ADVANCED UNIX
PROGRAMMING

Student Workbook

tCDUFSEWG | &

ADVANCED UNIX PROGRAMMING

ADVANCED UNIX PROGRAMMING

Jeff Howell

Published by I TCourseware, L L C, 7245 South HavanaStreet, Suite 100, Centennial, CO80112
ContributingAuthors. ChanningLovely andDanielleWal exi

Editor:JanWadleri

Editorial Assistant: Ginny Jaranowski

Special thanksto: Many instructorswhoseideasand careful review havecontributedtothequality of this

workbook and themany studentswho haveoffered comments, suggestions, criticisms, andinsights.

Copyright© 2012 by I TCourseware, LLC. All rightsreserved. No part of thisbook may bereproduced or
utilizedinany formor by any means, el ectronicor mechanical, including photo-copying, recording, or by an
informationstorageretrieval system, without permissioninwritingfromthepublisher. Inquiriesshouldbe
addressedto| TCourseware, LL C, 7245 South HavanaStreet, Suite 100, Centennial, Colorado, 80112.
(303) 302-5280.

All brand names, product names, trademarks, and regi stered trademarksaretheproperty of their respective
owners.

Pageii Rev3.1.2 © 20121 TCourseware, LLC

ADVANCED UNIX PROGRAMMING

CONTENTS

Chapter 1 - COUrseINtrOTUCTIONccueieeieeieseesieete st esteeteseesse e e ssee e eeesseesaeessesseesseensesseesseensessennsens 9
(@0 TH 16 =T = ok ()-SR 10
COUISEOVEIVIEIV ...ttt ettt sttt e bt e s b e bt s bt e bt e ae et e e et et e s b e et e s be e bt nbeene e e e 12
USINGThEWOIKIOOKcoivieicecee ettt esre e eneenne s 13
U005 (=0 RS = = 10 =SS 14

(@ gF= 0] (= @2 U LN S 7 o = o S 17
2Tl T o] Ao 0 N | SRS 18
AT& T and Berkel@y UNIX SYSIEIMScocueeieciecee e ettt e eee st ae e ae e sne e seeneesneense e 20
SOMEMG OF VENUOI'Seeeeeiieeieeite e see st te st e st te e st e et e s s e teesaesseesaeeneesseesseeseesseeseensenneeseeneennen 22
What ISASIANAIT?cceoieieeee bbbt b et enes 24
WHELISPOSIX? .ottt sttt sttt st et ae et et e be s e et enesee e enennees 26
Other Industry Specificationsand Standards.............coceeveeieieere e 28
Library- vs. System-Level FUNCHIONScoiieieiicsie ettt sne e s e 30
0= o SRS 32

Chapter 3- FIIESaNU DITECIOMESccuvieeiieeiieeeesteesieeeesee e ae e sae e sreeste e e sseesseesesseesseensesseesseenseens 35
27 S ol T = I o= SRS 36
oIS o 1o £ SRS 38
Theopen() and Creat() FUNCLIONSc.cceiiiieiiere et e st ense e sneenne e 40
Keeping TraCk Of OPENFIIESocuieie ettt a e s ne e sneenne s 42
FIHETADIEENINIES ...ttt ettt et b e ne e 44
THEV-NOUESIIUCTUIE ...ttt bbbttt ne e b se s 46
LI S 11 0o 1o o S 48
Thefentl() Function—withF_DUPFD COmMmand...........ccceveeieeienieeseee s see e eee e 50
FHEATITIUIES ...ttt bbbttt et b et e s ae s be s b e e ne e 52
TheaCCeS() FUNCLIONoieiecee ettt e s esae e e e eseesneenseeneesneeneeans 54
link(), unlink(), remove(), and rename() FUNCLIONScocueieerieeieseesie e ee e ee e eesnee e 56
Functionsto Create, Remove, and Read DIreCtOriESccveeeiieiiiniiiesicsieseeeee e 58
0= o SRS 60

© 2012 ITCourseware, LLC Rev3.1.2 Pageiii

ADVANCED UNIX PROGRAMMING

(@ gT= o = g S V£ =1 1 L S 63
Standard /O VS SYSEEM IO ...ttt sttt sre e ae e e eneenaeeneenns 64
System [/O Calls— 0pen() @aNd CIOSE()veeuveereerieeiesiesieeie sttt nns 66
System [/O Calls— read() @NAWIITE) ..cveeeeeeesece et re e nns 68
SYSEEM I/O CaAllS—1SBEK() ..veverrerieriieieieie sttt be e 70
Fileand Record LOCKiNGVIATCIIHI()oveeeeieeseec et 72
Fileand Record Locking viafcntl() (CONE)ueieerieeeeiiere e 74
= S PRSP 76

CADLEN 5= PrOCESSESveevieiiesieesieeeesseesteetesseesteestesseesseesseasaesseesseaseeaseasseaseesseessesnsesseeseensessenssennsens 79
WL ISBPTOCESS? ...ttt bbbt b e bt bttt et et st b e b e bt e ne e enes 80
Process Creation and TEMINGIONcociieieierieresie sttt e et ss et sae e sre e e 82
ProCESSMEMONY LAYOULeeee ittt be e sbe e e snbe e nnneas 84
DynamiCMeEMONY ALIOCEIONceiueeiecie et sttt e e et esaeesaeeneesneesseeneesneensens 86
Accessing ENVIrONMENtVATaDIESccvooeeiece e 88
Real BN EFTECHIVEUSEN IDS ...ttt bbb s 90
0= S PSPPSR 92

Chapter 6 - ProCeSSIManageMENtcccueiieieieeiierieeee e e e e sreesse e e sseesaeesesseesseesesseesseessesseessesnsenns 95
The Difference Between Programsant PrOCESSESc.cieririeriereniesiesiesiesesee e s seenes 96
Thefork() SYSIEM FUNCHON ..ottt 98
Parent @0 Chilcoueiieeee bbbttt b e sre bt enes 100
TheeXeC() SYSLEM FUNCIIONScooiiiiiieieee ettt s sbe e 102
Current Image andNEW IMBOEcueeeeiieie e ceere et e et e et e e s e sre e te e e saeesesseesreenseens 104
ThEeWAIT() FUNCHIONSccueeieceeie ettt sttt te e esreenesneesaeensesneesseennesneensens 106
TheWatpid() FUNCHIONoieeeee et esae e e e reesneenaeeneennens 108
INtEXPreter fIlESANAEXECeecie ettt et esreeneeeneenns 110
0 LS P U PP SPR 112

Chapter 7 - Basic Interprocess CommuniCation: PIPESc.ccveieerierieereerieseeseesiesseeseeeeseesseessssseessens 115
INtErProceSS COMMIUNICALIONc.veiueeieeieetesie ettt sttt b bttt e b et e saesbesbesneeneeneas 116
] 0= ST PP 118
ANEXIENdEd EXBMPIE ..ottt a e n e e enes 120
FIFOS ..ttt bRt E b A bt bRt Re et ettt R b ne e s 122
MOFEON FIFOS...... oot ean e s e e e ne e smneene e s nneennee s 124
0= LS ST UR PR TSPR 126

Pageiv Rev3.1.2 © 20121 TCourseware, LLC

ADVANCED UNIX PROGRAMMING

(@ gT=0 = Bt T 7= OSSR 129
LAY 07 W EST= B T 0= PR 130
B =10 1S T 7= PSSR 132
IS 0 7= 7 RSP SRSS 134
Blocking SIgNASTIOMDEIVENYccviiieiieeees e nre e nns 136
TheSgaction() FUNCLIONciiiee ettt e e sneesse e e sseesneenneeneensens 138
SIgNal SEtSANA OPENELIONScueeiveeieeiesieeie e este e sre e te e s e teeaesseesseessesseesseessesseesseensesseensens 140
1 T 11 = PR 142
Sending aSignal tOANGCLNEN PrOCESScciiiiiiicie ettt sre s aesneennens 144
= 1010 S 146
Blocking Sgnalswith SGPIrOCMASK()ccveerveeieieeie e e et nre e nns 148
Scheduling andWaitingfor SIGNAISc.eeveeriieiicicse e ae e nre s 150
Restarting SyStEM CallS(SVRA) ...ttt sttt s sreenne e nns 152
SIGNAISANAREENMIANCYcveeeeciieciieie et te e e te e esse e te et e sseesteensesreenseenaesneensens 154
0 S PP PRTSPR 156

Chapter 9- INtroduction tO PYNIEaASccueiiiiieece e nne s 159
ProcesseSand THIEAScooiiiiiiiieee e bbbt 160
CreatiNg THIEAOScvieiieceee bbbttt ettt b bbbt st e enes 162
LI P S K] o PP 164
Overview of THrEA0 ATChICIUNES..........coueiieiesise ettt 166
ProcesSeSVEISUS TIIEAASocuiiiiiiiiiceeee et 168
THEPLNIEAASAPI ...ttt ettt b see b sbeeae e e 170
L2 e L= (001107 (Lo o USSP 172
B o 01T 00 I == 0 RSP SSRSS 174
[v= o 0 1o T I == S 176
PassiNgAIGUMENISTO THIEAOScve e ceecieee sttt ae e s reenteeneennes 178
0= S SR PP TSRR 180

Chapter 10 - Pthreads SynChroniZatioNcccceceeceiieie e e se e e saesneennes 183
TheShariNg ProbBIEM ... e 184
IMIULEEXES ...ttt e e m e e e e s e s e e e Re e e mn e e Re e nmn e e n e e s e e e neenaneenneennneennneas 186
Creatingand INItTAIZINGIMIULEXESeceeiueeie e seese ettt e et te e sse e e e sneeteeneesreenneens 188
S 0T Y10 . S 190
Additiona SynchronizatioN REQUITEMENTcoveieieereeeeeeseeeesee e e e e ste e sreesaeeee e enseeneesnes 192
(05T a o [@alglo 1 1Te g /= - o =S 194
0= LS ST UR PR TSPR 200

© 2012 ITCourseware, LLC Rev3.1.2 Pagev

ADVANCED UNIX PROGRAMMING

Chapter 11 - Overview of Client/Server Programming with Berkeley SOCKELSccceevvcevvececienen, 203
DesigningApplicationsfor aDistributed ENVIFONMENccooveiieieeseeie e e 204
ClIENESAN SEIVEN'S ..ottt bbbt s e et b et e b e b e b beebeene s 206
POMS AN SENVICES ...ttt bbbttt e b b e b e b beese e s 208
Connectionlessvs. CoNNECtiON-ONENE SEIVEIS........coviiririre e 210
SAE ESSVS, STAEFUI SENVEIS ... bbb b e 212
CONCUITENCY ISSUES ...t siiee sttt sitee sttt st e st e s bt e e s st e s sss e e s nsse e s be e e sbeeesabeeesabeeennneesnaneeens 214
0 S PP PRTSPR 216

Chapter 12- The Berkel@y SOCKEISAPcvo ottt nae e e sneenne s 219
BErKEIEY SOCKELS ..ottt et e et e s e teentesaeesneennenneenteeneennes 220
Data Structures of the SOCKEISAPIeoiiiiee e 222
SOCKEL SYSIEM CallS ...ttt bbb 224
Socket System CallS(CONE')vveiveeieeieiiee et ee e e sneenesreenrens 226
SOCKEL ULty FUNCLIONSeeeeeceeeieeie ettt e st nae e sneesteeneesreenneennenneensens 228
0= S ST SPR 230

Chapter 13- TCP CIIENTE DESION ...ecveceeeiieeieciesteesteeee st e sieseesreesae e seetesseesseesesseesseensesseesseensesnnessenn 233
AlQorithmsINSead Of DELAIIS.........ccveieeieeecece e re e ens 234
CHENMTATCIITECIUNE ...ttt sttt e bbb b e b e beese e s 236
Generic Client/SerVer MOOEl — TCPoiiie et 238
TheTCPClENtAIGONNMeoeee et s te e sneenesseenrens 240
Sample SOCKEL-DaSEd ClIENLecie et nne s 242
Sample Socket-based Client (CONE')ceceeeerieie e nre s 244
0 LS PP PRSP 246

Chapter 14 - TCP SEIVEr DESIQN ...cuveciecieeiecie et eee st et seesteesaessee e tesreesseeaeesaesteensesneesseensesnnensenn 249
(€7 01 = 00010 o RSP SRSS 250
[EEIBHIVE SEIVENS ...ttt bbbt s b e bt bt bt e it et e b et et e sbeebenbeeneeneeneas 252
CONCUITENT SEIVEI'S.....cceee ettt e e n e s e e e ene e e ne e snn e e neennn e e nneennneenneennnis 254
PerformanCe CONTIAEIEIONScoeiuiiirieierie ettt sttt e sre b e enes 256
ANHENaAiVE SENVE DESION ..ottt e st e e e sseente st e sreesseeneesseeeeenensnes 258
[tErative SEVEr EXAMPIEeoee ettt et et e e reeteeneennes 260
A CONCUITENT SEIVEr DESIGN ...veeieciecieeie ettt e e te e st e e e sseesteeneesreenseeneesneenseenensnes 262
0= LS ST UR PR TSPR 264

Page vi Rev3.1.2 © 20121 TCourseware, LLC

ADVANCED UNIX PROGRAMMING

Chapter 15 - System V Interprocess COMMUNICALIONc.eceerreerueseesieesieseesseesseseesseeseeseesseessesseessens 267
S (1 LAY 1 OSSR 268
ElementsCommontomsg, shm, and SEM FaCilitieSccveieveece e 270
TheThree SySteMV IPC FaCHlITIES......ccvcce et nne s 272
IPC viaMessage QUEUES— MSJUEL() ..uveereerrerrrrreerieesieeeesteeseesseesseesseeseesseessesseesseessesssessesssesssssnes 274
IPC viaMessage QUEUES— MSGCL () vveuveereerreeiecie s et ee st sttt s enee e nns 276
IPC viaMessage Queues— msgsend() and MSIIrECV() ..oovveeveeriereereereeeeeseerieseeseesee e sseesseseeses 278
IPC viaShared Memory — SHMGEL() ...cveeeerveeieeie e eeseee et see et nee e nns 280
IPC viaShared Memory — SNMCH() ...ocvveeeieecee s 282
IPC viaShared Memory — shmat() and ShMat()cceeveerieieiiesiese e 284
Coordinating the Use of Shared Memory SEJMENES.........ccveeieereeieseeseseeseesee e eee e e 286
SeMaPNOre SEES— SEMQEL() ..eoverreeieeeereereee st e et e st e e e te e sreesae e e sseesteeseesreesseenaenneensens 288
SeMaPNOre SEES— SEMICH() .vvoveeeeeie et re e saeeneeneennens 290
Semaphore Sets— the SemMOP() Callooveeieeicse e re s 292
Shared Memory Coordination USiNG SEMEPNOIEScceerieeeeiierieeieseesie e e ste e sree e esaesseeneens 294
Commandsfor IPC Facility Handling - IPCSandipCrMccveiierieeeeseesie e seese e 300
= o SRS 302

AppendiX A - Dateand TIMEFUNCLIONScceiieieiieriece et e et re e 305
OVEIVIEIW ..ttt bbbt bt e et e b e b s bt e bt e b e e a e e a e e e et et et e s e e ebenbeeneeneens 306
TIMEREDIESEMAIONS ... veeeveseeeseeeeeeteesteeee s e ste e e steesteeseesseeseeseesseesesseesseesseaseesseessessenssennsnssenssens 308
(DI we e 100 [[0o = gl I o 0= TS 310
Shorthand Functions— asctime() @nd ClME()ocveeeveerieeeseere e ne s 312
Formatting Dateand TimE SIMNGS. .. .ccuveieerieeieseeieeeesteesieeeesseeeesseesseesesseesseeeesseesseensesseessesnsesnes 314
PrOCESSTIITIES ...ttt bbbttt b e b b s bt b e s bt e ae et et e b e b e benbeebense e st enes 316
TheDifference Between clock() andtimeS()ecveeeereeieriere e ne s 318
Berkeey HIgNRESDIULION TIMES ...ecviiieciee ettt e enne e nns 320
= o ST 322

APPENdiX B - SIANAAIT /O ...ttt e e reene e 325
Standard 1/0 CallSto ManipUIBLESITEAMSoceerieeie e se e e e se et sneesaesneennens 326
Standard [/O CallSTOr CharaCter 1/0 ..o 328
Standard 1/O CallSTOr SINQ /O ...t nne s 330
Standard 1/O CallsTor FOrmatted /Oooiiiiiiiiieieee e 332
Standard [/O CalSTOr BiNary /Oceoiiee ettt ae e e 334
= o SRS 336

© 2012 ITCourseware, LLC Rev3.1.2 Page vii

ADVANCED UNIX PROGRAMMING

Page viii Rev3.1.2 © 20121 TCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

CHAPTER 1 - COURSE INTRODUCTION

©2012 ITCourseware, LLC Rev3.1.2 Page9

ADVANCED UNIX PROGRAMMING

COURSE OBJECTIVES

% Develop the programming skills required to write applicationsthat run on the
UNIX operating system.

% Write portable applications using UNIX standards.

% Develop the basic skillsrequired to write network programs using the
Berkeley Sockets interface to the TCP/IP protocols.

Page 10 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

Thiscourseisintended for experienced C programmerswith user level-skillsin the UNIX
environment. Many programswill bewritten during theclass. Thelecturetopicsand lab exercises
concentrate on UNIX system services, with lessemphasison appli cation-specific subjects. Thecourseis
intended for application devel operswho will be using system services, asopposed to operating system
"hackers’ (likedriver writersand other rare beasts), who create the services.

The particular applications that you will be requested to design, write, and work on during this class
areintended to demonstrate the use of various system and library services provided in UNIX
programming environments. The example programsand sol utionsto the exerciseshopefully will provide
some guidance when you get back to work and begin devel opment onreal projects.

A caveat: Theexamplesand lab solutionsin thiscourse frequently neglect to check error returnsfrom
system callsandlibrary calls, becausethe primary intention of the programsin thiscourseistoteachthe
conceptsand featuresavailableto UNIX programmers, and professional error checking code often reduces
theclarity of themain point of an example. However, UNIX-specific error handling methodsareexplicitly
discussed inthe course.

Wewill spend sometime discussing application source code portability and how standards support that
god.

©2012 ITCourseware, LLC Rev3.1.2 Page11

ADVANCED UNIX PROGRAMMING

COURSE OVERVIEW

% Audience: Thisisaprogramming course designed for software devel opment
professionals.

% Prerequisites: C programming experience. User-level skillsinthe UNIX
environment, such asfile manipulation, editing, and use of utilitiesarealso
necessary.

% Sudent Materials:
> Student workbook

% Classroom Environment:

> UNIX software devel opment system with one terminal per student.

> UNIX and networking references.

Page 12 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

USING THE WORKBOOK

Thisworkbook designisbased on apage-pair, consisting of aTopic page and a Support page. When you
lay theworkbook openflat, the Topic pageison theleft and the Support pageison theright. The Topic
page containsthe pointsto bediscussed in class. The Support page has code examples, diagrams, screen
shotsand additional information. Hands On sectionsprovide opportunitiesfor practical application of key
concepts. Try It and Investigate sectionshelpdirect individual discovery.

In addition, thereisan index for quick look-up. Printed |ab solutionsarein the back of the book aswell as

on-lineif you need alittle help.

The Topic page provides
the main topics for
classroom

JAVA SERVLETS

THE SERVLET LIFE CYCLE

The servlet container controls the life cycle of the servlet.

> ‘When the first request is received, the container loads the servlet class

Topics are organized into
first (%), second
(>) and third (=)

bntainer uses a separate thread to call

he container calls the destroy ()

As with Java’s finalize () method, don’t count on this being
called.

* Override one of the init () methods for one-time initializations, instead of
using a constructor.

> The simplest form takes no parameters.
public void init () {...}

> If you need to know container-specific configuration information, use
the other version.

public void init (ServletConfig config) {...

Whenever you use the ServletConfig approach, always call the
superclass method, which performs additional initializations.

super.init (config) ;

The Support page has
additional
information,

CHAPTER 2 SERVLET BAsICS

Code examples are ina
fixed font and

shaded. The on-

line file name is

Hands On:

Addan init () methodto your 7odayservlet that initia
along with the current date:

Todayjava

public class Today extends GenericServlet ({
private Date bornOn;
public void service(ServletReques

request,
ServletResponse response) throws ServletException, IOException
{

n
vlet was born on " + bornOn.toString()):;
+ today.toString());

Callout boxes point out
important parts
ofthe example

The init () methodis
=+ called when the servletis
loaded into the container.

Page 16 Rev2.0.0 ©2002ITCourseware, LLC

Pages are numbered
sequentially
throughoutthe
book, making

2 hitp /Mo alhosl BURDY examplossevdeld T oday - Meciazall Inbarme! it E xplores
Fle Edt View Favtes Jook Hel -
L] Bl A a [« B &8 "
Back Skp Robeh Home | Sewch Faveoe Mad Se
PY Y P e — ——"—"—ryT =] @te |[Lam
|

ler was boen on Fei May 17 13:43:8€ MDT 2002
It is now Fri May 17 13:43:56 ADT 2002

/|
T Local et
Screen shots show —
examples Of Page 17
what you

©2012 ITCourseware,LLC

Rev3.1.2

Page 13

ADVANCED UNIX PROGRAMMING

SUGGESTED REFERENCES

Bovett, Daniel P. and Marco Cesati. 2006. Understanding the Linux Kernel. O'Rellly &
Associates, Sebastopol, CA. 1SBN 0596005652.

Butenhof, David R. 1997. Programming with POSI X Threads. Addison-Wesley, Reading, MA.
ISBN 0201633922.

Comer, Douglas E. 2000. |Internetworking with TCP/IP, Volume|. Prentice-Hall, Englewood
Cliffs, NJ. ISBN 0130183806.

Comer, Douglas E. and David L. Stevens. 1998. Internetworking with TCP/IP, Volumell.
Prentice-Hall, Englewood Cliffs, NJ. 1ISBN 0139738436.

Comer, Douglas E. and David L. Stevens. 2000. | nternetworking with TCP/IP, Volumesl|1.
Prentice-Hall, Englewood Cliffs, NJ. 1ISBN 0130320714.

Gallmeister, Bill. 1995. POSI X.4 Programmers Guide : Programming for the Real World.
O'Rellly & Associates, Sebastopol, CA. ISBN 1565920740.

Goodheart, Berny and James Cox. 1994. The Magic Garden Explained: TheInternalsof UNIX
System V Release 4. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0130981389.

Harbison, Samuel P. and Guy L. Steele, Jr. 2002. C: A Reference Manual. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0133262243.

Johnson, Michael K. and Erik W. Troan. 2004. Linux Application Development. Addison-Wesley,
Reading, MA. ISBN 0321219147.

Kernighan, Brian W. and Dennis M. Ritchie. 1988 The C Programming Language. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0131103628.

Lewine, Donald. 1991. POSIX Programmer's Guide: Writing Portable UNIX Programs. O'Reilly
& Associates, Sebastopol, CA. ISBN 0937175730.

Lewis, Bil and Daniel J. Berg. 1998. Multithreaded Programming with PThreads. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0136807291.

Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell. 1998. Pthreads Programming.
O'Rellly & Associates, Sebastopol, CA. ISBN 1565921151.

Page 14 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 1 COURSE INTRODUCTION

Plauger, P.J. 1991. The Standard C Library. Prentice-Hall, Englewood Cliffs, NJ.
ISBN 0131315099.

Robbins, Kay A. and Steven Robbins. 1996. Practical UNIX Programming. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0134437063.

Rochkind, Marc J. 2004. Advanced UNIX Programming. Addison-Wesley, Reading, MA.
ISBN 0131411543.

Schimmel, Curt. 1994. UNIX Systemsfor Modern Architectures. Addison-Wesey, Reading, MA.
ISBN 0201633388.

Stevens, W. Richard and Stephen A. Rago. 2005. Advanced Programming in the UNIX
Environment. Addison-Wesley, Reading, MS. 1SBN 0201433079.

Stevens, W. Richard, Bill Fenner, and Andrew M. Rudoff. 2003. UNIX Network Programming,
Volumel. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0131411551.

Stevens, W. Richard. 1998. UNIX Network Programming, Volumes|, I1. Prentice-Hall,
Englewood Cliffs, NJ. ISBN 0130810819.

X/Open Group. 1997. Go Solo 2: The Authorized Guide to Version 2 of the Single Unix
Specification. Prentice-Hall, Englewood Cliffs, NJ. ISBN 0135756898.

Zlotnick, F. 1991 The POSI X.1 Standard: A Programmer's Guide. Benjamin Cummings, Redwood
City, CA. 1SBN 0805396055.

©2012 ITCourseware, LLC Rev3.1.2 Page 15

ADVANCED UNIX PROGRAMMING

Page 16 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 2 UNIX STANDARDS

CHAPTER 2 - UNIX STANDARDS

\
OBJECTIVES

% Writeportable applicationsusing
industry standards.

% Explain the concepts of standards
and open systems.

% Relatethe history of the UNIX
operating system to modern-day
industry standards.

% Differentiatebetweenlibrary-and
system-level functions, and when
each are used.

. /

©20121TCourseware,LLC Rev3.1.2 Page 17

ADVANCED UNIX PROGRAMMING

BRIEF HISTORY OF UNIX

% Historically, UNIX was used for research in universities and government.

>

UNIX was distributed in source code format for many years, so many
modifications were made by many different organizations.

% UNIX has been ported to many hardware platforms by vendors who provide
"vendor added value" extensions or modifications.

% Inthe 1980s, UNIX became commercially popular for several reasons:

>

Customer demand for the benefits of open systems:

Applicationportability

Vendor independence

Connectivity/interoperability in multi-vendor environments
User portability

New workstation hardware could be brought to market more quickly with
an existing operating system.

Major vendors (such as Sun, Digital, HP, IBM) implemented UNI X-based
product lines.

UNIX providesexcellent networking capabilities.

Page 18

Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

Many booksgo into detail onthe history of UNIX and thereasonsfor itscommercia popularity. For our
purposes as application devel opers, we need to know the aspects of UNIX history that can affect
application programming interfaces (APl), such asthe differencesin system call parametersand
function return codesin different versionsof UNIX (i.e., Berkeley vs. SystemV).

©20121TCourseware,LLC Rev3.1.2 Page 19

ADVANCED UNIX PROGRAMMING

AT&T AND BERKELEY UNIX SYSTEMS

% UNIX wasoriginaly written at Bell Laboratoriesin 1969. Inthe mid-1970s, the
University of Californiaat Berkeley began making additions and enhancements
to UNIX. In the early 1980s, AT& T began offering support for AT& T System

[T UNIX.
Simplified UNIX Operating System History
Bell Labs
First Edition
through
Sixth Edition
/ Berkeley Software
AT&T / USL Distribution (BSD)
PWB
BSD
2 BSD
3BSD
System III #OBSD
System V 4.1 BSD
System V Release 2 Sun OS 42 BSD
System V Release 3 / 43 BSD
System V Release 4 OSF /1

SUS (Single UNIX Specification
UNIX 95 / UNIX 98
The Open Group

Page 20 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

UNIX wasoriginally designed and written mostly by Ken Thompson, acomputer science researcher,
for the purpose of doing computer science research! AT& T provided UNIX source code at alow cost
to many universities, including UCB. Berkeley UNIX built onthe Sixth Edition, adding, over theyears,
many utilitiessuch asvi and csh. Much research and development wasdonein the areas of file systemsand
networking. Again, the history iswell documented in severa books, such asLeffler, et a., TheDesignand

| mplementation of the 4.3BSD UNI X Operating System, Reading, MA: Addison-Wesl ey Publishing
Company, Inc., 1989.

AT&T, in 1982, merged several internal versions of UNIX and began licensing UNIX to vendors
such asHewlett-Packard. In 1985, AT& T began shipping UNIX System V, and committed to support it
and maintain backward compatibility in future versionsof UNIX.

Through the 1980s and early 1990s, as UNIX became critical to the strategies of more and more
commercia computer companies, much activity involved controlling UNIX and attempting to use that
control asabus nessadvantage. However, influencessuch asthe"threat” of NT and the continuing pressure
for compatibly from theworld of customershel ped bring competing vendorstogether in severd different
inititatives

Thediagram onthefacing pageisovers mplified with respect to the number of actual versionsand variants
of UNIX and itsrelatives, and with respect to the cross-influencing that the various versionshave had on
each other.

©20121TCourseware,LLC Rev3.1.2 Page?21

ADVANCED UNIX PROGRAMMING

SOME MAJOR YVENDORS

% SunOS from Sun Microsystems was based on Berkeley UNIX.

> SunOS merged with System V.3 to create UNIX System V Release 4
(SVR4 or SystemV.4).

> Solaris 1.0 was based on SUnOS; Solaris 2.0 and later are based on
System V.4.

% HP-UX from Hewlett-Packard followed compliance with System V.3 and has all
major BSD features.

> HP-UX 10 was based on SVRA4.
% AIX from IBM was based on System V.3 and incorporated many BSD features.

% UNIX System V Release 4 (SVR4) from UNIX System Laboratoriesisthe
merger of System V.3, SUnOS, 4.3BSD, and XENIX.

% OSF/1 from Open Software Foundation was derived from Mach, an OS
developed at Carnegie Méellon University, based on 4.2BSD.

> OSF/1 was intended to be an "open" operating system: not controlled by
any single vendor.

* Ultrix from DEC was BSD-based.
> Later Digital UNIX was based on OSF/1.

% Almost all vendors now support versions of the Single UNIX Specification from
The Open Group.

Page 22 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

©20121TCourseware,LLC Rev3.1.2 Page 23

ADVANCED UNIX PROGRAMMING

WHAT IS A STANDARD?

% A specification isadocument that specifiesacertain technological area.

> It tells what a software system does and how to use it as an application
programme.

> Specifications are produced by vendors, consortia, or users.
» A vendor programming reference manual for asystem is a specification.
% A defacto standard is a specification that is widely used.

% Aformal standard isaspecification that is produced through aformal process
by aformal standards setting body, such asANSI and | EEE.

Page 24 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

A specification of an APl isprovided to programmers so that they can write applications. But if acompany
spendstime and money to devel op an application according to avendor-dependent specification, then that
gpplicationwill runonly onthat vendor'ssystem.

If aspecification is made publicly available by auniversity or agovernment agency, or licensed by a
vendor, and different system providersimplement systems according to that specification, thenit may
be called adefacto standard and applicationswritten to use that specification will run on morethan one
vendor'ssystem. Thespecificationisstill controlled by thesingleprovider.

Formal standards allow companiesto "leverage their investment™ in applications and programmers.
Thisisbecause applications can be ported to different vendor platformswithout rewriting code, and
programmers can be productiveimmediately on new platformswithout being retrained. Also, aformal
standard may be modified through processesthat solicit input from the people who are affected by
evolution of the standard. MS-DOS may be astandard, but the evolution of revisonstoMS-DOS are
controlled by one company.

A standard that evolvesthrough input from users of the standard (systems providers, application
developers, end users) iscalled an open standard. System implementations based on open standards are
open systems.

©20121TCourseware,LLC Rev3.1.2 Page 25

ADVANCED UNIX PROGRAMMING

WHAT Is POSIX?

% POSIX.1 definestheinterface between application programs and the services
provided by the operating system.

% POSIX isan API for basic operating system functions.

% POSIX ishbased on historical implementations of UNIX System V and Berkeley
UNIX, but it isnot an operating system: POSIX isa specification.

% Some of the main goals of POSIX are:

> Source code application portability — the ability to port programs from
systemto system.

> Contract specification — the interface contract between the application
and the operating system.

. No implementation details are specified for either the system or the
application.

> Keep the standard as small as possible.

> K eep to aminimum the changes required for existing UNIX programsto
meet the standard.

Page 26 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

POSIX.1 specifiesonly asubset of the features availablein real UNIX systems.

POSIX library routinesare combined with other system libraries. Careful study of vendor documentation
reveal snon-standard extensions, features, and incompatibilitieswith standard specifications. You can
certainly use non-standard vendor features, but be aware that you are doing so and design your programs
for the best chances of portability (layers, wrappers, preprocessor logic, tc.).

©20121TCourseware,LLC Rev3.1.2 Page27

ADVANCED UNIX PROGRAMMING

OTHER INDUSTRY SPECIFICATIONS AND STANDARDS

*

SystemV Interface Definition (SVID)

» Thedescription of UNIX SystemV, originally produced by AT&T, but
now owned by The Open Group.

X/Open Portability Guide (XPG)

> Specifiesa Common Applications Environment (CAE) intended to ensure
application portability and connectivity. The CAE isnow known as
"Open Group Technical Standards."

POSIX

» A collection of |EEE standards that specify interfaces between programs
(or users) and the operating system.

Standard C

» Thedefinition of the standardized C language, defined by ANSI;
sometimescalled"ANSI C."

The Open Group (www.opengroup.org) offers product branding.

> Products that have been tested and guaranteed to conform to industry-
standard specifications (such as X/Open and POSIX) can receive the
Open Brand.

» Vendor products that have been registered with The Open Group for
branding are listed on the website.

> Conformanceto the Single UNIX Specification isrequired for the UNIX
95 and UNIX 98 brands.

Page 28

Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

The SVID waswritten by AT& T in the 1980s as the definitive specification of the interfaces between
applicationsand the UNIX SystemV operating system. Companiesthat licensed UNIX fromAT& T to
resell (such asHP and IBM) could claim that their major-vendor-enhanced version of UNIX was
SVID-compliant by running the System V Verification Suite (SVVS). The SVID hashad astrong influence
onthe POSI X specifications. The SVID went with USL whenit wassold to Novell, and was subsequently
transferred to X/Open (see below).

X/Open Company, Ltd. wasfounded by several European companiesin 1984.
Member companiesof X/Open provideinput to the XPG CAE specifications.
Software developed by systemsvendors, independent software developers, or end
user organizationswill bemorelikely to be portable and interoperableif it complies
with X/Open guiddines. X/Openishot astandards-setting organization. "Itisajoint
initiative by membersof the businesscomunity tointegrate evolving standardsintoa
common, beneficia and continuing strategy. — X/Open Portability Guide (December
1988)

POSI X islanguageindependent — it does not require the use of Standard C, but effortswere madeto
ensure that the runtime library routines specified by POSIX and ANSI are compatibile.

PASC isthe | EEE's Portable A pplication Standards Committee. It is chartered with defining standard
application serviceinterfaces— most notably thosein the POSI X family. PASC wasformerly known asthe
Technica Committeeon Operating Systems.

X/Open and OSF became The Open Group in 1996.

©20121TCourseware,LLC Rev3.1.2 Page 29

ADVANCED UNIX PROGRAMMING

LIBRARY- VS. SYSTEM-LEVEL FUNCTIONS

% Library-level functions are used to create portable C applications.

» Thesefunctions are usually documented in Section 3 of the online manual
pages.

> malloc(), fopen(), and printf() are examples of standard or library-level
functions.

> Library-level functions call system-level functionsto do their work.

% System-level functions provide low-level services, such asfile operations,
memory manipulation, and process management.

» Thesefunctions are usually documented in Section 2 of the online manual
pages.

> System calls are direct entry pointsinto the operating system.

% Bothlibrary callsand system calls are specified by standards, such as POSI X
and SUS.

Page 30 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

errno.c

/* errno.c
* This program demonstrates the use of malloc and errno.
k¥

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

void main (void) {
char *buf; /* Pointer to be used for malloc */
int £d; /* File descriptor */

/* Use malloc to dynamically allocate 80 characters */
buf = (char *) malloc (80 * (sizeof (char)));

strcpy (buf, "This is in the malloc’d buffer\n");
printf ("%s", buf);

/* Use free to release the memory back to the system */
free (buf) ;

/* Attempt to open a non-existent file to demo errno */
fd = open ("NOT-HERE", O_RDONLY) ;
if (fd == -1) {
switch (errno) {
case ENOENT:
printf ("File NOT-HERE does not exist\n");
break;
default:
perror ("open") ;
break;

}

else
close(fd); /* Just in case it DOES exist! */

©20121TCourseware,LLC Rev3.1.2 Page31

ADVANCED UNIX PROGRAMMING

LABS

(1) Writeaprogram that callsthe getlogin() function to determineyour login name, then calls
getpwnam() toget apointer toapasswd structure. Fromthepasswd structure, display your initial
workingdirectory andyourinitial shell.

(Solution: getlogin.c)

(2] Under someconditionsgetlogin() will returnnull. Thiswill happenif thecalling processisnot
attachedtoaterminal that auser loggedinto (such asadaemon).

Writeaprogram to use the getuid() then the getpwuid() functionsto retrieve the password
structurefor the user ID of the calling process.
(Solution: getlogin2.c)

(3] Write afunction to use getcwd() to get the current working directory of the process and
displayit. Thegetcwd() functionwantsapointer toacharacter buffer toholdthestring that
identifiesthecurrentworkingdirectory, andthesizeof thebuffer. If thesizepassedtogetcwd() is
lessthanthenumber of charactersinthedirectory pathnameasdetermined by getcwd(), then
getcwd() fails. Theproblemhereisthat themaximum pathlengthall owabl eisimplementation-
dependent, sothepurposeof thisexerciseistodemonstratewhat you must go through sometimes
for portability.

Suggested algorithm: Usemalloc() to obtainapointer toabuffer whosesizeisaninitia guess. Call
getcwd() withthebuffer anditssize, and check thereturnfromgetcwd(). If itfails,doaswitchon
theglobal err novariabletomakesurethat thereasonfor thefailurewasERANGE, whichmeans
that thelength of the pathnamefound by getcwd() isbeyondtherangeof thesizeof thebuffer. I f
that isthecase, increasethesizeof thebuffer, thentry getcwd() again. User ealloc() toincreasethe
sizeof thebuffer.

(Solution: getcwd.c)

® Readthemanual entriesforgetpwent(), setpwent(), andendpwent(). How dothesefunctions
work?Discussre-entrancy issues, such asinathreaded application.

Page 32 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 2 UNIX STANDARDS

Theonlinereference manual is separated into several sectionsthat cover both UNIX commandsand C
functions. Topicsare often found in more than one section of themanual. It may bethat thetopic relatesto
oneor moreareasof UNIX or C, or theremay be UNIX commands and C functionsthat havethe same
name.

To look up atopicin aparticular section, enter the section number before the topic:

man 3 printf

To searchfor atopicinthemanual usethe-k option. -k means"keyword.”

man -k printf

Although vendorsvary on this, the UNIX manual typically isdivided into topical sectionsasfollows:

Sectionl Commands Section5 Miscellaneous Facilities
Section2 SystemCalls Section6 Games

Section3 Library Cals Section 7 Filesand Devices
Section4 File Formats Section8 SystemAdministration

©20121TCourseware,LLC Rev3.1.2 Page 33

CHAPTER 8 SIGNALS

CHAPTER 8 - SIGNALS

\
OBJECTIVES

% Understand the concepts and uses
of signalsin UNIX.

% Write programsto handle signals.

% Know the effects of signalson
system calls.

©2012 ITCourseware, LLC Rev3.1.2 Page 129

ADVANCED UNIX PROGRAMMING

WHAT IS A SIGNAL?

% ThePOSIX.1 standard saysasignal is, "amechanism by which a process may
be notified of, or affected by, an event occurring in the system."”

% Anevent occurs and generates asignal.

% Thesigna isdelivered, and the appropriate action is taken by the processin
response to the signal.

% Between the generation and the delivery, the signal is pending.

% Typica eventsthat generate signalsare:
» Theuser pressestheinterrupt key on the keyboard.
» Anaarmtimer has expired and the system needs to notify the process that

started the timer.

» A usertypesthekill(1) command, identifying aprocessto bekilled.

Page 130 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

Signals are sometimes compared to hardware interrupts because, from the receiving process' point of
view, asignal isan asynchronousinterruption. Some signals may come at any random time (such as
when auser causesthe event), or they may comein responseto something the processitself does, suchasa
floating point error caused by attempted division by zero.

In this chapter, we will study signals as specified by POSIX.1, with brief looks at typical vendor
extensionsto POSI X signals.

Some examples of what signals are used for:
= Cleaningupif aprocessistoldto terminate.

= Sdf-imposed timeoutson aprocess so that it doesn't wait forever on something that might not happen,
suchaswaiting for inpuit.

= Synchronizing processesby sending signalsback and forth.

©2012 ITCourseware, LLC Rev3.1.2 Page 131

ADVANCED UNIX PROGRAMMING

TYPES OF SIGNALS

% Eachsignal hasaname, defined in signal.h.

% Thetwo general types of eventsthat cause signals are either errors or
asynchronous events.

Page 132 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8

SIGNALS

The standard signals supported by every POSIX.1 system are:

Name Event
SIGABRT Abnormal termination; see abort()
SIGALRM | Timeout; see alarm()
SIGFPE Arithmetic Exception
SIGHUP Hangup [see termio(7)]
SIGILL Illegal Instruction
SIGINT Interrupt [see termio(7)]
SIGKILL Killed
SIGPIPE Broken Pipe
SIGQUIT Quit [see termio(7)]
SIGSEGV Segmentation Fault
SIGTERM | Terminated
SIGUSR1 User Signal 1
SIGUSR2 User Signal 2

The default action for all signalsin the above table istermination of the process.

POSIX.1 a'so supports job control signals on systemsthat can do job control:

Name Event
SIGCHLD | Child process stopped or terminated
SIGCONT | Continue stopped process
SIGSTOP Stop
SIGTSTP User stop requested from tty
SIGTIN Background tty read attempted
SIGTTOU Background tty write attempted

Vendor implementations provide other signals provided by Berkeley and SVRA4.

©2012 ITCourseware,LLC Rev3.1.2

Page 133

ADVANCED UNIX PROGRAMMING

SIGNAL ACTIONS

% A process has three choices on how to handle signals that are delivered to it.
% Thetype of action chosenison aper signa basis. The actionsare:

» Takethe default action for the signal, which for most signalsisto
terminate the process.

> Ignorethe signal.

> Catchthesignal.

. This meansto tell the system (ahead of time) to execute a process-
supplied, signal-handling function upon receipt of the signal.

% Note: SIGKILL and SIGSTOP cannot beignored or caught.

Page 134 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

If aprocess does not advise the system how it wants to handle a specific signal, then the default action
associated with that signal will betakenif and when that signal isgenerated for the process. Thedefault
actionsfor sgnasarelistedinthereferencemanual, signal (5).

If the process advises the system that it wishesto ignore the signal, then the signal will be discarded if
it gets generated for that process.

Catchingsignalsiswhereall theactionis. Inthiscase, when asignal isddliveredto aprocess, afunction of
theprocess choosingiscalled. Sincesignalsare asynchronous, they can come between any two instructions
being executed by the process. Theflow of control isinterrupted, and the signal-handling functioniscalled
by the system, just like any other C function. Aninteger parameter containing thesigna number ispassedto
thefunction. If thefunction returns after it executes, then theflow of control inthe processwill pick up
whereit left off.

©2012 ITCourseware, LLC Rev3.1.2 Page 135

ADVANCED UNIX PROGRAMMING

BLOCKING SIGNALS FROM DELIVERY

% A process can choose to temporarily block signals from delivery.
% Every process has a signal mask, the set of signals that are currently blocked.

% If an event causes a blocked signal to be generated, the signal iscalled a
pending signal.

» A pendingsigna will bedelivered after it isunblocked.
% Each process starts out with asignal mask inherited from its parents.

% Blockingasigna andignoring asignal are not the same.

Page 136 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

There may be times when a process does not wish to be interrupted by one or more specific signals.
Such atimeis often known as a critical section. The process can block signals from being delivered
during critical sections, then unblock and receive signalsthat may have arrived during that time.

A blocked signal is one that the process has notified the system not to deliver, if such asignal wasto
occur. If suchasigna doesactually occur, thenit will beadded to the process set of pending signals.

Notethat ablocked signal isnot anignored signal. Anignored signa will never bedelivered.

©2012 ITCourseware, LLC Rev3.1.2 Page 137

ADVANCED UNIX PROGRAMMING

THE SIGACTION() FUNCTION

% Thesigaction() function allowsthe calling process to examine and/or specify
the action to be associated with a specific signal.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act,
struct sigaction *oact) ;

% Thesigargument isthe signal for which an action is being specified.

% Theact argument isthe address of asigaction structure that describes the
actions to be taken for sig.

% Theoact (old action) argument is the address of asigaction structure that will
be filled with the previous action for sig.

Page 138 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

Thesigaction structurelookslikethis:

struct sigaction {

void (*sa_handler) (int) ; /* Signal handler function &y
sigset_t sa_mask; /* Extra signals to be blocked */
int sa_flags; /* Flags to modify delivery */

/* Possibly additional implementation-dependent members */

W g
sa_handler isoneof:

1. SIG_DFL forthedefault action.
2. SIG_IGNtoignorethissignal.
3. A pointer to asignal-handling function to catch thesignal.

sa_mask isaset of signalsto be blocked during execution of the signal-handling function. Thisset isadded
totheprocess current signal mask, the set of signalsthat are currently blocked, for theduration of the
signal-handler execution. Also, thefirst parameter tothesigaction() function cal, sig, isaddedtothesigna
mask for theduration of thesigna-handler.

sa_flagsisaset of flagsthat can modify how the signal isdelivered. One such non-POSIX flag,
SA_RESTART, affectswhether interrupted system callsarerestarted.

Inthesigaction() function call, if oact isNULL thenitisignored. If act isSNULL, then the current
action for the signal isreturned in oact.

©2012 ITCourseware, LLC Rev3.1.2 Page 139

ADVANCED UNIX PROGRAMMING

SIGNAL SETS AND OPERATIONS

*

The two primary data structures used in POSI X.1 signal handling are the
sigaction structure and signal sets of type sigset _t.

The sa_mask member of the sigaction structureisasignal set.
Signal sets are manipulated with the following five functions:

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int sig);

int sigdelset(sigset_t *set, int sig);

int sigismember (const sigset_t *set, int sig);

These five functions do not affect the process signal mask or any actions on any
signals.

» They ssimply manipulate signal set data structures.

NOTE: A sigset_t data structure must be initialized with either sigemptyset() or
sigfillset() before applying any other operation to it.

Page 140

Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

Given asignal set declaration in a program:

sigset_t set;

Thecall sgemptyset(& set) initializesthe set sothat all signalsareexcluded.
Thecall sdfillset(& set) initidizesthe set sothat all Signalsareincluded.

Thecall sigaddset(& set, SIGQUIT) addsthe SIGQUI T signal tothe set.
Thecall sigdeset(&set, SIGQUIT) deletesthe SIGQUI T signal from the set.
Thecall sigismember (& set, SIGQUIT) returns1if SIGQUI T isinthe set, else0.

These library functions that manipulate the bitsin asigset_t structure are called sigsetops, and are
typically documented in sigsetops(3).

©2012 ITCourseware, LLC Rev3.1.2 Page 141

ADVANCED UNIX PROGRAMMING

AN EXAMPLE

*

We have reached the point where we can show an example program that uses
POSIX signals.

In this example, we call the alar m() function to send aSIGALRM signal to the
process after afew seconds.

From the alar m() manual page:

#include <unistd.h>
unsigned alarm(unsigned sec) ;

> alarm() instructs the alarm clock of the calling process to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed.

» Alarmrequests are not stacked; successive callsreset the alarm clock of
the calling process.

> If secis O, any previously-made alarm request is canceled. fork() setsthe
alarm clock of a new processto 0.

. The exec family of routines |eavesthe process current alarm value
unchanged, so the new program will inherit the prior alarm clock.

pause() isused to wait for asignal:

#include <unistd.h>
int pause(void) ;

> pause() will return when asignal handler executes and returns.

Page 142

Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

aarmer.c
#include <unistd.h>
#include <signal.h>

void alarm handler (int) ;
main(int argc, char *argvl[]) {
int seconds;

struct sigaction sigact;

if (argc >= 2) seconds = atoi(argv[l]);
else seconds = 3;

sigact.sa_handler = alarm handler; /* Point to the handler */

sigemptyset (&sigact.sa_mask) ; /* No signals will be
blocked */
sigact.sa_flags = 0; /* No additional flags */
sigaction (SIGALRM, &sigact, NULL); /* Set the action for
SIGALRM */
alarm(seconds) ; /* Start the process alarm clock */
pause () ; /* Wait for a signal */

void alarm_handler (int signo) {
printf ("Alarm went off! (Signal #%d)\n", signo);

©2012 ITCourseware, LLC Rev3.1.2 Page 143

ADVANCED UNIX PROGRAMMING

SENDING A SIGNAL TO ANOTHER PROCESS

% A process can send asignal to another process or group of processes with the
Kill() function.

#include <sys/types.h>
#include <signal.h>

int kill (pid_t pid, int sig);

% The process must have permission to send the signal to the process identified by
pid.

% Rulesfor permissions are:
» Thesuperuser can send asignal to any process.

> If thereal or effective user ID of the sender is equal to thereal or
effective ID of the receiver, then the signal can be sent.

Page 144 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

©2012 ITCourseware, LLC Rev3.1.2 Page 145

ADVANCED UNIX PROGRAMMING

EXAMPLE

sync_child.c

#include <unistd.h>
#include <signal .h>
#include <stdio.h>

void handler (int) ;
main (int argc, char *argv[]) {
struct sigaction sigact;

sigset_t suspend;

/*— Set up to call handler on SIGUSR1 —*/

sigact.sa_handler = handler; /* Point to the handler */
sigemptyset (&sigact.sa_mask) ; /* Block no add’l signals in handler */
sigact.sa_flags = 0; /* No flags */

sigaction (SIGUSR1, &sigact, NULL); /* Set the action for SIGUSR1 */
sigemptyset (&suspend) ; /* Set up to wait for SIGUSR1 */

/*— Assume the child did some real work here, then wanted to let
the parent know it was done with phase 1. —*/

fprintf (stderr, "Child sending SIGUSR1 once ...\n");

if (kill (getppid(), SIGUSR1) == -1) {
perror ("first kill to parent failed") ;
exit(-1);

}
fprintf (stderr, "Child sent SIGUSR1 once.\n") ;

fprintf (stderr, "Child waiting for parent\n") ;
sigsuspend (&suspend) ;

/*— Now the child does phase 2 then alerts the parent —*/

fprintf (stderr, "Child sending SIGUSRI1 twice.\n") ;

if (kill (getppid(), SIGUSR1) == -1) {
perror ("second kill to parent failed") ;
exit(-1);

}
fprintf (stderr, "Child sent SIGUSR1 twice.\n") ;

}
void handler (int signo) {
fprintf (stderr, "Child received %d\n", signo) ;

Page 146 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

sync_parent.c

#include <unistd.h>
#include <signal.h>
#include <stdio.h>

void handler (int) ;
int count_usrl = 0;

main (int argc, char *argvl[]) {
struct sigaction sigact;
sigset_t hold_off, suspend;
int cpid;
int child _sig_sent;

child_sig_sent = 0; /* We have not sent sig. to child */

/*— Set up to call handler on SIGUSR1l —*/

sigact.sa_handler = handler; /* Point to the handler */

sigemptyset (&sigact.sa_mask) ; /* No add’1l signals will be blocked */
sigact.sa_flags = 0; /* No additional flags */

sigaction (SIGUSR1, &sigact, NULL) ; /* Set the action for SIGUSR1 */

/*— Set up and block SIGUSR1 from child till we’re ready —*/

sigemptyset (&hold_off) ; /* Empty the hold_off mask */

sigaddset (&hold_off, SIGUSR1) ; /* Add to mask to block SIGUSR1 */

sigprocmask (SIG_BLOCK, &hold_off, NULL); /* Block SIGUSR1 till we’re ready (at
sigsuspend call) */

sigemptyset (&suspend) ; /* Set up to wait for SIGUSR1 */
if ((cpid = fork()) == -1) {
perror ("child fork failed") ;
exit(-1);
}
if (cpid == 0) {
execl ("sync_child", "sync_child", (char *)0);
perror ("exec of sync_child failed") ;
exit(-1);

}

while (count_usrl < 2)

if (count_usrl == 1 && child_sig_sent++ == 0)

kill (cpid, SIGUSR1) ; /* Tell child to start phase 2 */
else

sigsuspend (&suspend) ; /* Wait for SIGUSR1 from child */

}
void handler (int signo) {
count_usrl++;
fprintf (stderr, "Parent received %d, count_usrl %d\n", signo, count_usrl) ;

©2012 ITCourseware, LLC Rev3.1.2 Page 147

ADVANCED UNIX PROGRAMMING

BLOCKING SIGNALS WITH SIGPROCMASKI()

% Thesigprocmask() function is used to change or examine the signal mask of the
calling process.

#include <signal.h>

int sigprocmask (int value, const sigset_t *set,
sigset_t *oset) ;

% Recall that the signal mask isthe set of signalsthat are currently blocked from
being delivered to the process.

Page 148 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

#include <signal.h>
int sigprocmask(int value, const sigset_t *set, sigset_t *oset);

If value==SIG_BLOCK

The set pointed to by set isadded to the current signal mask.

If vllue==SIG_UNBLOCK

The set pointed to by set isremoved from the current signal mask.

If vllue==SIG_SETMASK

The current signal mask isreplaced by the set pointed to by set.

If osetisnot NUL L, the previous mask is stored in the space pointed to by oset.

If setisNUL L, then valueisnot significant and the process signal mask isunchanged; thus, thecall canbe
used toinquireabout currently-blocked signals.

©2012 ITCourseware, LLC Rev3.1.2 Page 149

ADVANCED UNIX PROGRAMMING

SCHEDULING AND WAITING FOR SIGNALS

% Thesigsuspend() function is used to atomically unblock one or more signals,
then wait for asignal.

#include <signal.h>
int sigsuspend(const sigset_t *set) ;

% Thepower of sigsuspend() isthat it removes race condition gaps that might
result in suspending a process forever.

Page 150 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

#include <signal.h>
int sigsuspend(const sigset_t *set);

sigsuspend() replacesthe process signal mask with the set of signals pointed to by set and then suspends
theprocessuntil delivery of asigna whoseactioniseither to executeasignal catching function or to
terminatethe process. If the actionisto terminate the process, sigsuspend() doesnot return. If theactionis
to executeasigna catching function, sigsuspend() returnsafter thesignal catching function returns. On
return, the signal mask isrestored to the set that existed beforethe call to sigsuspend().

Thesigsuspend() function isused to:

1. Unblock one or more blocked signalsand then
2. Pause to wait for asignal to arrive.

It doesthisin one atomic step so that blocked signals can't arrive between the time they get unblocked
and the time the process pauses.

Consider thissituation:
... code being executed with blocked signals. ...

/* Unblock signals */
sigprocmask (SIG_UNBLOCK, &set_with_signals_to_unblock, NULL) ;

/* = SIGNAL IS DELIVERED HERE !!! *x/

/% (either it was pending or it */
/% got generated right now) =
pause () ; /* pause and wait forever for

a signal that already came
and has been handled */

If we replace the sigpr ocmask () and the pause() with asingle sigsuspend(), then the gap is closed:

... code being executed with blocked signals. ...

/* Unblock and pause for signals */
sigsuspend (&temporary_ sigmask) ;

©2012 ITCourseware, LLC Rev3.1.2 Page 151

ADVANCED UNIX PROGRAMMING

RESTARTING SYSTEM CALLS (SVRA4)

When asignal arrives, your code isinterrupted after an instruction.
If theactionis SIG_DFL, your process usually terminates.
If the action isto catch it, your handler executes.

After your handler finishes, your code resumes at the next instruction.

* 0 %k %k k¥

What happensif asignal arrives during execution of a system call, such asa
lengthy 1/0O operation?

Page 152 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

Originally UNIX systemswould terminate system callsthat were interrupted by asignal, and return a
-1totheprocesswitherrno==EINTR. Thiswasdesigned to let programsbeinterrupted from blocked I/
Ocadlls. If aprogramwished to restart the systemcall, it had to test for EINTR and restart it.

Following isan example code fragment that manually restartsasystem call:

sigact.sa_handler = handler;
sigemptyset (&sigact.sa_mask) ;
sigact.sa_flags = 0;

start read:
1f (read (device, buf, count) == -1) /* Assume read 1s blocked */
if (errno == EINTR)
goto start_read;

Some versions of UNIX provide a mechanism that allows system callsto be restarted after a caught
signal arrives and the handler returns. POSI X.1 doesn't provide or require this mechanism, but it
alowsit. On SVR4, thefollowing codefragment isequival ent to the one above:

sigact.sa_handler = handler;
sigemptyset (&sigact.sa_mask) ;
sigact.sa_flags = SA_RESTART; /* Set sys call restart flag*/

1f (read (device, buf, count) == -1)
/* Assume read is blocked */

©2012 ITCourseware, LLC Rev3.1.2 Page 153

ADVANCED UNIX PROGRAMMING

SIGNALS AND REENTRANCY

% Do not call non-reentrant functionsin asignal handler.

% What happensif a non-reentrant function in your program isinterrupted by a
signal, and then you call the same function in your handler?

% Some reasons why afunction may be non-reentrant include:
> It uses static data structures.
> It calls malloc() or free().
> It uses standard 1/0.

% Alsobeawarethat any functions called in asignal handler might overwrite the
valuein errno.

> It is advisable to save the value of errno at the beginning of the handler
and replace it at the end.

Page 154 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

©2012 ITCourseware, LLC Rev3.1.2 Page 155

ADVANCED UNIX PROGRAMMING

LABS

(1) Writeaprogram that prints"Go ahead, interrupt me" once asecond, and terminates after the

keyboard SIGINT generator key is pressed twice.
(Solution: sigint.c)

(2] Modify the program in @ above so that it changesits message to "OK , once more" after the

first interrupt, but still terminates after the second interrupt.
(Solution: sigint2.c)

® Write aparent program that sets up asignal handler to catch SIGUSR1, then startsachild

program. Havethechildsend SIGUSR1twiceinarow totheparent. Intheparent'ssignal handler,
printamessagewhenasignal arrives. Doestheparent catchbothsignals?

Changethe second signal sent by the child to be SIGUSR2, and update the parent to catch both
SIGUSR1and SIGUSR2withthesamehandler. Also, intheparent'shandler, print out thesignal
number. Areboth signal scaught thistime?What'sthedifference?

(Solutions: parentsigs.c, childsigs.c)

(4] Modify the examples sync_parent.c and sync_child.c so that the parent forks two children who
will communicatewiththeparent similar totheexamplewithonly onechild. Onechilduses
SIGUSR1, theother SIGUSR2. Haveeach programloopto keepthingsgoingfor awhile. Use
somesleepsto slow it down so you can seetheaction, thenremovethesleepsto speed it up to see
if itworksat speed.

Thisisaform of simple IPC; athough no datais being sent between processes, they are
communicatingand controlling each other.
(Solutions: syncparent.c, syncchildl.c, syncchild2.c)

® Writeaprogram that catches SIGINT and returnsfrom the signal handler (as opposed to
exitingtheprogramwithinthehandler). After settingupthehandler withsigaction(), user ead() to
readfromthestandardinput keyboard. Inyour code, check errnoonanerror returnfromr ead()
toseeifitisEINTR, andif souseperr or () to printamessagebeforedying.

Modify theprogramtorestartthereadif itisinterruptedby SIGINT. Modify theprogramtouse
theSA_RESTART flagtoautomatically restarttheread.

Test each of theseversionsby pressing the keyboard SIGINT generation key.
(Solution: reader.c)

Page 156 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 8 SIGNALS

©2012 ITCourseware, LLC Rev3.1.2 Page 157

ADVANCED UNIX PROGRAMMING

Page 158 Rev3.1.2 ©20121TCourseware,LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

CHAPTER 9 - INTRODUCTION TO PTHREADS

OBJECTIVES

% Explainthedifferencesbetween
processes and threads.

% Describe user-space threads versus
kernel threads.

% Decide when to thread an application,
and whether to use a process model
or a thread model to do so.

% Write programsthat create, manage,
and terminate Pthreads.

\ /

©2012 ITCourseware, LLC Rev3.1.2 Page 159

ADVANCED UNIX PROGRAMMING

PROCESSES AND THREADS

% A processisan environment, or context, in which a program executes.
» A program consists of a sequential flow of execution within a process.

» fork() creates a new child process, and the program in the new process
begins execution on return from the fork call.

» Theparent and child share nothing, though the child inherits much.

% A thread isalso an execution context for code instructions, and multiple threads
may exist within asingle process.

» A new thread is created with pthread_create; execution starts with acall
to the function specified as a pthread_create parameter.

» Threads within a process share process resources such as global
variables, open files, current directory, etc.

> Each thread has its own program counter and stack.
» All threadsin a process are peers, not parent/child.

% This course covers POSIX Threads, specified by the POSIX 1.c standard.

Page 160 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

We emphasi zethat aprocessisan environment, or context, withinwhich aset of instructions, a
program, executes. Strictly speaking, athread isalso acontext for instructions. One or morethreads
can exist withinaprocess, each consisting of : 1) A program counter containing the address of the next
instructionto execute, and 2) A stack containing local variables, function return addresses, and function
returnvalues.

Themain program runsin athread created automatically at program start. Itisreferred to asthemain
orinitial thread.

When peoplesay "thread,” oftenthey arereferring to theflow of instruction executionand the
applicationlogic redized by that flow, rather than the context provided by thethread. Thisbook uses
theterm for both the context and the executing code.

©2012 ITCourseware, LLC Rev3.1.2 Page 161

ADVANCED UNIX PROGRAMMING

CREATING THREADS

% Create athread with pthread_create.

#include <pthread.h>

int pthread_create (
pthread_t *thread_id,
const pthread_attr_t *attr,
volid * (*start routine) (void *),
void *arg

> thread_id isthe new thread's ID, which can be used for thread
management.
> attr specifies attributes to be applied to the new thread.
> start_routineisthe function where execution begins.
> arg is passed to the function.
% Thenew thread runs concurrently with the calling thread.

> Upon return from pthread_create, the calling thread will continue
execution concurrently with the new thread.

» Whichthread executesfirst isindeterminate, just likewith for k().

Page 162 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

pl.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *); /* Prototype funcA */
int n=1, limit=15; /* Global variables */

int main(int argc, char **argv)
{
pthread_t thrA;

if (argec > 1) { limit = atoi(argv[1l]); }

pthread_create(&thrA, NULL, &funcA, NULL) ;
while (n <= limit) {

fprintf (stderr, "In main: %d\n", n++); // Global n is unprotected.
sleep(l) ;
}
pthread_exit (0) ;
}
void * funcA(void *p)
{
while (n <= limit) {
fprintf (stderr, "In thread A: %d\n", n++); // Global n is
unprotected.
sleep(l) ;
}
}
Hands On:

Makeand run pl.c, and study the output. Compilethus: ccpl.c-opl-Ipthread

©2012 ITCourseware, LLC Rev3.1.2 Page 163

ADVANCED UNIX PROGRAMMING

MULTI-TASKING

*

Actual behavior of multiple execution contexts, whether at the process level or at
the thread level, depends on many factors.

If the host machine has only one processor (CPU) then only one context can be
running at any time; some call this concurrent processing.

> OS scheduling algorithms determine how to share the single CPU
amongst multiple contexts (time sharing, round robin, FIFO, priority
schemes, etc.)

> Stopping a context and starting a different one is called context switching,
whichtakestime.

If the host has multiple CPUs, simultaneous processing is possible; some call
this parallel processing.

» The OStill allocates processor time based on scheduling algorithms, but
multiple sequences of code execute simultaneoudly.

> Context switching per CPU still must occur.
» TheOS (kerndl), uses a CPU when it needsto run.

> Symmetric multi-processing (SMP) means the kernel and user
applications can all run on any CPU.

Partitioning an application into processes or threads can improve performance
of single-CPU concurrency.

» When an application task running in a process or athread blocks, that
context stops executing.

» Tasksthat are independent of the blocked task can keep working if they
run in a separate context.

Page 164

Rev3.1.2 ©2012 ITCourseware,LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

The POSIX standard providesfor portability, so that programs using Pthreadswill run on uniprocessor or
multiprocessor systems. Somethreaded programs should run faster on amultiprocessor system because

logically independent tasks can be executed s multaneously, however they will il run successfully ona
uniprocessor system.

©2012 ITCourseware, LLC Rev3.1.2 Page 165

ADVANCED UNIX PROGRAMMING

OVERVIEW OF THREAD ARCHICTURES

% ThePOSIX Pthreads standard allows for several different underlying
Implementations.

% User-space threads run within a process such that the kernel doesn't know about
the multiple threads in the process.

» Threads within the process are scheduled and managed by athread library
linked with the process.

» Theprocessisthe only execution context the kernel sees, thus
simultaneous thread execution is not possible.

> If athread blocks, the entire process blocks and loses the CPU.
% Kernel threads are OS entitiesin which asingle thread can execute.

» Thekernel schedules and runs threads as independent execution contexts
within a process.

» Threadsin aprocess may runin parallel on multiple processors.
> If athread in a process blocks, other threads in the process may still run.
% Current Unix and Linux versionsimplement kernel threads.

> Solaris, HP-UX (as of 10.30), Linux (as of 2.2).

Page 166 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

Pthreadson Linux

Up until version 2.6, Linux threads (known as LinuxThreads) were created using the Linux cloneintrinsic,
whichisasocalled by fork(). Bothfork() and pthread_createwerewrappersaround clone (fork() till
is). clonecreatesnew processes, so threadswere not actually threads-within-a-process, rather each
thread ran in agenuine Linux process— they all actualy show upin ps, including aseparate manager
thread. Thiscaused many compatibility problemswith POSI X threads, and it madelarge-scale Pthreaded
gpplicationsproblematic on Linux.

Inthe Linux devel opment version 2.5, LinuxThreadswere replaced by the Native POSI X ThreadsLibrary,
NPTL, whichisnow part of version 2.6. TheNPTL createsthreads asthread contextswithin aprocess.
NPTL threadsarefaster and more efficient than LinuxThreads, and POSI X compatibility problemshave
been resolved.

©2012 ITCourseware, LLC Rev3.1.2 Page 167

ADVANCED UNIX PROGRAMMING

PROCESSES VERSUS THREADS

% Beforedeciding whether to design concurrency into your application with
processes or threads, first determineif the application will benefit from
concurrency, i.e., will it perform faster or be easier to design and support.

» Arethereindependent compute-intensive tasks that can be organized to
runinparalel?

. Tasks are independent if they can run in any order, with possible
Interleaved executionthroughtime-sharing.

» Arethere asynchronous requirements such as 1/0O requests that block, or
network interrupts that occur randomly and must be processed?

> If an application consists of sequential tasks that each depend on the
completion of the previous task, then concurrency doesn't make sense.

% Benefitsof programming an application using Pthreads instead of creating
multiple processes:

> Creation — Less system overhead is required to create athread than a
process, because fork duplication requirements are avoided.

> Running — Switching contexts between threads is faster, because the
thread context is small (P-counter, stack, minimal other stuff) and the
enclosing process doesn't change.

> Sharing data— Sharing data between threads does not require IPC
mechanisms, which use time consuming kernel calls.

. However, to avoid data corruption and logic errors, threads must
coordinate data access twith Pthreads synchronization mechanisms,
which must be programmed very carefully.

Page 168 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

Recall that thefor k() operation createsanew processthat isaduplicate of the parent. In additionto
allocating kernel structuresfor the new process, the kernel copiesthe parent's address space, environment,
filedescriptor table, and severd other attributesthat areinherited by the child. Mechanismsexist to reduce
the overhead of forking, such ascopy-on-writeand the Linux cloneimplementation, however itisstill faster
to create anew thread context within aprocessthanit isto create an entirely new process.

Switching contexts between threads al so takes | ess overhead than switching process contexts because most
of theattributes of aprocessare shared between the threadsin the process, so asmaller number of changes
must occur to stop onethread and start another.

©2012 ITCourseware, LLC Rev3.1.2 Page 169

ADVANCED UNIX PROGRAMMING

THE PTHREADS API

% ThePthreadsAPI isalargelibrary of Clanguage functions.
% These functions can be grouped into several categories.
. Creating, destroying, and managing execution of threads.
. Creating, initializing, and managing thread attribute obj ects.
. Synchronizing threads with mutexes and condition variables.
. Signal handling.

% Not all implementations support every function, and someimplementations
provide non-standard thread facilities, so be aware of portability issues.

% Asinintroductory treatment of Pthreadsin this course, we will concentrate on
creating, managing, and synchronizing threads.

» Wewill not cover scheduling policies, execution priorities, or signal
handling.

> Because of complexity, debugging challenges, and the difficulty of
proving correct execution, many threads experts believe threaded
programs should be designed to accept scheduling and priority defaults,
and not use signals.

Page 170 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9

INTRODUCTION TO PTHREADS

pthread_atfork()
pthread_cancel ()
pthread_cleanup_pop ()
pthread_cleanup_push()
pthread_create()
pthread_detach()
pthread_equal ()
pthread_exit ()
pthread_getschedparam/()
pthread_getspecific()
pthread_join()
pthread_key create()
pthread_key delete()
pthread_kill ()
pthread_once ()
pthread_self ()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setschedparam/()
pthread_setspecific()
pthread_sigmask()
pthread_testcancel ()

pthread_attr_destroy ()
pthread_attr_getdetachstate()
pthread_attr_getschedparam()
pthread_attr_getstackaddr ()
pthread_attr_getstacksize()
pthread_attr_init ()
pthread_attr_setdetachstate()
pthread_attr_setschedparam()
pthread_attr_setstackaddr ()
pthread_attr_setstacksize()

pthread_cond_broadcast ()
pthread_cond_destroy ()
pthread_cond_init ()
pthread_cond_signal ()
pthread_cond_timedwait ()
pthread_cond_wait ()

Hereareal thefunctionsinthe standard Posix Pthreadslibrary. We cover several of themininthiscourse.

pthread_ condattr_destroy ()
pthread_ condattr_getpshared()
pthread_condattr_init ()
pthread_ condattr_setpshared()

pthread _mutex_destroy ()
pthread_mutex_init ()
pthread_mutex_lock()
pthread mutex_ trylock()
pthread _mutex _unlock()

pthread _mutexattr_destroy ()
pthread mutexattr_getpshared()
pthread_mutexattr_init ()
pthread mutexattr_setpshared()

©2012 ITCourseware,LLC

Rev3.1.2

Page 171

ADVANCED UNIX PROGRAMMING

THREAD TERMINATION

% Therearesevera different waysfor athread to terminate:
1. It can call pthread_exit.
pthread_exit (void *status)
2. It can return from its start routine.
3. Another thread can kill it with pthread_cancel.
4, All threadsin a process terminate if the process terminates.

% Inmost applications, threads that explicitly terminate themselves should do so
by calling pthread_exit.

» Anoptional status can be passed to pthread_exit, which is retrievable by
threadsthat join the terminated thread.

> If main callspthread_exit, then the main process thread will terminate but
other threadswill keep running.

> If any thread calls exit (or if main runsinto its closing brace) then the
process terminates.

Page 172 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

©2012 ITCourseware, LLC Rev3.1.2 Page 173

ADVANCED UNIX PROGRAMMING

JOINING THREADS

% A thread can wait for another thread to complete by joining it.
pthread_join(pthread_t id, **void status) ;

% Thethread that calspthread join will be suspended until the thread identified
by id (thejoined thread) terminates or gets cancelled.

% statuswill contain the value that the joined thread passed to pthread_exit.

% If thejoined thread has already terminated, then pthread_join will return
immediately.

Page 174 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

Why would athread join another thread, that is, suspenditself until another thread finishes?Isn't paralelism
thepoint of threads?

Oneexampleisan applicationthat must, at startup, establish connectionswith severa serversbeforethe
application can proceed. The application might be designed so the main thread startsathread per server to
establish the connection to that server, then waitson each thread, one after another, with pthread_join.
Thisschemewill establishthe server connectionsin parale, which should befaster than havingasingle
thread establishthem al sequentidly.

If you think about it, you will seethat essentialy, themain thread chillsuntil thedowest connection
completes, during whichtimeal thefaster connectionswill have happenedin parale sotimewill besaved.

Note:
Remember, pthread_join will returnimmediately if the thread hasalready terminated.

©2012 ITCourseware, LLC Rev3.1.2 Page 175

ADVANCED UNIX PROGRAMMING

DETACHING THREADS

% Based on creation attributes, athread is created as either joinable or detached.
pthread_attr_t attril; /* Create attribute object. */
pthread_attr_init(&attrl); /* Initialize object to defaults */
pthread_attr_setdetachstate (&attrl, PTHREAD CREATE DETACHED) ;
pthread_create (&thr, &attrl, func, NULL) ;

% A detached thread cannot be joined.

% You create athread as detached so the system will recover resources when the
threadterminates.

» When ajoinable thread terminates, the system does not release its thread

have.

> Unless the application design requires athread to be joined, then it should be
created as detached.

% A thread can detach another thread while the other thread is still running, or after it
hasterminated.

int pthread_detach (pthread_t id) ;
% A thread can detach itself with pthread detach and pthread_self.

pthread_detach (pthread _self ()) ;

Page 176 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9 INTRODUCTION TO PTHREADS

detach.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void * funcA(void *); /* Prototype funcA */
int n=0, 1imit=20000; /* Global variables */

int main(int argc, char **argv)
{
pthread_t thrA;
pthread_attr_t attr;

int r;
if (argc > 1) { limit = atoi(argv[l]); }
pthread_attr_init (&attr) ; /* Initialize object to defaults */

pthread attr_setdetachstate(&attr, PTHREAD_ CREATE_DETACHED) ;

while (n <= limit) {

if ((r=pthread_create(&thrA, &attr, &funcA, NULL)) != 0) {
fprintf (stderr, "%d %s\n", n, strerror(r));
exit (0) ;
}
// pthread_detach (thra) ; // Alternate way of detaching a thread

printf ("In main: %d\n", n++);

}
pthread_exit (0) ;

}

void * funcA(void *p)

{
printf ("In thread: %d\n", n);
sleep(1l) ;

}

Hands On:

1. Examinedetach.c, then make and run it, passing in the number of threadsto create asacommand line
argument. Runit repeatedly to createincreasingly larger numbersof threads. How many simultaneous
threads can you create?

2. OnLinux, theulimit parameter for stack size (whichisshownwith ulimit -sand modified with ulimit -s
size) affectsthe number of simultaneousthreadsaprocess can cregate, because each thread isallocated a
stack. Theulimit stack sizevaueisshownin 1024-byteunits. Try reducing it alittle at atime and see how
many threadsyou can create. Note that you cannot increaseaulimit value other than by logging out and
back in (unlessyou'rethe superuser). Also beawarethat if you makethe stack sizetoo small you may have
problemsrunning utilitiessuch aslsandvi.

©2012 ITCourseware, LLC Rev3.1.2 Page 177

ADVANCED UNIX PROGRAMMING

PASSING ARGUMENTS TO THREADS

% Thefourth parameter to pthread createis an optional argument passed to the
new thread.

int pthread_create (
pthread_t *thread_id,
const pthread_attr_t *attr,
void * (*start routine) (void *),
void *arg

I
% Theargument is a pointer, cast to (void *).

% Becareful not to inadvertently modify "pointed to" values after passing the
pointer to a new thread.

% You can effectively pass multiple arguments by passing a pointer to a structure.

Page 178 Rev3.1.2 ©2012 ITCourseware, LLC

CHAPTER 9

INTRODUCTION TO PTHREADS

Thefollowing example program showsthe syntactical mechanicsof passing anargumentinthe
pthread createcal, andtheretrieval inthefunction. However, the program hasaserious problem
becausethe main argument might return and continue executing beforethr A startsup.

badarg.c

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

funcA (void *);
funcB (void *);

void *
void *
int main(int argc, char **argv)
{
pthread_t thra,
int arg;

thrB;

arg=1;

pthread_create (&thrA, NULL, &funcA, (void *)
arg=2; /* UH OH! thrA might get a 2
pthread_create (&thrB, NULL, &funcB, (void *)
pthread_exit (0) ;

void * funcA(void *p)
{
int *v = p;
printf ("In thread A:
pthread_exit (0) ;

gd\n", *v);

void * funcB(void *p)
{
int *v = p;
printf ("In thread B:
pthread_exit (0) ;

sd\n", *v);

Hands On:
Examinethen run the shell script badarg.sh.

&arg) ;

&arg) ;

©2012 ITCourseware,LLC Rev3.1.2

Page 179

ADVANCED UNIX PROGRAMMING

LABS

o

Addasecond functionnamedfuncB topl.c, and havemain createtwothreads. funcB should be

justlikefuncA except for thefprintf. Makeand runthenew program.
(Solution: p2.c)

Removethesleep callsinyour programfrom|ab @. Testit several times, changingthelimitvalue

eachtimetolarger numbers, evenupto5000. Redirect theoutput (stderr) toafileeachtime, if
youwish, for easy perusal. L ook at thesequenceinwhichthethreadsrun.
(Solution: p3.c; Run: p32>ouitfile)

M odify detach.c sothat thethreadsarejoinable, then seehow many you cancreate. OnLinux,
manipulateulimit -s.
(Solution: joinable.c)

Correct badarg.c sothat passed val uesarenot susceptibleto erroneousmodification.
(Solution: badargfix.c)

Page 180

Rev3.1.2 ©2012 ITCourseware,LLC

