
CGI Programming
Using Perl

Student Workbook

ii CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

CGI Programming Using Perl

Richard Raab

Published by itcourseware, 10333 E. Dry Creek Rd., Suite 150, Englewood, CO 80112

Contributing Author: Jeff Howell

Editor: Rob Roselius

Special thanks to: Many instructors whose ideas and careful review have contributed to the
quality of this workbook, including Brandon Caldwell, Jeff Howell, and Jim McNally, and the
many students who have offered comments, suggestions, criticisms, and insights.

Copyright © 1994-1999 by itcourseware, Inc. All rights reserved. No part of this book may
be reproduced or utilized in any form or by any means, electronic or mechanical, including
photo-copying, recording, or by an information storage retrieval system, without permission in
writing from the publisher. Inquiries should be addressed to itcourseware, Inc., 10333 E. Dry
Creek Rd., Suite 150, Englewood, Colorado, 80112. (303) 874-1099.

All brand names, product names, trademarks, and registered trademarks are the property of
their respective owners.

iiiCGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Contents

Chapter 1 - Course Introduction ... 9

Course Objectives ... 11
Course Overview ... 13
Suggested References .. 15

Chapter 2 - The Internet and the Web .. 17

Chapter Objectives .. 19
TCP/IP and Ports ... 21
DNS vs. Hosts Files ... 23
Servers and Clients ... 25
Client/Server Protocols .. 27

Chapter 3 - Browsers and Servers .. 29

Chapter Objectives .. 31
URLs ... 33
WEB Browsers and Servers .. 35
The Hypertext Transfer Protocol ... 37
HTTP Requests and Responses .. 39
HTTP Headers... 41
HTTP Requests ... 43
Mime Types ... 45

Chapter 4 - Introduction to CGI .. 47

Chapter Objectives .. 49
HTML Tag Stucture ... 51
HTML Document Structure ... 53
URLs and CGI ... 55
CGI Programs ... 57
Running and Debugging from the Command Line .. 59
Running and Debugging from a Browser .. 61
Handling an HTML Form with CGI .. 63
Generating HTML .. 65
Lab .. 67

iv CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Chapter 5 - CGI and Perl ... 69

Chapter Objectives .. 71
Perl .. 73
Perl Programs ... 75
Why Use CGI.pm (and Where is It?) ... 77
Running and Debugging from the Command Line .. 79
Generating HTML with CGI.pm ... 81
Running and Debugging from a Browser .. 83
Lab .. 85

Chapter 6 - Generating HTML ... 87

Chapter Objectives .. 89
Introduction to CGI.pm.. 91
How to use CGI.pm's Online Documentation .. 93
CGI.pm's Rules for General HTML Tags ... 95
CGI.pm's Rules for HTML Form Tags ... 97
Named vs. Positional Parameters in CGI.pm ... 99
Lab .. 101

Chapter 7 - Generating Forms... 103

Chapter Objectives .. 105
General Structure of HTML Forms .. 107
Form Element Tags.. 109
Pushbuttons .. 111
Radiobuttons ... 113
Checkboxes .. 115
Popups and Listboxes ... 117
Textfields, Passwords, and Textareas. .. 119
Lab .. 121

Chapter 8 - CGI Data Flow Architecture ... 123

Chapter Objectives .. 125
URL Encoding and Decoding ... 127
Data Flow Between Browsers and Servers .. 129
GET vs. POST ... 131
Which to Use? ... 133
CGI Environment Variables .. 135
Accessing CGI's Environment Variables .. 137
Lab .. 139

vCGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Chapter 9 - Processing Form Data ... 141

Chapter Objectives .. 143
Static Forms .. 145
Dynamic Forms ... 147
Controlling Flow with User Input .. 149
Accessing Form Data Using CGI.pm ... 151
The param Method of CGI.pm .. 153
Sticky Widgets ... 155
Validating Input from the Browser ... 157
Command Line Debugging .. 159
Lab .. 161

Chapter 10 - Client-Side Statefulness .. 163

Chapter Objectives .. 165
Stateful vs Stateless ... 167
Why use Stateful CGI Applications? ... 169
Program to Program Interaction ... 171
Stateful Access with Hidden Fields... 173
Multiple Forms and Hidden Fields .. 175
Stateful Access with Netscape Cookies ... 179
Using Cookies with CGI.pm ... 181
Cookie Management ... 183
Lab .. 185

Chapter 11 - Database Access ... 187

Chapter Objectives .. 189
Server-Side Statefulness ... 191
Flat-File Databases ... 193
Structuring Text Data .. 195
File Permissions and Flat-File Databases ... 197
Perl's DBM Interface .. 199
Perl's DBI/DBD Interface.. 201
Issues With Statefulness .. 203
Lab .. 205

vi CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Chapter 12 - Additional Web Programming Features .. 207

Chapter Objectives .. 209
Extra Path Information .. 211
Frames .. 213
Server Side Includes (SSI) ... 215
The exec command ... 217
A Page Hit Counter Using SSI ... 219
Animation Description ... 221
Netscape's Server Push .. 223
Client Pull .. 225
The GD.pm Module.. 227
Lab .. 229

Chapter 13 - CGI Security Issues ... 231

Chapter Objectives .. 233
Browser to Server Security Issues .. 235
CGI Security Issues.. 237
CGI Interaction with the Operating System.. 239
Database / File System Overflow ... 241
CGI and User Authentication .. 243

Appendix 1- Overview of Perl .. 245

Chapter Objectives .. 247
What is Perl? ... 249
Running Perl Programs .. 251
Sample Program ... 253
Another Sample Program .. 255
Yet Another Example .. 257

Appendix 2 - Perl Variables ... 259

Chapter Objectives .. 261
Three Types of Variables ... 263
Variable Names and Syntax ... 265
Variable Naming .. 267
Lists .. 269
Scalar and List Contexts .. 271
Hashes .. 273
Hash Functions .. 275

viiCGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Appendix 3 - Flow Control ... 277

Chapter Objectives .. 279
Simple Statements .. 281
Simple Statement Modifiers ... 283
Compound Statements .. 285
The next, last, and redo Statements .. 287
The for Loop .. 289
The foreach Loop... 291

Index ... 293

viii CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

© 1997-1999 by itcourseware, Inc. 12/99

Course Introduction 9Chapter 1

Chapter 1 - Course Introduction

© 1997-1999 by itcourseware, Inc. 12/99

Notes

10 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Course Introduction 11Chapter 1

Course Objectives

Describe the basic client/server architecture that makes up the
Internet.

List the request methods and response codes defined by the HTTP
standards.

Write and test CGI programs.

Use Perl's CGI.pm module to write CGI programs.

Use CGI.pm methods in CGI programs to generate HTML pages.

Use CGI.pm methods in CGI programs to generate HTML forms.

Explain the details of the Common Gateway Interface architecture.

Use CGI programs to handle input from HTML forms.

Develop CGI applications that use static and dynamic HTML forms.

Write CGI applications that maintain state information across web
transactions.

Use a CGI program to interoperate with a database system.

Take advantage of advanced features and technologies related to
CGI.

Recognize and deal with security issues related to CGI.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

12 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Course Introduction 13Chapter 1

Course Overview

Audience: This is a programming course designed for software
development professionals; you will write and manipulate many CGI
programs in this course.

Prerequisites: Experience with HTML is essential. Proficiency
with text editing on UNIX and basic knowledge of file manipulation
are necessary. Experience in programming in Perl, and knowledge
of Web Server Administration, are helpful but not necessary.

Student Materials:

Student workbook

Textbook.

Classroom Environment:

UNIX or Linux web server host and software development
environment, with one workstation per student.

Perl 5.002 or later, with the CGI.pm and GD.pm modules
installed.

Apache or equivalent httpd Web Server, configured for CGI.

Netscape 2.0 (or later) compatible Web Browser available for
each student.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

14 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Course Introduction 15Chapter 1

Suggested References

Gundavaram, Shishir. 2000. CGI Programming with Perl, Second Edition. O'Reilly
and Associates, Sebastopol, California. ISBN 1-56592-419-3.

Patchett, Craig and Wright, Matthew. 1997. The CGI/Perl Cookbook. John Wiley &
Sons, New York, New York. ISBN 0-471-16896-3.

Siever, Ellen, Spainhour, Stephen and Patwardhan, Nathan. 1999. Perl in a Nutshell.
O'Reilly and Associates, Sebastopol, California. ISBN 1-56592-286-7.

Spainhour, Stephen and Eckstein, Robert. 1999. Webmaster in a Nutshell, Second
Edition. O'Reilly and Associates, Sebastopol, California. ISBN 1-56592-325-1.

Stein, Lincoln. 1998. Official Guide to Programming with CGI.pm. John Wiley & Sons,
New York, New York. ISBN 0-471-24744-8.

Wall, Larry, Christiansen, Tom, and Schwartz, Randal. 1996. Programming Perl,
Second Edition. O’Reilly and Associates, Sebastopol, California. ISBN 1-56592-
149-6.

Yeager, Nancy and McGrath, Robert E. 1996. Web Server Technology. Morgan
Kaufmann Publishers, Inc., San Francisco, California. ISBN 1-55860-376-X

http://stein.chsl.org/WWW/software/CGI/

http://web.golux.com/coar/cgi/

http://www.perl.com/

http://www.w3.org/

© 1997-1999 by itcourseware, Inc. 12/99

Notes

16 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

The Internet and the Web 17Chapter 2

Chapter 2 - The Internet and the Web

© 1997-1999 by itcourseware, Inc. 12/99

Notes

18 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

The Internet and the Web 19Chapter 2

Chapter Objectives

Describe the mechanism by which computers communicate on the
Internet.

Describe the Domain Name System.

Explain how client and server programs connect on the Internet.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

20 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

The Internet and the Web 21Chapter 2

TCP/IP and Ports

Every host (computer) on the Internet has a unique IP address
(Internet Protocol address).

You have probably seen IP addresses, which look like
204.240.56.3

To request a connection to another internet host, you must know its
IP address.

Each host accepts and services only certain types of connection
request, each type handled by a server program or daemon.

These services are each identified by a port number.

Many common services have well-known port numbers, which
by convention are the same on all hosts.

Some examples (from /etc/services on UNIX):

netstat 15 # Network status information
ftp 21 # File Transfer Protocol
telnet 23 # Remote terminal emulation
smtp 25 # Simple Mail Transfer Protocol
time 37 # Network Time Service
name 42 # Domain Name Service
http 80 # Hypertext Transfer Protocol
nntp 119 # Network News Transfer Protocol

So, to use services on the Internet, you (or rather, your software)
must know both the IP address of the remote host and the port
number of the service you need.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

22 CGI Programming Using Perl

gov mil com edu org net uk

sun batky-howell colostate

www www atmos

cirque

co

novell

ftp

192.9.9.100 204.240.56.3

129.82.107.184 193.122.132.35

ns1

204.240.56.1

Name server host for the domain
batky-howell.com. Any request for
the IP address of a host in the batky-howell.com
domain, for example, www.batky-howell.com, is
serviced by the named daemon on this machine.
Additionally, programs running on hosts within this
domain will send any hostname, for example
www.sun.com, to this nameserver for IP address
resolution. If the nameserver doesn't have that
hostname in its database, it sends it to the
nameserver for the next higher domain (com).
The request then goes to the nameserver of the
appropriate subdomain.

Requests for the IP addresses of other
hosts, such as
cirque.atmos.colostate.edu or
ftp.novell.co.uk, are serviced by
the nameservers for those domains
(atmos.colostate.edu and
novell.co.uk) and for their parent
domains (colostate.edu, edu, and
co.uk, uk).

© 1997-1999 by itcourseware, Inc. 12/99

The Internet and the Web 23Chapter 2

For the convenience of users, hosts on the Internet are given
names.

When we reference a host by name, TCP/IP programs must first
resolve the name into an IP address.

To get the IP address of a host, a program can simply look up the
hostname in a local file (/etc/hosts or system32\drivers\etc\hosts)
and retrieve the IP address it finds on that line.

Each machine must have its own copy of the hosts file;
keeping them all up to date is a chore.

A hosts file can't possibly list all the hosts on the Internet.

The Domain Naming System (DNS) allows a single machine to
maintain the list of hostnames and IP addresses for a network.

The Domain Naming System is hierarchical; if the name server
daemon can’t find the requested hostname, it passes the
request to a higher level server.

To get the IP address of a host, a program sends a query
containing the hostname to a name server daemon; the name server
daemon then returns the corresponding IP address.

Note that since the name server daemon is running on another
machine, we must already know its IP address.

Some UNIX systems provide a DNS lookup command (nslookup,
for example) to directly query a DNS server.

DNS vs. Hosts Files

© 1997-1999 by itcourseware, Inc. 12/99

Notes

24 CGI Programming Using Perl

What is an association?

To communicate, two processes must establish an association, which is a 5-tuple that
completely identifies the two processes (a client on one computer and a server on
another) that make up a connection:

{network protocol, local-address, local process, foreign-address, foreign process}

What is an endpoint?

An endpoint, or socket, (also known as a “half-association”), specifies half of a
connection:

{network protocol, address, process}

What is a port?

A port is an integer that is used to identify a specific process on a computer. It is the
process member above. A well-known port, used by server programs, is an
identifier of a service provided by a machine, and an ephemeral port (or "temporary"
port) is used by a client. Ephemeral ports are allocated from the operating system by
the client program, and then returned to the O.S. for reuse when the client/server
transaction is complete.

© 1997-1999 by itcourseware, Inc. 12/99

The Internet and the Web 25Chapter 2

TCP/IP provides peer-to-peer communication, but does not
specify when or why peer applications interact.

The fundamental justification for Client/Server computing comes
from the problem of rendezvous.

Because TCP/IP does not provide any mechanism to start a
program when a message arrives, a server program must be
waiting to accept requests before they arrive.

Definitions:

A client is an application that initiates peer-to-peer
communication in pursuit of a service (or services).

- A browser is a client application.

A server is a program that waits for service requests from
clients and processes them.

- A server executes on its host system, doing work on
behalf of the client.

Servers and Clients

© 1997-1999 by itcourseware, Inc. 12/99

Notes

26 CGI Programming Using Perl

Each client program establishes a connection to a server daemon on another host. It then
converses with the server daemon using a simple vocabulary which is defined by a protocol.

A protocol is simply an agreement between those who create server daemon programs and those
who write the programs that connect to those daemons, on the language the two programs will
speak. The agreement is traditionally hammered out in an RFC (Request For Comment), which is
published by someone who wants to establish a new kind of service. Others then contribute ideas,
comments, and sample programs, and eventually the RFC becomes the standard defining the new
service. This loosely organized, open, and collaborative process has resulted in the Internet as we
know it today. RFCs are assigned unique numbers; following is a list of some "famous" RFCs
(though there are actually dozens of RFCs covering different aspects of each of these services):

RFC 791 The Internet Protocol
RFC 821 The Simple Mail Transfer Protocol
RFC 854 The TELNET Protocol
RFC 959 The File Transfer Protocol
RFC 822 Format of Internet Text Messages (specifies header syntax which is used by

several protocols.)
RFC 1034 Domain Names (DNS)

See http://info.internet.isi.edu/in-notes/rfc/ for a complete list.

These protocols are open and available, and anyone can write programs which use them. The
programs we discuss in this chapter were first written many years ago, but are still very widely used.
Modern software for using Internet services incorporates all of these protocols - file transfer, mail,
news, address resolution - plus a few new protocols and standards such as HTTP (Hypertext
Transfer Protocol) and HTML (Hypertext Markup Language) into a single interface, hiding the details
from users; anyone can now easily access the global Internet without knowing anything about the
underlying protocols.

Of course, some of us still need to know what's going on behind the scenes...

The telnet program allows you to specify a port number to use, instead of the well-known TELNET
port number 23. Thus, you can use telnet to establish an interactive session with any network
service daemon, not just the telnet daemon! Telnet is often used in this way by programmers and
system administrators to debug and diagnose network server daemons. It can also be used
mischievously or maliciously - for example, someone who knows the details of the SMTP (Simple
Mail Transfer Protocol) could use it to connect to an email server daemon and forge messages. This
would take some skill and cleverness; system and network administrators are also skillful and clever
at detecting such abuses.

© 1997-1999 by itcourseware, Inc. 12/99

The Internet and the Web 27Chapter 2

Client/Server Protocols

A protocol is simply an agreement between those who create server
daemon programs and those who write the client programs that
connect to those daemons, on the language the two programs will
speak.

The actual vocabulary used by most Internet protocols is human-
readable.

Most of these protocol languages specify requests and responses.

Example requests:

FTP: USER, PASS, CWD, CDUP, LIST, PORT, RETR, QUIT
SMTP: HELO, RCPT, MAIL, SEND, QUIT
HTTP: GET, POST, HEAD, PUT

These protocols are open and available, and anyone can write
programs which use them.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

28 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 87Chapter 6

Chapter 6 - Generating HTML

© 1997-1999 by itcourseware, Inc. 12/99

Notes

88 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 89Chapter 6

Chapter Objectives

Use the online documentation for CGI.pm.

Use CGI.pm to generate HTML in Perl CGI programs.

Describe the rules of CGI.pm pertaining to general HTML methods.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

90 CGI Programming Using Perl

For any HTML tag, CGI.pm allows you to generate the tag by calling a function of the same
name.

print strong('Special Offer!');

If you want to use a non-standard tag, say so by listing its name, along with the :standard
tag, when you include CGI.pm in your program with use. This works even if the tag is
unknown to CGI.pm! If you call an HTML method that CGI.pm has never seen before, it will
automatically create a method that generates valid HTML.

use CGI(':standard', 'fireworks');
...
print fireworks('Holiday Sale!');
This will produce: <FIREWORKS>Holiday Sale!</FIREWORKS>

And, since all browsers silently ignore any tags they don't understand, it won't make your HTML
output non-portable.

Hands On:

Modify order.cgi to create a centered heading colored red.

#!/usr/bin/perl

use CGI qw(:standard);

print header();
print start_html(-TITLE=>'Domoniques Pizza');
print h1({-align=>'center'},
 font({-color=>'red'}, "Domoniques Pizza"));
print end_html();

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 91Chapter 6

Introduction to CGI.pm

To use CGI.pm, you must first include it in your Perl program with
the use command.

use CGI qw(:standard);

This makes all of CGI.pm's standard HTML-generating
methods available in your program.

print start_html();

CGI.pm's methods return text strings containing HTML tags.

print hr(); # Creates a horizontal rule tag: <HR>

Parentheses are optional if you're not passing parameters.

print hr;

For HTML tags that enclose text, pass the text to the method.

print h1('Section One: Introduction');
Creates: <H1>Section One: Introduction</H1>

For HTML tags with optional attributes, you can pass the attributes
as parameters in a hash reference. (More about this soon.)

print font({ -size=>'+2', -color=>'red' },
 'Order now!');

Order now!

© 1997-1999 by itcourseware, Inc. 12/99

Notes

92 CGI Programming Using Perl

Hands On:

First, find where the file containing CGI.pm is located. The instructor will help you, perhaps by
executing the command perl -V to find the location of Perl's libraries on the classroom host.
Using Perl's pod2html command, create your own copy of CGI.pm's internal documentation, in
HTML format, so you can view it in your browser during the rest of the class.

For example, if the path to the CGI.pm file is /usr/local/lib/perl5/CGI.pm, then the command
would be:

pod2html /usr/local/lib/perl5/CGI.pm > ~/public_html/CGI.pm.html
chmod 644 CGI.pm.html

Load this page in your browser, and take a few minutes to familiarize yourself with the structure
of this document.

CGI Objects

In reading CGI.pm's documentation, you'll see that most of the examples use the following
style:

print $query->textarea(-name=>'feedback',
-rows=>'5', -columns=>'40');

The variable $query represents the content of a CGI GET or POST request which has been
received by your program. To use this variable (you can actually name it anything you want),
you must first create it:

$query = new CGI;

You can then use this variable to call CGI.pm's methods in an "object-oriented" style, and you
can also keep track of more than one query in a single program by creating multiple query
variables.

But it's not necessary to create a query variable to use CGI.pm. See the Programming Style
section of CGI.pm's documentation.

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 93Chapter 6

How to use CGI.pm's Online Documentation

CGI.pm is a program module, written in Perl, and installed in your
local Perl software directory.

Perl has a documentation format that allows a programmer to
embed extensive documentation of a program in the program itself.

This is called POD (Plain Old Documentation).

Perl includes a number of tools for converting this text to different
formats.

pod2text

pod2man

pod2latex

pod2html

CGI.pm has extensive internal POD documentation.

It starts at the first line that begins with =head.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

94 CGI Programming Using Perl

Example program that demonstrates paired and unpaired tags.

#!/usr/bin/perl

use CGI qw(:standard);

print header;
print start_html;
print b("This line is bold.\n");
print i;
print "This line is italic (but not bold).\n", br;
print "This line is italic non-bold too!\n";
print "</i>"; # Turn off italics
print end_html;

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 95Chapter 6

CGI.pm's Rules for General HTML Tags

For any general HTML tag name, use a method of the same name
to produce the tag in your CGI program.

print br;

Tag attributes are passed to a method as a Perl hash reference (a
list of attribute=>value pairs in braces) as the first parameter.

print hr({-align=>'left', -size=>'6',-noshade=>1});

The method will generate a tag pair if any parameters other than
attributes are passed in.

print font({ -size=>'+2', -color=>'red' },
 "Order now!\n");

The method will generate a single tag if no other parameters are
passed in.

print b;
print font({ -size=>'1', -color=>'lightgrey' });
print 'Offer does not apply in all states.',

 'Interest doubles after 1 week. No refunds.';
print '';
print '';

Don't forget to close any non-empty tags you create!

No error checking is performed on parameters, so:

Programs can adapt to changing standards.

Less run-time overhead.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

96 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 97Chapter 6

CGI.pm's Rules for HTML Form Tags

Form element tag attributes are passed to a method as parameters.

print textarea(-name=>'feedback',
-rows=>'5', -columns=>'40');

Some form components (radiobutton groups, popup menus, option
lists) have several elements.

For these, pass the list of elements to the CGI.pm method as
a list or hash argument.

In the following popup_menu call, the values are passed as a
list and the labels are passed as a hash.

print popup_menu(-name=>'contact',
-values=>['t', 'f', 'p'],
-default=>'t',
-labels=>{'t'=>'Telephone',
 'f'=>'Fax',
 'p'=>'Pager'});

© 1997-1999 by itcourseware, Inc. 12/99

Notes

98 CGI Programming Using Perl

When using named parameters in CGI.pm function calls, the first parameter name begins with
a hyphen, but the leading hyphen is optional for the rest of the names:

print radio_group(
-NAME => 'shell',
VALUES=> ['bash','tcsh','ksh','csh'],
LABELS=> {

'bash'=>'Bourne-Again Shell',
'tcsh'=>'Tcsh',
'ksh'=>'Korn Shell',
'csh'=>'C Shell'

}
);

If you call use_named_parameters before calling any other CGI.pm methods, then the
leading hyphen on the first parameter is optional.

use_named_parameters(1);

print radio_group(
NAME => 'shell',
VALUES=> ['bash','tcsh','ksh','csh'],
LABELS=> { 'bash'=>'Bourne-Again Shell',

'tcsh'=>'Tcsh',
'ksh'=>'Korn Shell',
'csh'=>'C Shell'

}
);

BUT, to avoid potential conflicts with Perl language keywords, it is recommend that you put a
leading hyphen in front of all parameter names in the CGI.pm function calls.

Capitalization of parameter names is a programmer's style choice. Some people find it
improves readability.

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 99Chapter 6

Named vs. Positional Parameters in CGI.pm

Positional parameters are the original style for passing parameters
to CGI.pm's form element methods.

print radio_group('shell', # Name
['bash','tcsh','ksh','csh'], # Button values
'ksh', # Default button
, # Vertical list
{ 'bash'=>'Bourne-Again Shell',
 'tcsh'=>'Tcsh',
 'ksh'=>'Korn Shell',
 'csh'=>'C Shell'
} # Button labels

);

Note that defaulted parameters need commas.

Named parameters are the preferred style.

print radio_group(-NAME=>'shell',
-VALUES=>['bash','tcsh','ksh','csh'],
-LABELS=>{ 'bash'=>'Bourne-Again Shell',

 'tcsh'=>'Tcsh',
 'ksh'=>'Korn Shell',
 'csh'=>'C Shell'
 },

-DEFAULT=>'ksh'
);

The advantages of named parameters include:

You do not have to remember the order of parameters.

It's easy to see at a glance what is passed in.

You can add new parameters to be incorporated.

© 1997-1999 by itcourseware, Inc. 12/99

Notes

100 CGI Programming Using Perl

© 1997-1999 by itcourseware, Inc. 12/99

Generating HTML 101Chapter 6

Lab

1. Write a program that uses the header subroutine with no parameters. Run the
program from the command line to see the HTTP text. What is the default media
type used by CGI.pm? (Solution: media.cgi)

2. Modify the program in #1 above to send the media type image/gif. Again, run
it it offline mode. (Solution: mediaGIF.cgi)

3. Write a program that displays the following two lines, with the word Blue colored
blue and the word Red colored red:

Blue is my second favorite color.
Red is my favorite.

(Solution: blueRed.cgi)

4. Write a program that displays the header Electronic Communication
Channels, followed by four lines with the words Telephone, Fax, E-mail,
and Pager, with the four lines separated by horizontal rules that are left-justified, 5
pixels thick, nonshaded, and take 30% of the width of the browser screen.
(Solution: page1.cgi)

5. Modify page1.cgi so that it contains exactly one Perl print statement, which
means that the CGI method calls and the lines of text are comma-separated
parameters to the print statement. (Solution: page2.cgi)

6. Examine and run each of the four programs bi1.cgi, bi2.cgi, bi3.cgi, and bi4.cgi.
Run them from the command line and from a browser. Make sure you understand
everything in these programs. (Note: "bi" means "bold-italic".)

© 1997-1999 by itcourseware, Inc. 12/99

Notes

102 CGI Programming Using Perl

Additional Web Programming Features 207Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Chapter 12 - Additional Web Programming Features

Notes

208 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

Additional Web Programming Features 209Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Chapter Objectives

Use "extra path information" to send information from a browser to
a CGI program.

Design pages using frames.

Take advantage of Server Side Includes in HTML documents.

Show an example of Server Push browser/server interaction.

Show an example of Client Pull browser/server interaction.

Use the GD.pm module to dynamically generate graphics.

Notes

210 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

Additional Web Programming Features 211Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Extra Path Information

URLs can contain additional information, know as extra path
information, just past the file name but before the query string.

This can be used to hold an identifier.

http://server/~s1/class/prog.cgi/getval?submit=GO

translates into the following environment variables:

PATH_INFO=/getval
QUERY_STRING=submit=GO
SCRIPT_NAME=/class/prog.cgi

You arrange for extra path info to be sent when you specify a URL,
such as a frame SRC attribute.

<FRAME SRC="$script_name/query" NAME="query">

A CGI app can thus identify which frame the URL was sent
from.

Notes

212 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

#!/usr/bin/perl
File: frameset.cgi

use CGI qw(:standard);
print header;

We use extra path info to distinguish between calls to create:
(1) the frameset, (2) the query form, (3) the query response

$path_info = path_info;
If no path info is provided, then create side-by-side frameset
if (!$path_info) {
 print_frameset(); exit 0;
}

If we get here, then create either the query form the response.
print start_html("Frameset Example");
print_query() if $path_info=~/query/;
print_response() if $path_info=~/response/;
print end_html;

sub print_frameset { # Create the frameset
 $script_name = script_name;
 print <<EOF;
<html><head><title>Frameset Example</title></head>
<frameset cols="50,50">
<frame src="$script_name/query" name="query">
<frame src="$script_name/response" name="response">
</frameset>
</html>
EOF
 ;
}

sub print_query {
$script_name = script_name;
print h1("Frameset Query");

Here is the line which points to the "response" frame
print start_form(-ACTION=>"$script_name/response", -TARGET=>"response");
print "What's your name? ",textfield('name');
print p, "What's the combination?",

checkbox_group('words', ['eenie','meenie','minie','moe']);

print p, "What's your favorite color? ",
popup_menu('color', ['red','green','blue','chartreuse']);

print submit;
print endform;

}

sub print_response {
print h1("Frameset Result");
print start_form;
if (param) {

print "Your name is <i>",param(name),"</i>\n";
print "<P>The keywords are: <i>",join(", ",param(words)),"</i>";
print "<P>Your favorite color is <i>",param(color),"</i>";

} else {
print "No query submitted yet.";

}
}

Additional Web Programming Features 213Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Frames

Frames allow what look and behave like several independent
pages to be contained in a single page.

Each frame (subwindow) contains a separate document.

Frames are created with HTML tags.

<FRAMESET> ... </FRAMESET>

The data in a frame is automatically requested by the browser
when it receives a <FRAME> tag:

<FRAME src="frame_source.html" name="frame_1">

Individual frames can be communicated with independently
through the different URL’s.

CGI.pm does not provide specific methods for frames.

Notes

214 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

SSI was a first attempt to get CGI-like functionality from a web server. It can be useful if handled
carefully.

The SSI directives are as follows:

Command Parameter Description

echo var Inserts value of special SSI variables and other
Environment variables

include Inserts text of document into HTML file stream

file Pathname relative to current directory

virtual Virtual path to document on the server

fsize file Inserts the size of the specified file

flastmod file Inserts the last modification date and time of
the specified file

exec Executes SSI application and inserts app.
output in the current HTML data stream

cmd Any application on the host

cgi CGI application

config Modifies various aspects of SSI

errmsg Default error message

sizefmt Format for size of file

timefmt Format for dates

As you can guess from some of the directives, one of the intended reasons for SSI was to return
file statistics to the browser. It is still used for this, although pure CGI can do this in much more
detail.

Additional Web Programming Features 215Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Server Side Includes (SSI)

Server Side Includes are directives placed in HTML documents
that cause the server to output data or execute programs.

When documents are read by the server, they are parsed, looking
for SSI directives.

If found, the server follows the directive(s), and embeds the
result in the middle of the HTML string sent to the browser.

SSI exec programs are similar to CGI scripts, with several
differences:

They are external programs, but they are not (necessarily)
CGI scripts.

They are run on demand by the server, but not based on the
URL.

- The link to them is embedded in the HTML text that
the server reads from an HTML document.

SSI applications can affect performance: once enabled, the
server must parse all HTML documents it handles from then on.

There are security risks associated with SSI: it is possible
for someone with access to the server to insert SSI applications
which circumvent normal security.

SSI directives can not be generated by CGI applications: only
static files are parsed for directives.

Notes

216 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

As has been mentioned, you must be careful with SSI programs. Since a server with SSI
enabled will parse its HTML files for directives, it is possible for CGI applications which allow
HTML entry strings from the browser to inadvertently give access to malicious users. Often,
guestbook type applications allow users to enter HTML statements which will be parsed when
they re-access the server. If someone were to enter:

<--#exec cmd="/bin/rm -r *" -->

a great deal of damage could occur the next time their entry is accessed!

Speaking of enabling SSI, here are the steps necessary for doing just that for Apache:

1. You must set the extension name of files to be parsed in the server configuration file.

AddHandler server-parsed .html

enables parsing of all files with the extension .html. Some web server administrators
prefer to use a special extension (such as .shtml) for parsed files, leaving regular .html
files unparsed to reduce the load on the server.

AddType text/html .shtml
AddHandler server-parsed .shtml

2. You must tell the server what features you want to enable for a given set of files, either in
the server configuration file or in a per-directory access file:

Options Includes ExecCGI

Includes Allows all SSI directives.
IncludesNoExec Allows SSI directives except exec.
ExecCGI Allows execution of CGI programs in the given directory.

Remember that both security and performance are affected by SSI.

Additional Web Programming Features 217Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

The exec command

SSI programs are executed with the exec command.

<!--#exec cmd="/class/homepage_counter.pl" -->.

In this case, the server is being told:

To insert the output of this program.

That the program is located at the pathname /class.

It is named homepage_counter.pl.

The output data stream from homepage_counter.pl will be inserted
into the data being read from the HTML document at this point.

Notes

218 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

<!-- index.html -->
<HTML>
<HEAD>
<TITLE>My Big Home Page</TITLE>
</HEAD>
<BODY>
<H2 ALIGN="CENTER">Welcome To My Big Home Page</H2>
<HR>
Guess how many people have been here.

This many: <!--#exec cgi="homepage_counter.cgi" -->

Guess how big the file is that counts hits.

<!--#config sizefmt="bytes" -->
It is <!--#fsize file="WWW/count.txt" --> bytes.
</BODY>
</HTML>

Additional Web Programming Features 219Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

A Page Hit Counter Using SSI

Page hit counters are a common exercise for beginning web
programmers.

A simple program maintains a number in a file.

An SSI in an HTML page runs the program, which increments
the number and includes the new value in the page.

#!/usr/bin/perl
#File: homepage_counter.cgi

print "Content-type: text/plain","\n\n";

$count_file = "WWW/count.txt";

if (open (COUNTFILE, $count_file)) {
 $accesses = <COUNTFILE>;
 close (COUNTFILE);
 if (open COUNTFILE, ">".$count_file) {
 $accesses++;
 print COUNTFILE "$accesses\n";
 close(COUNTFILE);
 print $accesses;
 }
 else # Open for write failed
 {
 print "Can't write to the counter file!\n";
 }
}
else # Initial open failed
{
 print "Can't read from $count_file!\n";
}

Notes

220 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

This type of capability was originally intended to allow things such as the automatic re-direction
of URL’s from one location to another, or to allow the autonomous re-painting of a screen. The
basic HTML definition allows for Client Pull, where the browser, after waiting x number of
seconds, re-submits a query.

While it can be used for animating screens, often by repeatedly sending a sequence of
images, it has several drawbacks.

First, since entire browser/server transactions are involved, the time it takes to transfer the
data to the browser can be substantial. True animation, as in a cartoon, will not be possible, as
it can take several seconds for each “frame” to be sent.

True animation requires that the images creating the animation be produced locally. This can
be done with Java or special plug-in applications that run multimedia type video on the
browser.

Server Push, where the server itself continues to send data repetitively, is supported only by
Netscape.

Additional Web Programming Features 221Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Animation Description

It is sometimes desirable to force data transfer or URL traversing
from within an application.

This can be done from either the Server or the Client end.

The control (at least to set up the process) comes from the server
side.

Depending on the method used, the actual re-painting (data transfer)
is controlled from the client or the server.

This can be used to perform a type of animation, where successive
screens are painted to the browser over and over again.

Remember that each screen is the result of a complete transfer
between the server and the browser. This will include all network
delays, which can be substantial.

Notes

222 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

#!/usr/bin/perl
File: nph-push.cgi

$| = 1; # Disables buffering

use CGI qw(:standard);

$boundary_string = "\n"."--End"."\n";
$end_of_data = "\n"."--End--"."\n";

$delay = -1;
if (param('delay')) { $delay=param('delay'); }

print "HTTP/1.0 200","\n";

if ($delay > -1) {
$delay=param('delay');
$iterations=param('iterations');
print "Content-type: multipart/x-mixed-replace;boundary=End","\n\n";
print $boundary_string;

for ($i=1;$i<=$iterations;++$i) {
print header;
print start_html;
print "Push #$i\n";
print p, ̀ ps -ef|wc -l`, " processes on ", server_name;
print $boundary_string;
print end_html;
sleep ($delay);

}
print $end_of_data;

}
else {

print header;
print start_html("Push Example");

$server = server_name;
print "<h3>Repeatedly show number of processes on $server</h3>\n";
print "<hr>\n";

print startform;

print "Enter the number of seconds between server pushes: ";
print textfield('delay','2','2','2'), br;
print "Enter the number of server pushes: ";
print textfield('iterations','2','2','2');

print "<hr>\n";
print submit('Start');
print end_form;
print end_html;

}

Additional Web Programming Features 223Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Netscape's Server Push

Server Push allows a server to repeatedly send pages to the
browser at intervals.

The CGI application sends one page, waits, and then sends
the next page.

A simple server push application will use a loop to repeatedly do
its job.

More complex apps can send multiple pages using application-
determined order and intervals.

While reasonably simple to implement, remember that only
Netscape browsers will support this type of animation.

Note that the program on the facing page is named
nph-push.cgi.

"nph" means No Parse Headers.

If a CGI app file name starts with nph-, then httpd will not
parse any data being sent from the app to the browser, nor
will it provide a response line or headers.

Note that an nph program must send a response line.

print "HTTP/1.0 200","\n";

This line must be sent by the Perl program because
httpd will not send it.

- It would if the program's name wasn't nph-something.

Notes

224 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

This example of client pull is fairly complex. It actually creates a separate Perl CGI application, and then
tells the browser to run that CGI application repeatedly.

#!/usr/bin/perl
File: pull.cgi

use CGI qw(:standard);

print header;
print start_html("Client Pull Program");

if (!param) { # Paint the form
$server = server_name;
print "<h3>Repeatedly show number of processes on $server</h3>\n";
print "<hr>\n";

print startform;
print "Enter the number of seconds between client pulls: ";
print textfield('delay','2','2','2');
print "<hr>\n";
print submit('Execute Command');
print endform;

} else { # Get information submitted
$delay = param('delay');

Dynamically create the client pull document
$filename = "pull_command.cgi";
open (PULL,">$filename");

print PULL "#!/usr/bin/perl","\n";
print PULL "# File: $filename","\n";
print PULL 'print "Refresh: ",',$delay,',"\n";',"\n";
print PULL 'print "Content-type: text/plain\n\n";',"\n";
print PULL 'print "Executing ps -ef|wc -l every ',$delay,' seconds";',

"\n";
print PULL 'print "\n\nProcesses: ",`ps -ef|wc -l`;',"\n";
close (PULL);

Kick the browser to run our new program repeatedly
print "<META HTTP-equiv='Refresh' CONTENT='0; URL=pull_command.cgi'>\n";

}
print end_html;

Additional Web Programming Features 225Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

Client Pull

The HTTP “Refresh” header tells a browser to reload a page after a
certain number of seconds.

This is often used to set up re-direction to a new URL, as in:

Refresh: 5; URL=http://foo.bar.org/index.html
Content-type: text/plain

This URL has changed. You will be re-directed
in 5 seconds to http://foo.bar.org/index.html

The URL in the "refresh" is optional; without it, the browser
will re-load the current URL.

You can use a META tag in the document itself, instead of a header:

<META HTTP-EQUIV='Refresh' CONTENT='5';
 URL="http://foo.bar.org/index.html">

You can use this to have the browser re-request a CGI program.

The “Refresh” header sets up the timer:

Refresh: 2; URL=http://server/cgi-bin/pullit.cgi

When the web browser sees the “Refresh” header, it starts an
internal timer which waits for a prescribed time period, and
then automatically re-requests the URL.

Only one “timed refresh” is done; to get repeated refreshes,
each data stream sent to the browser must include a new
“Refresh” header.

Notes

226 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

Following is an example CGI application which uses GD.pm to draw an analog clock.

#!/usr/bin/perl
#File: gd_clock.cgi

use GD;

$| = 1;
print "Content-type: image/gif", "\n\n";

$max_length = 150;
$center = $radius = $max_length / 2;
@origin = ($center, $center);
$marker = 5;
$hour_segment = $radius * 0.50;
$minute_segment = $radius * 0.80;
$deg_to_rad = (atan2 (1, 1) * 4) / 180;

$image = new GD::Image ($max_length, $max_length);

$black = $image->colorAllocate (0, 0, 0);
$red = $image->colorAllocate (255, 0, 0);
$green = $image->colorAllocate (0, 255, 0);
$blue = $image->colorAllocate (0, 0, 255);

($seconds, $minutes, $hour) = localtime (time);
$hour_angle = ($hour + ($minutes / 60) - 3) * 30 * $deg_to_rad;
$minute_angle = ($minutes + ($seconds / 60) - 15) * 6 * $deg_to_rad;

$image->arc (@origin, $max_length, $max_length, 0, 360, $blue);

for ($loop=0; $loop < 360; $loop = $loop + 30) {
local ($degrees) = $loop * $deg_to_rad;

$image->line ($origin[0] + (($radius - $marker) * cos ($degrees)),
$origin[1] + (($radius - $marker) * sin ($degrees)),
$origin[0] + ($radius * cos ($degrees)),
$origin[1] + ($radius * sin ($degrees)),
$red);

}

$image->line (@origin,
$origin[0] + ($hour_segment * cos ($hour_angle)),
$origin[1] + ($hour_segment * sin ($hour_angle)),
$green);

$image->line (@origin,
$origin[0] + ($minute_segment * cos ($minute_angle)),
$origin[1] + ($minute_segment * sin ($minute_angle)),
$green);

$image->arc (@origin, 6, 6, 0, 360, $red);
$image->fill ($origin[0] + 1, $origin[1] + 1, $red);
print $image->gif;

exit(0);

Additional Web Programming Features 227Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

The GD.pm Module

It is possible to have a CGI application create pictures
dynamically (or modify existing ones) at run time.

Such images must be in a format displayable by the browser.

There is a C library available called gd (for Graphics Draw), written
by Thomas Boutell, which allows the creation and manipulation of
PNG files.

It has been built into a Perl module called GD.pm, which allows the
gd functions to be invoked from inside Perl.

It has tremendous applicability to CGI:

Creating graphical pages (charts, graphs, etc.) from
database information.

Drawing maps and diagrams on the screen dynamically.

Manipulating PNG files under user control (zoom, rotate,
crop, change color, add graphics, etc.).

The program on the facing page uses GD.pm version 1.19. As of
version 1.20 GD.pm creates PNG files instead of GIF files.

This avoids patent issues associated with the GIF format.

PNG is supported by Netscape Navigator 4.04 and higher,
and by Microsoft Internet Explorer 4.0 and higher.

Some GD.pm GIF methods have changed.

Notes

228 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

Additional Web Programming Features 229Chapter 12

© 1994-1999 by itcourseware, Inc. 12/99

1. Try modifying some of the attributes of the frames in the frameset.cgi
example. Can you make one frame bigger than the other? Can you make
frames that overlap? Try making the objects in the frames larger than one
screen in the browser. What happens?

2. Verify that Server Side Includes can not be instigated by a CGI program.
(Hint: Try to trigger homepage_counter.cgi from within a CGI program.)

3. Modify homepage_counter.cgi to check if the count file exists and if not
then create it. (Solution: hpcheck.cgi)

4. Enhance the server push example in this chapter to let the user to choose from a
list of commands to execute repeatedly, instead of hardcoding the process
status. Provide choices for how many processes, who is logged on, and the
date/time. (Solution: nph-push1.cgi)

5. Repeat #4 above fot the client pull example.

6. Experiment with GD.pm's capabilities. Create an HTML file from GD.pm's
POD.

Lab

Notes

230 CGI Programming Using Perl

© 1994-1999 by itcourseware, Inc. 12/99

