Standards."

POSIX

A collection of IEEE standards that specify interfaces between programs
(or users) and the operating system.

Standard C

The definition of the standardized C language, defined by ANSI;
sometimes called "ANSI C."

The Open Group (www.opengroup.org) offers product branding.

Products that have been tested and guaranteed to conform to industry-
standard specifications (such as X/Open and POSIX) can receive the
Open Brand.

Vendor products that have been registered with The Open Group for
branding are listed on the website.

Conformance to the Single UNIX Specification is required for the UNIX
95 and UNIX 98 brands.

Other Industry Specifications and Standards

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 29

The SVID was written by AT&T in the 1980s as the definitive specification of the interfaces between
applications and the UNIX System V operating system. Companies that licensed UNIX from AT&T to
resell (such as HP and IBM) could claim that their major-vendor-enhanced version of UNIX was
SVID-compliant by running the System V Verification Suite (SVVS). The SVID has had a strong influence
on the POSIX specifications. The SVID went with USL when it was sold to Novell, and was subsequently
transferred to X/Open (see below).

X/Open Company, Ltd. was founded by several European companies in 1984.
Member companies of X/Open provide input to the XPG CAE specifications.
Software developed by systems vendors, independent software developers, or end
user organizations will be more likely to be portable and interoperable if it complies
with X/Open guidelines. X/Open is not a standards-setting organization. "It is a joint
initiative by members of the business comunity to integrate evolving standards into a
common, beneficial and continuing strategy. — X/Open Portability Guide (December
1988)

POSIX is language independent — it does not require the use of Standard C, but efforts were made to
ensure that the runtime library routines specified by POSIX and ANSI are compatibile.

PASC is the IEEE's Portable Application Standards Committee. It is chartered with defining standard
application service interfaces — most notably those in the POSIX family. PASC was formerly known as the
Technical Committee on Operating Systems.

X/Open and OSF became The Open Group in 1996.

Advanced UNIX Programming

Page 30 Rev 3.1.2 © 2012 ITCourseware, LLC

Library-level functions are used to create portable C applications.

These functions are usually documented in Section 3 of the online manual
pages.

malloc(), fopen(), and printf() are examples of standard or library-level
functions.

Library-level functions call system-level functions to do their work.

System-level functions provide low-level services, such as file operations,
memory manipulation, and process management.

These functions are usually documented in Section 2 of the online manual
pages.

System calls are direct entry points into the operating system.

Both library calls and system calls are specified by standards, such as POSIX
and SUS.

Library- vs. System-Level Functions

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 31

errno.c
/* errno.c
 * This program demonstrates the use of malloc and errno.
 */
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void main(void) {
char *buf; /* Pointer to be used for malloc */
int fd; /* File descriptor */

/* Use malloc to dynamically allocate 80 characters */
buf = (char *) malloc (80 * (sizeof (char)));

strcpy(buf, "This is in the malloc’d buffer\n");
printf("%s", buf);

/* Use free to release the memory back to the system */
free(buf);

/* Attempt to open a non-existent file to demo errno */
fd = open("NOT-HERE", O_RDONLY);
if (fd == -1) {

switch (errno) {
case ENOENT:

printf("File NOT-HERE does not exist\n");
break;

default:
perror("open");
break;

}
}
else

close(fd); /* Just in case it DOES exist! */
}

Advanced UNIX Programming

Page 32 Rev 3.1.2 © 2012 ITCourseware, LLC

Write a program that calls the getlogin() function to determine your login name, then calls
getpwnam() to get a pointer to a passwd structure. From the passwd structure, display your initial
working directory and your initial shell.
(Solution: getlogin.c)

Under some conditions getlogin() will return null. This will happen if the calling process is not
attached to a terminal that a user logged into (such as a daemon).

Write a program to use the getuid() then the getpwuid() functions to retrieve the password
structure for the user ID of the calling process.
(Solution: getlogin2.c)

Write a function to use getcwd() to get the current working directory of the process and
display it. The getcwd() function wants a pointer to a character buffer to hold the string that
identifies the current working directory, and the size of the buffer. If the size passed to getcwd() is
less than the number of characters in the directory pathname as determined by getcwd(), then
getcwd() fails. The problem here is that the maximum path length allowable is implementation-
dependent, so the purpose of this exercise is to demonstrate what you must go through sometimes
for portability.

Suggested algorithm: Use malloc() to obtain a pointer to a buffer whose size is an initial guess. Call
getcwd() with the buffer and its size, and check the return from getcwd(). If it fails, do a switch on
the global errno variable to make sure that the reason for the failure was ERANGE, which means
that the length of the pathname found by getcwd() is beyond the range of the size of the buffer. If
that is the case, increase the size of the buffer, then try getcwd() again. Use realloc() to increase the
size of the buffer.
(Solution: getcwd.c)

Read the manual entries for getpwent(), setpwent(), and endpwent(). How do these functions
work? Discuss re-entrancy issues, such as in a threaded application.

Labs

UNIX StandardsChapter 2

© 2012 ITCourseware, LLC Rev 3.1.2 Page 33

The online reference manual is separated into several sections that cover both UNIX commands and C
functions. Topics are often found in more than one section of the manual. It may be that the topic relates to
one or more areas of UNIX or C, or there may be UNIX commands and C functions that have the same
name.

To look up a topic in a particular section, enter the section number before the topic:

man 3 printf

To search for a topic in the manual use the -k option. -k means "keyword."

man -k printf

Although vendors vary on this, the UNIX manual typically is divided into topical sections as follows:

Section 1 Commands Section 5 Miscellaneous Facilities
Section 2 System Calls Section 6 Games
Section 3 Library Calls Section 7 Files and Devices
Section 4 File Formats Section 8 System Administration

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 129

Chapter 8 - Signals

Objectives

Understand the concepts and uses
of signals in UNIX.

Write programs to handle signals.

Know the effects of signals on
system calls.

Advanced UNIX Programming

Page 130 Rev 3.1.2 © 2012 ITCourseware, LLC

The POSIX.1 standard says a signal is, "a mechanism by which a process may
be notified of, or affected by, an event occurring in the system."

An event occurs and generates a signal.

The signal is delivered, and the appropriate action is taken by the process in
response to the signal.

Between the generation and the delivery, the signal is pending.

Typical events that generate signals are:

The user presses the interrupt key on the keyboard.

An alarm timer has expired and the system needs to notify the process that
started the timer.

A user types the kill(1) command, identifying a process to be killed.

What is a Signal?

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 131

Signals are sometimes compared to hardware interrupts because, from the receiving process' point of
view, a signal is an asynchronous interruption. Some signals may come at any random time (such as
when a user causes the event), or they may come in response to something the process itself does, such as a
floating point error caused by attempted division by zero.

In this chapter, we will study signals as specified by POSIX.1, with brief looks at typical vendor
extensions to POSIX signals.

Some examples of what signals are used for:

Cleaning up if a process is told to terminate.

Self-imposed timeouts on a process so that it doesn't wait forever on something thatmight not happen,
such as waiting for input.

Synchronizing processes by sending signals back and forth.

Advanced UNIX Programming

Page 132 Rev 3.1.2 © 2012 ITCourseware, LLC

Each signal has a name, defined in signal.h.

The two general types of events that cause signals are either errors or
asynchronous events.

Types of Signals

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 133

The standard signals supported by every POSIX.1 system are:

The default action for all signals in the above table is termination of the process.

POSIX.1 also supports job control signals on systems that can do job control:

Vendor implementations provide other signals provided by Berkeley and SVR4.

emaN tnevE

TRBAGIS ees;noitanimretlamronbA)(troba

MRLAGIS ees;tuoemiT)(mrala

EPFGIS noitpecxEcitemhtirA

PUHGIS ees[pugnaH)7(oimret]

LLIGIS noitcurtsnIlagellI

TNIGIS ees[tpurretnI)7(oimret]

LLIKGIS delliK

EPIPGIS epiPnekorB

TIUQGIS ees[tiuQ)7(oimret]

VGESGIS tluaFnoitatnemgeS

MRETGIS detanimreT

1RSUGIS 1langiSresU

2RSUGIS 2langiSresU

emaN tnevE

DLHCGIS detanimretrodeppotsssecorpdlihC

TNOCGIS ssecorpdeppotseunitnoC

POTSGIS potS

PTSTGIS yttmorfdetseuqerpotsresU

NITGIS detpmettadaeryttdnuorgkcaB

UOTTGIS detpmettaetirwyttdnuorgkcaB

Advanced UNIX Programming

Page 134 Rev 3.1.2 © 2012 ITCourseware, LLC

A process has three choices on how to handle signals that are delivered to it.

The type of action chosen is on a per signal basis. The actions are:

Take the default action for the signal, which for most signals is to
terminate the process.

Ignore the signal.

Catch the signal.

This means to tell the system (ahead of time) to execute a process-
supplied, signal-handling function upon receipt of the signal.

Note: SIGKILL and SIGSTOP cannot be ignored or caught.

Signal Actions

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 135

If a process does not advise the system how it wants to handle a specific signal, then the default action
associated with that signal will be taken if and when that signal is generated for the process. The default
actions for signals are listed in the reference manual, signal(5).

If the process advises the system that it wishes to ignore the signal, then the signal will be discarded if
it gets generated for that process.

Catching signals is where all the action is. In this case, when a signal is delivered to a process, a function of
the process' choosing is called. Since signals are asynchronous, they can come between any two instructions
being executed by the process. The flow of control is interrupted, and the signal-handling function is called
by the system, just like any other C function. An integer parameter containing the signal number is passed to
the function. If the function returns after it executes, then the flow of control in the process will pick up
where it left off.

Advanced UNIX Programming

Page 136 Rev 3.1.2 © 2012 ITCourseware, LLC

A process can choose to temporarily block signals from delivery.

Every process has a signal mask, the set of signals that are currently blocked.

If an event causes a blocked signal to be generated, the signal is called a
pending signal.

A pending signal will be delivered after it is unblocked.

Each process starts out with a signal mask inherited from its parents.

Blocking a signal and ignoring a signal are not the same.

Blocking Signals from Delivery

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 137

There may be times when a process does not wish to be interrupted by one or more specific signals.
Such a time is often known as a critical section. The process can block signals from being delivered
during critical sections, then unblock and receive signals that may have arrived during that time.

A blocked signal is one that the process has notified the system not to deliver, if such a signal was to
occur. If such a signal does actually occur, then it will be added to the process' set of pending signals.

Note that a blocked signal is not an ignored signal. An ignored signal will never be delivered.

Advanced UNIX Programming

Page 138 Rev 3.1.2 © 2012 ITCourseware, LLC

The sigaction() function allows the calling process to examine and/or specify
the action to be associated with a specific signal.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact);

The sig argument is the signal for which an action is being specified.

The act argument is the address of a sigaction structure that describes the
actions to be taken for sig.

The oact (old action) argument is the address of a sigaction structure that will
be filled with the previous action for sig.

The sigaction() Function

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 139

The sigaction structure looks like this:

struct sigaction {
void (*sa_handler)(int); /* Signal handler function */
sigset_t sa_mask; /* Extra signals to be blocked */
int sa_flags; /* Flags to modify delivery */

/* Possibly additional implementation-dependent members */
};

sa_handler is one of:

1. SIG_DFL for the default action.
2. SIG_IGN to ignore this signal.
3. A pointer to a signal-handling function to catch the signal.

sa_mask is a set of signals to be blocked during execution of the signal-handling function. This set is added
to the process' current signal mask, the set of signals that are currently blocked, for the duration of the
signal-handler execution. Also, the first parameter to the sigaction() function call, sig, is added to the signal
mask for the duration of the signal-handler.

sa_flags is a set of flags that can modify how the signal is delivered. One such non-POSIX flag,
SA_RESTART, affects whether interrupted system calls are restarted.

In the sigaction() function call, if oact is NULL then it is ignored. If act is NULL, then the current
action for the signal is returned in oact.

Advanced UNIX Programming

Page 140 Rev 3.1.2 © 2012 ITCourseware, LLC

The two primary data structures used in POSIX.1 signal handling are the
sigaction structure and signal sets of type sigset_t.

The sa_mask member of the sigaction structure is a signal set.

Signal sets are manipulated with the following five functions:

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);
int sigismember(const sigset_t *set, int sig);

These five functions do not affect the process signal mask or any actions on any
signals.

They simply manipulate signal set data structures.

NOTE: A sigset_t data structure must be initialized with either sigemptyset() or
sigfillset() before applying any other operation to it.

Signal Sets and Operations

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 141

Given a signal set declaration in a program:

sigset_t set;

The call sigemptyset(&set) initializes the set so that all signals are excluded.

The call sigfillset(&set) initializes the set so that all signals are included.

The call sigaddset(&set, SIGQUIT) adds the SIGQUIT signal to the set.

The call sigdelset(&set, SIGQUIT) deletes the SIGQUIT signal from the set.

The call sigismember(&set, SIGQUIT) returns 1 if SIGQUIT is in the set, else 0.

These library functions that manipulate the bits in a sigset_t structure are called sigsetops, and are
typically documented in sigsetops(3).

Advanced UNIX Programming

Page 142 Rev 3.1.2 © 2012 ITCourseware, LLC

We have reached the point where we can show an example program that uses
POSIX signals.

In this example, we call the alarm() function to send a SIGALRM signal to the
process after a few seconds.

From the alarm() manual page:

#include <unistd.h>
unsigned alarm(unsigned sec);

alarm() instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed.

Alarm requests are not stacked; successive calls reset the alarm clock of
the calling process.

If sec is 0, any previously-made alarm request is canceled. fork() sets the
alarm clock of a new process to 0.

The exec family of routines leaves the process' current alarm value
unchanged, so the new program will inherit the prior alarm clock.

pause() is used to wait for a signal:

#include <unistd.h>
int pause(void);

pause() will return when a signal handler executes and returns.

An Example

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 143

alarmer.c
#include <unistd.h>
#include <signal.h>

void alarm_handler(int);

main(int argc, char *argv[]) {
int seconds;
struct sigaction sigact;

if (argc >= 2) seconds = atoi(argv[1]);
else seconds = 3;

sigact.sa_handler = alarm_handler; /* Point to the handler */
sigemptyset(&sigact.sa_mask); /* No signals will be

blocked */
sigact.sa_flags = 0; /* No additional flags */
sigaction(SIGALRM, &sigact, NULL); /* Set the action for

SIGALRM */
alarm(seconds); /* Start the process alarm clock */
pause(); /* Wait for a signal */

}

void alarm_handler(int signo) {
printf("Alarm went off! (Signal #%d)\n", signo);

}

Advanced UNIX Programming

Page 144 Rev 3.1.2 © 2012 ITCourseware, LLC

A process can send a signal to another process or group of processes with the
kill() function.

#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int sig);

The process must have permission to send the signal to the process identified by
pid.

Rules for permissions are:

The superuser can send a signal to any process.

If the real or effective user ID of the sender is equal to the real or
effective ID of the receiver, then the signal can be sent.

Sending a Signal to Another Process

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 145

Advanced UNIX Programming

Page 146 Rev 3.1.2 © 2012 ITCourseware, LLC

sync_child.c
#include <unistd.h>
#include <signal.h>
#include <stdio.h>

void handler(int);

main(int argc, char *argv[]) {
 struct sigaction sigact;
 sigset_t suspend;

 /*— Set up to call handler on SIGUSR1 —*/
 sigact.sa_handler = handler; /* Point to the handler */
 sigemptyset(&sigact.sa_mask); /* Block no add’l signals in handler */
 sigact.sa_flags = 0; /* No flags */
 sigaction(SIGUSR1, &sigact, NULL); /* Set the action for SIGUSR1 */

 sigemptyset(&suspend); /* Set up to wait for SIGUSR1 */

 /*— Assume the child did some real work here, then wanted to let
 the parent know it was done with phase 1. —*/

 fprintf(stderr, "Child sending SIGUSR1 once ...\n");
 if (kill(getppid(), SIGUSR1) == -1) {
 perror("first kill to parent failed");
 exit(-1);
 }
 fprintf(stderr,"Child sent SIGUSR1 once.\n");

 fprintf(stderr, "Child waiting for parent\n");
 sigsuspend(&suspend);

 /*— Now the child does phase 2 then alerts the parent —*/

 fprintf(stderr,"Child sending SIGUSR1 twice.\n");
 if (kill(getppid(), SIGUSR1) == -1) {
 perror("second kill to parent failed");
 exit(-1);
 }
 fprintf(stderr,"Child sent SIGUSR1 twice.\n");
}
void handler(int signo) {
 fprintf(stderr, "Child received %d\n", signo);
}

Example

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 147

sync_parent.c
#include <unistd.h>
#include <signal.h>
#include <stdio.h>

void handler(int);
int count_usr1 = 0;

main(int argc, char *argv[]) {
 struct sigaction sigact;
 sigset_t hold_off, suspend;
 int cpid;
 int child_sig_sent;

 child_sig_sent = 0; /* We have not sent sig. to child */

 /*— Set up to call handler on SIGUSR1 —*/
 sigact.sa_handler = handler; /* Point to the handler */
 sigemptyset(&sigact.sa_mask); /* No add’l signals will be blocked */
 sigact.sa_flags = 0; /* No additional flags */
 sigaction(SIGUSR1, &sigact, NULL); /* Set the action for SIGUSR1 */

 /*— Set up and block SIGUSR1 from child till we’re ready —*/
 sigemptyset(&hold_off); /* Empty the hold_off mask */
 sigaddset(&hold_off, SIGUSR1); /* Add to mask to block SIGUSR1 */
 sigprocmask(SIG_BLOCK, &hold_off, NULL); /* Block SIGUSR1 till we’re ready (at

sigsuspend call) */

 sigemptyset(&suspend); /* Set up to wait for SIGUSR1 */

 if ((cpid = fork()) == -1) {
 perror("child fork failed");
 exit(-1);
 }
 if (cpid == 0) {
 execl("sync_child", "sync_child", (char *)0);
 perror("exec of sync_child failed");
 exit(-1);
 }
 while(count_usr1 < 2)
 if (count_usr1 == 1 && child_sig_sent++ == 0)

 kill(cpid, SIGUSR1); /* Tell child to start phase 2 */
 else
 sigsuspend(&suspend); /* Wait for SIGUSR1 from child */
}
void handler(int signo) {
 count_usr1++;
 fprintf(stderr, "Parent received %d, count_usr1 %d\n", signo, count_usr1);
}

Advanced UNIX Programming

Page 148 Rev 3.1.2 © 2012 ITCourseware, LLC

The sigprocmask() function is used to change or examine the signal mask of the
calling process.

#include <signal.h>

int sigprocmask(int value, const sigset_t *set,
sigset_t *oset);

Recall that the signal mask is the set of signals that are currently blocked from
being delivered to the process.

Blocking Signals with sigprocmask()

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 149

#include <signal.h>
int sigprocmask(int value, const sigset_t *set, sigset_t *oset);

If value == SIG_BLOCK

 The set pointed to by set is added to the current signal mask.

If value == SIG_UNBLOCK

 The set pointed to by set is removed from the current signal mask.

If value == SIG_SETMASK

 The current signal mask is replaced by the set pointed to by set.

If oset is not NULL, the previous mask is stored in the space pointed to by oset.

If set is NULL, then value is not significant and the process' signal mask is unchanged; thus, the call can be
used to inquire about currently-blocked signals.

Advanced UNIX Programming

Page 150 Rev 3.1.2 © 2012 ITCourseware, LLC

The sigsuspend() function is used to atomically unblock one or more signals,
then wait for a signal.

#include <signal.h>
int sigsuspend(const sigset_t *set);

The power of sigsuspend() is that it removes race condition gaps that might
result in suspending a process forever.

Scheduling and Waiting for Signals

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 151

#include <signal.h>
int sigsuspend(const sigset_t *set);

sigsuspend() replaces the process' signal mask with the set of signals pointed to by set and then suspends
the process until delivery of a signal whose action is either to execute a signal catching function or to
terminate the process. If the action is to terminate the process, sigsuspend() does not return. If the action is
to execute a signal catching function, sigsuspend() returns after the signal catching function returns. On
return, the signal mask is restored to the set that existed before the call to sigsuspend().

The sigsuspend() function is used to:

1. Unblock one or more blocked signals and then
2. Pause to wait for a signal to arrive.

It does this in one atomic step so that blocked signals can't arrive between the time they get unblocked
and the time the process pauses.

Consider this situation:

 ... code being executed with blocked signals ...

/* Unblock signals */
sigprocmask(SIG_UNBLOCK, &set_with_signals_to_unblock, NULL);

/* SIGNAL IS DELIVERED HERE !!! */
/* (either it was pending or it */
/* got generated right now) */

pause(); /* pause and wait forever for
a signal that already came
and has been handled */

If we replace the sigprocmask() and the pause() with a single sigsuspend(), then the gap is closed:

 ... code being executed with blocked signals ...

/* Unblock and pause for signals */
sigsuspend(&temporary_sigmask);

Advanced UNIX Programming

Page 152 Rev 3.1.2 © 2012 ITCourseware, LLC

When a signal arrives, your code is interrupted after an instruction.

If the action is SIG_DFL, your process usually terminates.

If the action is to catch it, your handler executes.

After your handler finishes, your code resumes at the next instruction.

What happens if a signal arrives during execution of a system call, such as a
lengthy I/O operation?

Restarting System Calls (SVR4)

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 153

Originally UNIX systems would terminate system calls that were interrupted by a signal, and return a
-1 to the process with errno == EINTR. This was designed to let programs be interrupted from blocked I/
O calls. If a program wished to restart the system call, it had to test for EINTR and restart it.

Following is an example code fragment that manually restarts a system call:

sigact.sa_handler = handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;

...
start_read:

if (read (device, buf, count) == -1) /* Assume read is blocked */
if (errno == EINTR)

goto start_read;

Some versions of UNIX provide a mechanism that allows system calls to be restarted after a caught
signal arrives and the handler returns. POSIX.1 doesn't provide or require this mechanism, but it
allows it. On SVR4, the following code fragment is equivalent to the one above:

sigact.sa_handler = handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = SA_RESTART; /* Set sys call restart flag*/

...
if (read (device, buf, count) == -1)

/* Assume read is blocked */

Advanced UNIX Programming

Page 154 Rev 3.1.2 © 2012 ITCourseware, LLC

Do not call non-reentrant functions in a signal handler.

What happens if a non-reentrant function in your program is interrupted by a
signal, and then you call the same function in your handler?

Some reasons why a function may be non-reentrant include:

It uses static data structures.

It calls malloc() or free().

It uses standard I/O.

Also be aware that any functions called in a signal handler might overwrite the
value in errno.

It is advisable to save the value of errno at the beginning of the handler
and replace it at the end.

Signals and Reentrancy

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 155

Advanced UNIX Programming

Page 156 Rev 3.1.2 © 2012 ITCourseware, LLC

Write a program that prints "Go ahead, interrupt me" once a second, and terminates after the
keyboard SIGINT generator key is pressed twice.
(Solution: sigint.c)

Modify the program in above so that it changes its message to "OK, once more" after the
first interrupt, but still terminates after the second interrupt.
(Solution: sigint2.c)

Write a parent program that sets up a signal handler to catch SIGUSR1, then starts a child
program. Have the child send SIGUSR1 twice in a row to the parent. In the parent's signal handler,
print a message when a signal arrives. Does the parent catch both signals?

Change the second signal sent by the child to be SIGUSR2, and update the parent to catch both
SIGUSR1 and SIGUSR2 with the same handler. Also, in the parent's handler, print out the signal
number. Are both signals caught this time? What's the difference?
(Solutions: parentsigs.c, childsigs.c)

Modify the examples sync_parent.c and sync_child.c so that the parent forks two children who
will communicate with the parent similar to the example with only one child. One child uses
SIGUSR1, the other SIGUSR2. Have each program loop to keep things going for a while. Use
some sleeps to slow it down so you can see the action, then remove the sleeps to speed it up to see
if it works at speed.

This is a form of simple IPC; although no data is being sent between processes, they are
communicating and controlling each other.
(Solutions: syncparent.c, syncchild1.c, syncchild2.c)

Write a program that catches SIGINT and returns from the signal handler (as opposed to
exiting the program within the handler). After setting up the handler with sigaction(), use read() to
read from the standard input keyboard. In your code, check errno on an error return from read()
to see if it is EINTR, and if so use perror() to print a message before dying.

Modify the program to restart the read if it is interrupted by SIGINT. Modify the program to use
the SA_RESTART flag to automatically restart the read.

Test each of these versions by pressing the keyboard SIGINT generation key.
(Solution: reader.c)

Labs

SignalsChapter 8

© 2012 ITCourseware, LLC Rev 3.1.2 Page 157

Advanced UNIX Programming

Page 158 Rev 3.1.2 © 2012 ITCourseware, LLC

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 159

Chapter 9 - Introduction to Pthreads

Objectives

Explain the differences between
processes and threads.

Describe user-space threads versus
kernel threads.

Decide when to thread an application,
and whether to use a process model
or a thread model to do so.

Write programs that create, manage,
and terminate Pthreads.

Advanced UNIX Programming

Page 160 Rev 3.1.2 © 2012 ITCourseware, LLC

A process is an environment, or context, in which a program executes.

A program consists of a sequential flow of execution within a process.

fork() creates a new child process, and the program in the new process
begins execution on return from the fork call.

The parent and child share nothing, though the child inherits much.

A thread is also an execution context for code instructions, and multiple threads
may exist within a single process.

A new thread is created with pthread_create; execution starts with a call
to the function specified as a pthread_create parameter.

Threads within a process share process resources such as global
variables, open files, current directory, etc.

Each thread has its own program counter and stack.

All threads in a process are peers, not parent/child.

This course covers POSIX Threads, specified by the POSIX 1.c standard.

Processes and Threads

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 161

We emphasize that a process is an environment, or context, within which a set of instructions, a
program, executes. Strictly speaking, a thread is also a context for instructions. One or more threads
can exist within a process, each consisting of: 1) A program counter containing the address of the next
instruction to execute, and 2) A stack containing local variables, function return addresses, and function
return values.

The main program runs in a thread created automatically at program start. It is referred to as the main
or initial thread.

When people say "thread," often they are referring to the flow of instruction execution and the
application logic realized by that flow, rather than the context provided by the thread. This book uses
the term for both the context and the executing code.

Advanced UNIX Programming

Page 162 Rev 3.1.2 © 2012 ITCourseware, LLC

Create a thread with pthread_create.

#include <pthread.h>
int pthread_create(
 pthread_t *thread_id,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg
);

thread_id is the new thread's ID, which can be used for thread
management.

attr specifies attributes to be applied to the new thread.

start_routine is the function where execution begins.

arg is passed to the function.

The new thread runs concurrently with the calling thread.

Upon return from pthread_create, the calling thread will continue
execution concurrently with the new thread.

Which thread executes first is indeterminate, just like with fork().

Creating Threads

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 163

p1.c
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *); /* Prototype funcA */
int n=1, limit=15; /* Global variables */

int main(int argc, char **argv)
{
 pthread_t thrA;

 if (argc > 1) { limit = atoi(argv[1]); }

 pthread_create(&thrA, NULL, &funcA, NULL);
 while (n <= limit) {
 fprintf(stderr, "In main: %d\n", n++); // Global n is unprotected.
 sleep(1);
 }
 pthread_exit(0);
}

void * funcA(void *p)
{
 while (n <= limit) {
 fprintf(stderr, "In thread A: %d\n", n++); // Global n is
unprotected.
 sleep(1);
 }
}

Hands On:
Make and run p1.c, and study the output. Compile thus: cc p1.c -o p1 -lpthread

Advanced UNIX Programming

Page 164 Rev 3.1.2 © 2012 ITCourseware, LLC

Actual behavior of multiple execution contexts, whether at the process level or at
the thread level, depends on many factors.

If the host machine has only one processor (CPU) then only one context can be
running at any time; some call this concurrent processing.

OS scheduling algorithms determine how to share the single CPU
amongst multiple contexts (time sharing, round robin, FIFO, priority
schemes, etc.)

Stopping a context and starting a different one is called context switching,
which takes time.

If the host has multiple CPUs, simultaneous processing is possible; some call
this parallel processing.

The OS still allocates processor time based on scheduling algorithms, but
multiple sequences of code execute simultaneously.

Context switching per CPU still must occur.

The OS (kernel), uses a CPU when it needs to run.

Symmetric multi-processing (SMP) means the kernel and user
applications can all run on any CPU.

Partitioning an application into processes or threads can improve performance
of single-CPU concurrency.

When an application task running in a process or a thread blocks, that
context stops executing.

Tasks that are independent of the blocked task can keep working if they
run in a separate context.

Multi-tasking

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 165

The POSIX standard provides for portability, so that programs using Pthreads will run on uniprocessor or
multiprocessor systems. Some threaded programs should run faster on a multiprocessor system because
logically independent tasks can be executed simultaneously, however they will still run successfully on a
uniprocessor system.

Advanced UNIX Programming

Page 166 Rev 3.1.2 © 2012 ITCourseware, LLC

Overview of Thread Archictures

The POSIX Pthreads standard allows for several different underlying
implementations.

User-space threads run within a process such that the kernel doesn't know about
the multiple threads in the process.

Threads within the process are scheduled and managed by a thread library
linked with the process.

The process is the only execution context the kernel sees, thus
simultaneous thread execution is not possible.

If a thread blocks, the entire process blocks and loses the CPU.

Kernel threads are OS entities in which a single thread can execute.

The kernel schedules and runs threads as independent execution contexts
within a process.

Threads in a process may run in parallel on multiple processors.

If a thread in a process blocks, other threads in the process may still run.

Current Unix and Linux versions implement kernel threads.

Solaris, HP-UX (as of 10.30), Linux (as of 2.2).

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 167

Pthreads on Linux

Up until version 2.6, Linux threads (known as LinuxThreads) were created using the Linux clone intrinsic,
which is also called by fork(). Both fork() and pthread_create were wrappers around clone (fork() still
is). clone creates new processes, so threads were not actually threads-within-a-process, rather each
thread ran in a genuine Linux process — they all actually show up in ps, including a separate manager
thread. This caused many compatibility problems with POSIX threads, and it made large-scale Pthreaded
applications problematic on Linux.

In the Linux development version 2.5, LinuxThreads were replaced by the Native POSIX Threads Library,
NPTL, which is now part of version 2.6. The NPTL creates threads as thread contexts within a process.
NPTL threads are faster and more efficient than LinuxThreads, and POSIX compatibility problems have
been resolved.

Advanced UNIX Programming

Page 168 Rev 3.1.2 © 2012 ITCourseware, LLC

Processes versus Threads

Before deciding whether to design concurrency into your application with
processes or threads, first determine if the application will benefit from
concurrency, i.e., will it perform faster or be easier to design and support.

Are there independent compute-intensive tasks that can be organized to
run in parallel?

Tasks are independent if they can run in any order, with possible
interleaved execution through time-sharing.

Are there asynchronous requirements such as I/O requests that block, or
network interrupts that occur randomly and must be processed?

If an application consists of sequential tasks that each depend on the
completion of the previous task, then concurrency doesn't make sense.

Benefits of programming an application using Pthreads instead of creating
multiple processes:

Creation — Less system overhead is required to create a thread than a
process, because fork duplication requirements are avoided.

Running — Switching contexts between threads is faster, because the
thread context is small (P-counter, stack, minimal other stuff) and the
enclosing process doesn't change.

Sharing data — Sharing data between threads does not require IPC
mechanisms, which use time consuming kernel calls.

However, to avoid data corruption and logic errors, threads must
coordinate data access twith Pthreads synchronization mechanisms,
which must be programmed very carefully.

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 169

Recall that the fork() operation creates a new process that is a duplicate of the parent. In addition to
allocating kernel structures for the new process, the kernel copies the parent's address space, environment,
file descriptor table, and several other attributes that are inherited by the child. Mechanisms exist to reduce
the overhead of forking, such as copy-on-write and the Linux clone implementation, however it is still faster
to create a new thread context within a process than it is to create an entirely new process.

Switching contexts between threads also takes less overhead than switching process contexts because most
of the attributes of a process are shared between the threads in the process, so a smaller number of changes
must occur to stop one thread and start another.

Advanced UNIX Programming

Page 170 Rev 3.1.2 © 2012 ITCourseware, LLC

The Pthreads API

The Pthreads API is a large library of C language functions.

These functions can be grouped into several categories:

Creating, destroying, and managing execution of threads.

Creating, initializing, and managing thread attribute objects.

Synchronizing threads with mutexes and condition variables.

Signal handling.

Not all implementations support every function, and some implementations
provide non-standard thread facilities, so be aware of portability issues.

As in introductory treatment of Pthreads in this course, we will concentrate on
creating, managing, and synchronizing threads.

We will not cover scheduling policies, execution priorities, or signal
handling.

Because of complexity, debugging challenges, and the difficulty of
proving correct execution, many threads experts believe threaded
programs should be designed to accept scheduling and priority defaults,
and not use signals.

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 171

Here are all the functions in the standard Posix Pthreads library. We cover several of them in in this course.

pthread_condattr_destroy()
pthread_condattr_getpshared()
pthread_condattr_init()
pthread_condattr_setpshared()

pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread_mutexattr_destroy()
pthread_mutexattr_getpshared()
pthread_mutexattr_init()
pthread_mutexattr_setpshared()

pthread_atfork()
pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getschedparam()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()
pthread_kill()
pthread_once()
pthread_self()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setschedparam()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel()

pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getschedparam()
pthread_attr_getstackaddr()
pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setschedparam()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

Advanced UNIX Programming

Page 172 Rev 3.1.2 © 2012 ITCourseware, LLC

Thread Termination

There are several different ways for a thread to terminate:

1. It can call pthread_exit.

pthread_exit(void *status)

2. It can return from its start routine.

3. Another thread can kill it with pthread_cancel.

4. All threads in a process terminate if the process terminates.

In most applications, threads that explicitly terminate themselves should do so
by calling pthread_exit.

An optional status can be passed to pthread_exit, which is retrievable by
threads that join the terminated thread.

If main calls pthread_exit, then the main process thread will terminate but
other threads will keep running.

If any thread calls exit (or if main runs into its closing brace) then the
process terminates.

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 173

Advanced UNIX Programming

Page 174 Rev 3.1.2 © 2012 ITCourseware, LLC

Joining Threads

A thread can wait for another thread to complete by joining it.

pthread_join(pthread_t id, **void status);

The thread that calls pthread_join will be suspended until the thread identified
by id (the joined thread) terminates or gets cancelled.

status will contain the value that the joined thread passed to pthread_exit.

If the joined thread has already terminated, then pthread_join will return
immediately.

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 175

Why would a thread join another thread, that is, suspend itself until another thread finishes? Isn't parallelism
the point of threads?

One example is an application that must, at startup, establish connections with several servers before the
application can proceed. The application might be designed so the main thread starts a thread per server to
establish the connection to that server, then waits on each thread, one after another, with pthread_join.
This scheme will establish the server connections in parallel, which should be faster than having a single
thread establish them all sequentially.

If you think about it, you will see that essentially, the main thread chills until the slowest connection
completes, during which time all the faster connections will have happened in parallel so time will be saved.

Note:
Remember, pthread_join will return immediately if the thread has already terminated.

Advanced UNIX Programming

Page 176 Rev 3.1.2 © 2012 ITCourseware, LLC

Detaching Threads

Based on creation attributes, a thread is created as either joinable or detached.

pthread_attr_t attr1; /* Create attribute object. */
pthread_attr_init(&attr1); /* Initialize object to defaults */
pthread_attr_setdetachstate(&attr1, PTHREAD_CREATE_DETACHED);
pthread_create(&thr, &attr1, func, NULL);

A detached thread cannot be joined.

You create a thread as detached so the system will recover resources when the
thread terminates.

When a joinable thread terminates, the system does not release its thread
context until it is joined, which can limit the number of threads a process can
have.

Unless the application design requires a thread to be joined, then it should be
created as detached.

A thread can detach another thread while the other thread is still running, or after it
has terminated.

int pthread_detach(pthread_t id);

A thread can detach itself with pthread_detach and pthread_self.

pthread_detach(pthread_self());

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 177

detach.c
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *); /* Prototype funcA */
int n=0, limit=20000; /* Global variables */

int main(int argc, char **argv)
{
 pthread_t thrA;
 pthread_attr_t attr;
 int r;

 if (argc > 1) { limit = atoi(argv[1]); }

 pthread_attr_init(&attr); /* Initialize object to defaults */
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

 while (n <= limit) {
 if ((r=pthread_create(&thrA, &attr, &funcA, NULL)) != 0) {
 fprintf(stderr, "%d %s\n", n, strerror(r));
 exit(0);
 }
 // pthread_detach(thrA); // Alternate way of detaching a thread
 printf("In main: %d\n", n++);
 }
 pthread_exit(0);
}

void * funcA(void *p)
{
 printf("In thread: %d\n", n);
 sleep(1);
}

Hands On:
1. Examine detach.c, then make and run it, passing in the number of threads to create as a command line
argument. Run it repeatedly to create increasingly larger numbers of threads. How many simultaneous
threads can you create?

2. On Linux, the ulimit parameter for stack size (which is shown with ulimit -s and modified with ulimit -s
size) affects the number of simultaneous threads a process can create, because each thread is allocated a
stack. The ulimit stack size value is shown in 1024-byte units. Try reducing it a little at a time and see how
many threads you can create. Note that you cannot increase a ulimit value other than by logging out and
back in (unless you're the superuser). Also be aware that if you make the stack size too small you may have
problems running utilities such as ls and vi.

Advanced UNIX Programming

Page 178 Rev 3.1.2 © 2012 ITCourseware, LLC

Passing Arguments to Threads

The fourth parameter to pthread_create is an optional argument passed to the
new thread.

int pthread_create(
 pthread_t *thread_id,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg
);

The argument is a pointer, cast to (void *).

Be careful not to inadvertently modify "pointed to" values after passing the
pointer to a new thread.

You can effectively pass multiple arguments by passing a pointer to a structure.

Introduction to PthreadsChapter 9

© 2012 ITCourseware, LLC Rev 3.1.2 Page 179

The following example program shows the syntactical mechanics of passing an argument in the
pthread_create call, and the retrieval in the function. However, the program has a serious problem
because the main argument might return and continue executing before thrA starts up.

badarg.c
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *);
void * funcB(void *);

int main(int argc, char **argv)
{
 pthread_t thrA, thrB;
 int arg;

 arg=1;
 pthread_create(&thrA, NULL, &funcA, (void *) &arg);
 arg=2; /* UH OH! thrA might get a 2
 pthread_create(&thrB, NULL, &funcB, (void *) &arg);
 pthread_exit(0);
}

void * funcA(void *p)
{
 int *v = p;
 printf("In thread A: %d\n", *v);
 pthread_exit(0);
}

void * funcB(void *p)
{
 int *v = p;
 printf("In thread B: %d\n", *v);
 pthread_exit(0);
}

Hands On:
Examine then run the shell script badarg.sh.

Advanced UNIX Programming

Page 180 Rev 3.1.2 © 2012 ITCourseware, LLC

Add a second function named funcB to p1.c, and have main create two threads. funcB should be
just like funcA except for the fprintf. Make and run the new program.
(Solution: p2.c)

Remove the sleep calls in your program from lab . Test it several times, changing the limit value
each time to larger numbers, even up to 5000. Redirect the output (stderr) to a file each time, if
you wish, for easy perusal. Look at the sequence in which the threads run.
(Solution: p3.c; Run: p3 2>outfile)

Modify detach.c so that the threads are joinable, then see how many you can create. On Linux,
manipulate ulimit -s.
(Solution: joinable.c)

Correct badarg.c so that passed values are not susceptible to erroneous modification.
(Solution: badargfix.c)

Labs

